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Introduction: Chronic obstructive pulmonary disease (COPD) is projected to
become the third leading cause of death worldwide. Despite extensive research
over the past few decades, effective treatments remain elusive, making disease
prevention and control a global challenge.

Methods: This study aimed to identify diagnostic key genes for COPD.We utilized
the Gene Expression Omnibus database to obtain gene expression data specific
to COPD. Differentially expressed genes (DEGs) were identified and analyzed
through Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene
Set Enrichment Analysis. Integrated weighted gene co-expression network
analysis was employed to examine related gene modules. To pinpoint key
genes, we used SVM-RFE, RF, and LASSO.

Results: A total of 1782 DEGs were discovered, many of which were enriched in
various biological pathways and activities. Four key genes—MRC1, BCL2A1,GYPC,
and SLC2A3—were identified. We observed a significant difference in immune
infiltration between COPD and normal groups, indicating potential interactions
between immune cells and these genes. The identified key genes were further
validated using external datasets.

Discussion: Our findings suggest that MRC1, BCL2A1, GYPC, and SLC2A3 are
potential biomarkers for COPD. Targeting these diagnostic genes with specific
drugs may potentially offer new avenues for COPD management; however, this
hypothesis remains preliminary and requires further investigation, as the study
does not directly assess therapeutic interventions.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive lung condition marked
by airflow limitation and chronic inflammation (McDonough et al., 2011; Vestbo et al.,
2013). It results from a combination of genetic factors, such as α1-antitrypsin deficiency,
and environmental factors, particularly smoking (Leap et al., 2021). COPD is common and
has high rates of disability and mortality, creating a significant economic burden worldwide
(Iheanacho et al., 2020). Early diagnosis and treatment are crucial for slowing lung function
decline and improving long-term outcomes. However, current diagnostic methods, such as
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pulmonary function tests and imaging, are insufficient for detecting
early-stage COPD, making accurate diagnosis challenging. This
highlights the need to understand genetic differences between
COPD patients and healthy individuals, identify high-risk
markers, and find effective treatment targets.

In recent years, high-throughput sequencing and bioinformatics
have become key tools in COPD research, helping identify disease-
related genes and potential molecular targets for precision therapy.
For example, genes like HIF1A, CDKN1A, BAG3, ERBB2, and
ATG16L1 influence COPD through autophagy regulation (Sun
et al., 2021). However, the lack of objective diagnostic methods
continues tomake COPD diagnosis and treatment selection difficult.
Therefore, developing reliable biomarkers for COPD is essential for
improving treatment outcomes.

In this study, we analyzed gene expression data from four
RNA-seq datasets (GSE11906, GSE20257, GSE5058, and
GSE8545) containing airway epithelial cells from COPD
patients and healthy individuals. Our goal was to identify
gene expression changes involved in COPD and discover
potential diagnostic biomarkers. We identified
1782 differentially expressed genes (DEGs) and key COPD-
related modules through analysis of two Gene Expression
Omnibus (GEO) datasets. Using algorithms like SVM-RFE,
random forest (RF), and LASSO, we pinpointed four key
genes-MRC1, BCL2A1, GYPC, and SLC2A3-that could
improve COPD diagnosis in high-risk patients. Targeting

these genes with specific drugs may also enhance clinical
management of COPD.

2 Materials and methods

2.1 Raw data acquisition

Datasets for four COPD airway tissues [GSE11906 (Raman et al.,
2009), GSE20257 (Shaykhiev et al., 2011), GSE5058 (Carolan et al.,
2006), and GSE8545 (Ammous et al., 2008)] were downloaded from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/). All datasets
are gene expression arrays generated using the GPL570 (HG-U133_
Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array.

GSE11906 and GSE20257 were used as the training set for
airway tissue, the set contains 90 healthy and 28 COPD samples;
While GSE5058 and GSE8545 were used as the validation set, the set
contains 19 healthy and 21 COPD samples. The
normalizeBetweenArrays function in the limma package (version
3.58.1) and sva (version 3.50.0) were applied for data combination
and normalization. Probes not matching any known gene were
eliminated, and if multiple probes matched a single gene, their
average expression was calculated. The Perl programming language
was used to remove lncRNA profiles and identify mRNA matrix
files. The R package ggplot2 (version 3.2.1) was employed to
normalize the processed data. Detailed information about the

FIGURE 1
Study work flow.
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datasets is provided in Supplementary Table 1, and the study’s flow
diagram is shown in Figure 1.

2.2 Differentially expressed genes
identification

Principal Coordinates Analysis (PCoA), a multivariate statistical
method used to assess the similarity and dissimilarity between
samples, was performed based on the Bray-Curtis distance
metric. PCoA was performed to confirm that the genes could
effectively differentiate between healthy individuals and COPD
patients. A total of 22,836 genes were tested for differential
expressions, from which 1,782 were identified as significantly
differentially expressed genes (DEGs) using the limma R package.
The cutoff criteria for DEGs were set to an adjusted
P-value <0.05 and |log fold change (FC)| > 0.5. Heatmaps and
volcano plots were generated using the ggplot2 package to visualize
the results.

2.3 Enrichment analysis

To elucidate the biological implications of the identified genes
and their functions, differentially expressed genes (DEGs) were
subjected to both Over-Representation Analysis (ORA) and Gene
Set Enrichment Analysis (GSEA).

For ORA, enrichment analyses were performed using the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. This analysis was conducted on the 1,782 DEGs
identified after correcting the log2FC calculation error. Fisher’s
Exact Test was applied for statistical analysis, and the False
Discovery Rate (FDR) method was used to control the false
positive rate. The analysis was performed using the clusterProfiler
R package, with a significant cutoff at a P-value of less than 0.05. The
terms “Molecular Function” (MF), “Biological Process” (BP), and
“Cellular Component” (CC) refer to categories within the Gene
Ontology classification system.

For GSEA, enrichment of predefined gene sets was
determined using the reference gene set “c2. cp.kegg.v6.2.
symbols.gmt” from the Molecular Signature Database
(MSigDB). Enrichment sets containing fewer than 10 or more
than 200 genes were excluded from the analysis. Pathways with a
normalized enrichment score (NES) greater than zero were
considered upregulated, while those with an NES less than
zero were considered downregulated. The five most significant
pathways were identified with an FDR threshold of <0.05. The
weighted Kolmogorov-Smirnov statistics were employed to
calculate the enrichment score (ES), with genes ranked based
on log fold change (logFC) values.

2.4 Weighted gene co-expression
network analysis

Data from GSE11906 and GSE20257 were combined and batch
processed. Weighted gene co-expression network analysis
(WGCNA) was used to identify trait-related modules. A

topological overlap matrix was constructed from the expression
profiles, with a soft-thresholding power of 18 and a minimum
module size of 30 to identify core modules. A height limit of
0.25 was set for module merging. Pearson’s correlation test was
then used to evaluate the modules, with a significance threshold
of P < 0.05.

2.5 Support vector machine, random forest,
and least absolute shrinkage and selection
operator model construction

Candidate genes were identified by intersecting DEGs with
genes from the WGCNA hub module. Hub genes were then
classified by overlapping genes from the SVM-RFE method using
the e1071 package (Noble, 2006), the RF algorithm using the
randomForest R package (Paul et al., 2018), and the LASSO
using the glmnet package (Vasquez et al., 2016). For Random
Forest (RF), we set ntree = 1,000 and selected features with an
importance score greater than 2. In LASSO, we used 10-fold cross-
validation (nfolds = 10) and set the regularization parameter alpha =
1. For SVM-RFE, we applied 5-fold cross-validation (k = 5). These
settings ensure the robustness and consistency of our results across
different algorithms.

2.6 Immune infiltration analysis

To verify the association of identified genes with disease
immune infiltration, the CIBERSORT algorithm was used to
evaluate the proportion of 22 immune cell types in normal and
COPD samples based on transcriptome data. The correlation
between the identified genes and the 22 types of immune cells
was subsequently analyzed.

2.7 Prediction of drug-gene interactions

The Drug-Gene Interaction Database (DGIdb, http://www.
dgidb.org/) aggregates drug-gene interaction data from various
sources, including DrugBank, PharmGKB, ChEMBL, clinical trial
databases, and PubMed literature. Information on over 40,000 genes
and 10,000 drugs, involving over 100,000 drug-gene interactions,
was collected and organized. Key genes identified as potential
pharmaceutical targets for COPD treatment were imported into
DGIdb to explore existing drugs or small organic compounds. The
reliability of each drug-gene interaction was evaluated based on
evidence from relevant drug databases such as DrugBank. Potential
therapeutic drugs for COPD were selected based on the interaction
score. Results were visualized using the “ggplot2 (3.2.1)” and
“ggalluvial (0.11.1)” R packages.

2.8 Statistical analysis

All data analyses were performed using R software (version
4.4.0). The Wilcoxon test was used for group comparisons, with P <
0.05 considered statistically significant.
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3 Results

3.1 Differentially expressed genes
identification in COPD and healthy
control groups

In this study, two airway datasets (GSE11906 and GSE20257)
were used to analyze differential gene expressions. The expression
matrix is presented in Supplementary Table 1. To verify the stability
and consistency of clustering in classifying COPD patients, Principal
Coordinates Analysis (PCoA) was employed, with results displayed

in Figure 2A. The integrated expression matrix revealed 1782 DEGs,
of which 920 were upregulated and 862 were downregulated, as
shown in Figure 2B. The volcano plot highlights DEGs with
significant changes in expression levels in Figure 2C. The
differentially expressed genes are detailed in Supplementary Table 2.

3.2 Functional analysis

Gene Ontology (GO) analysis identified 673 biological processes
(BP), 30 cellular components (CC), and 61 molecular functions

FIGURE 2
(A) PCoA analysis of DEGs among normal and COPD samples. (B)Heatmap of DEGs among normal and COPD samples. (C) Volcano of DEGs among
normal and COPD samples.

FIGURE 3
Functional DEGs enrichment. (A) GO analysis. (B) KEGG pathway analysis.
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(MF), as detailed in Supplementary Table 3. The top six GO items
are listed in Figure 3A. The DEGs were significantly enriched in
processes such as responses to xenobiotics, toxic substances, and
cytokine production, as well as metabolic and hormonal regulation.
They were also associated with the extracellular matrix, platelet
granules, and plasma membrane components, with functions
including antioxidant activity, enzyme binding, and structural
roles. According to the KEGG analysis, the DEGs were enriched
in various pathways, as shown in Figure 3B.

GSEA analysis (Supplementary Table 4) revealed distinct
pathway enrichment patterns for upregulated and downregulated
genes. Figure 4A shows the ridge plot of GSEA results, highlighting
pathways such as the cell cycle, proteasome, DNA replication, and
IL-17 signaling. Downregulated genes were enriched in circadian
rhythm, drug metabolism-cytochrome P450, phenylalanine
metabolism, and taurine and hypotaurine metabolism
(Figure 4B). In contrast, upregulated genes were associated with
amino acid biosynthesis, cell cycle, proteasome, primary
immunodeficiency, and DNA replication (Figure 4C). These
findings emphasize the critical roles of metabolic and immune-
related pathways in the studied biological processes.

3.3 Overlap between COPD-Relatedmodule
genes and differentially expressed genes

A scale-free network with a soft threshold of 18 (R2 = 0.9) was
constructed, as shown in Figure 5A. We then computed module
eigengenes, representing the overall gene expression level of each
module, and grouped them based on their associations. Seven
modules were identified, as depicted in Figure 5B. The yellow
module was found to be correlated with COPD (cor = 0.3, P =
0.001). This module contained 86 COPD-related genes, which were
retained for further investigation, as shown in Figure 5C. Ultimately,
30 genes were identified as overlapping between the DEGs and the
selected module genes, as illustrated in Figure 5D.

3.4 Key gene identification

To identify gene signatures, the 30 candidate genes were
analyzed using SVM-RFE, RF, and LASSO methods. Using SVM-
RFE, we identified a 7-gene signature with a precision of 0.897, as
shown in Figures 6A, B. LASSO analysis identified an 8-gene

FIGURE 4
GSEA results for pathway enrichment. (A) Ridgeline plot of GSEA analysis results. (B) Top five enrichment terms for downregulated genes. (C) Top five
enrichment terms for upregulated genes.
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signature, as depicted in Figures 6C, D. RF analysis identified a 6-
gene signature, as shown in Figure 6E. To establish a robust gene
signature for COPD, we determined the overlapping genes from
these methods, resulting in the identification of four key genes:
MRC1, BCL2A1, GYPC and SLC2A3, as illustrated in Figure 6F.
These four genes were significantly upgraded in COPD samples
compared to controls, as shown in Figure 7A. External validation
using the GSE5058 and GSE8545 datasets confirmed this trend, as
shown in Figure 7B.

3.5 Correlation of key genes and immune
cell infiltration

Chronic inflammation of the airways, lung parenchyma, and
pulmonary vasculature is a hallmark of COPD, involving
inflammatory cells such as neutrophils, macrophages, and
T-lymphocytes in the disease’s pathogenesis. We examined the
pattern of immune cell infiltration and found that the abundance
of resting mast cells, M0 macrophages, and memory B cells was

significantly higher in COPD samples compared to normal samples.
In contrast, native B cells, activated memory CD4 T cells, follicular
helper T cells, and resting NK cells were significantly reduced, as
shown in Figure 8A.

Additionally, we calculated the correlation between key gene
expression and infiltrating immune cells. The results indicated that
most immune cells had a positive correlation with key gene
expressions, as shown in Figure 8B. These findings suggest that
inflammatory components play a crucial role in the development of
COPD, and that key genes may have a novel regulatory role in
immune function.

3.6 Potential drugs targeting the
diagnostic genes

To identify potential drugs for COPD therapy, we searched for
drugs targeting the biomarkers using the DGIdb database. As shown
in Figure 9, six drugs targeting BCL2A1 and three drugs targeting
GYPC were identified.

FIGURE 5
Identification of critical modules by WGCNA. (A) Scale-free fit index and mean connectivity for different soft-thresholding powers. (B) Topological
overlap dissimilarity aggregation of DEGs clusters. (C)Module-feature correlations Each row represents amodule list, whereas each column represents a
clinical characteristic. The first line of each cell includes the associated correlation, while the second line gives the P-value. (D) Venn diagram for
overlapped genes.
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4 Discussion

COPD is a leading cause of morbidity and mortality worldwide,
with approximately 70%–80% of adults with COPD being
undiagnosed (Soriano et al., 2009; Lamprecht et al., 2015;
Martinez et al., 2015; Casas Herrera et al., 2016; Echazarreta
et al., 2018; Gershon et al., 2018; Soriano et al., 2021).
Undiagnosed patients are at increased risk of poor outcomes and
a worsened quality of life, making early detection crucial for
mitigating the impact of COPD and reducing the burden on

healthcare systems (Larsson et al., 2019; Kostikas et al., 2020).
Over the past decade, there has been growing interest in
developing effective strategies and instruments for COPD
detection (Lin et al., 2023). Understanding critical pathways and
gene signatures in COPD could aid in risk assessment, pathogenesis
elucidation, and personalized therapy development.

In this study, the top three differentially expressed genes (DEGs)
identified were ME1 (Malic Enzyme 1), NQO1 (NAD(P)H Quinone
Dehydrogenase 1), and CYP1B1 (Cytochrome P450 Family
1 Subfamily B Member 1), all of which have well-established

FIGURE 6
Key gene identification. (A) 7 gene signatures were identified by SVM-RFE analysis with an accuracy of 0.897. (B) Error of 0.103. (C) Cross-validation
to select the optimal tuning parameter log(Lambda) in LASSO analysis. (D) LASSO coefficient profiles of candidate genes. (E) RF analyses identified six gene
signatures (F) Venn diagram of four key genes shared by the SVM-RFE, RF, and LASSO algorithms.
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roles in COPD pathogenesis. ME1 is a key enzyme involved in
cellular metabolism and oxidative stress, both critical factors in the
progression of COPD (Ryan et al., 2023). NQO1, an important
antioxidant enzyme, plays a pivotal role in regulating oxidative
stress, a hallmark feature of COPD (Li et al., 2022a). CYP1B1, on the
other hand, is implicated in the metabolism of environmental toxins
and xenobiotics, making it particularly relevant to COPD (Yang
et al., 2020). These genes are not only highly differentially expressed
but are also enriched in biological pathways central to COPD
pathology, including the oxidative stress response and xenobiotic
metabolism. Together, these findings highlight the potential of these
genes as biomarkers or therapeutic targets in COPD research.

Advancements in bioinformatics have significantly enhanced
our ability to use microarray data to uncover key genes, interaction
networks, and pathways involved in COPD. In this study, both ORA
and GSEA were applied to explore the biological processes
influencing COPD progression. Enrichment analysis highlighted
several key biological processes, including responses to
xenobiotics and toxic substances, cytokine production, as well as
metabolic and hormonal regulation, all of which are highly relevant
to COPD pathogenesis. The response to xenobiotics and toxic
substances reflects the lungs’ defense mechanisms against
environmental pollutants, cigarette smoke, and other harmful
exposures, all of which trigger oxidative stress and inflammation-
hallmarks of COPD. Previous studies have established the
importance of these responses in exacerbating the disease
(Christenson et al., 2022). The cytokine production pathway,
crucial in amplifying the inflammatory response, also emerged as
a significant factor in COPD. This process contributes to tissue
damage and airway remodeling, which are central features of the
disease (Barnes, 2009). Furthermore, metabolic and hormonal
regulation emphasizes the systemic nature of COPD, suggesting

that metabolic dysregulation and hormonal imbalances may
exacerbate disease progression. Recent research supports targeted
reprogramming of metabolism as a promising therapeutic approach
for respiratory diseases like COPD (Gan et al., 2024). Together, these
findings corroborate previous studies and underscore the
importance of these biological processes as potential diagnostic,
prognostic, and therapeutic targets in COPD.

In our study, GSEA provided a deeper insight into the specific
biological pathways enriched among DEGs. Notably, GSEA revealed
that genes were primarily enriched in the IL-17 signaling pathway,
circadian rhythm, and drugmetabolism-cytochrome P450. IL-17 plays a
crucial role in lung lymphoid neogenesis in COPD, contributing to
airway inflammation, remodeling, and mucus hypersecretion (Kramer
and Gaffen, 2007; Xiong et al., 2020; Henen et al., 2023). Preclinical
studies have shown that anti-IL-17 antibodies can reduce airway
inflammation and remodeling in COPD models, supporting IL-17 as
a potential therapeutic target (Yousuf et al., 2019). Additionally, the
circadian rhythm pathway emerged as significant in COPD
pathogenesis. Disruption of circadian rhythms has been linked to
various lung diseases, and the circadian clock gene Clock-Bmal1 has
been shown to regulate cellular responses to inflammation and immune
activation in the lungs. This pathway may hold therapeutic potential for
improving COPD outcomes by restoring circadian regulation (Li et al.,
2022b). Although both ORA and GSEA identified pathways related to
inflammation and immune response, their approaches provided
complementary perspectives. ORA helped pinpoint over-represented
functional categories among the most significantly differentially
expressed genes, while GSEA offered a broader view by analyzing the
entire ranked gene list. This allowedGSEA to identify pathways enriched
at both ends of the gene expression spectrum, capturing subtle shifts in
pathway activation that ORA might have missed. For example, GSEA
highlighted pathways like the IL-17 signaling pathway and circadian
rhythm, which, while not dominated by a small number of highly
differentially expressed genes, represent important, biologically
significant alterations in COPD. These insights underscore the value
of using both enrichment methods in combination to gain a more
comprehensive understanding of the molecular mechanisms
driving COPD.

Recent research has confirmed that innate and adaptive immune
mechanisms play essential roles in COPD progression (Caramori
et al., 2016; Bu et al., 2020). In this study, resting mast cells,
M0 macrophages, and memory B cells were found to be
upregulated in COPD samples. Macrophages and B cells are
critical immune cells in COPD pathogenesis (Seys et al., 2015;
Lee et al., 2016; Kapellos et al., 2018; Sullivan et al., 2019), and
mast cells may also play an important role. Increased reticular
basement membrane and lamina propria mast cells, as well as
perivascular mast cells involved in angiogenesis, have been
observed in COPD patients (Soltani et al., 2012). Understanding
biology, heterogeneity, activation mechanisms, and signaling
cascades of immune cells could lead to novel therapies for COPD.

In our study, four key genes were identified as being related to
COPD. Mannose receptor C-type 1 (MRC1) is a critical regulator in
macrophage-mediated immune responses (van der Zande et al.,
2021). This receptor plays a significant role in several biological
processes, including the regulation of circulating reproductive
hormones, homeostasis, innate immunity, and infection
responses (Cummings, 2022). Recent studies have highlighted the

FIGURE 7
Expression analysis of key genes. (A) Expression of four key genes
in COPD and control groups. (B) Heatmap of key genes expressions.
*P < 0.05 vs Ctrl.
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role of MRC1 in macrophage activation (Gantzel et al., 2020), a
process crucial for chronic inflammation and tissue remodeling in
COPD. Our findings suggest that MRC1 may serve as a potential
biomarker for COPD progression, particularly in immune
regulation and the inflammatory pathways associated with
the disease.

B-cell lymphoma 2-related protein A1 (BCL2A1), a highly
regulated NF-κB target gene, is known for its pro-survival roles
in the hematopoietic system and is overexpressed in various cancers,
contributing to tumor progression (Vogler, 2012; Yue et al., 2021;
Gao et al., 2023). BCL2A1 has also been implicated in protecting
against acute lung injury (Ren et al., 2024), although its direct role in
COPD remains underexplored. Our study reveals that BCL2A1 is
highly expressed in the airway epithelial cells of COPD patients,
suggesting that it may play an important role in the pathogenesis of
COPD and could serve as a potential therapeutic target.

Glycophorin C (GYPC) is a membrane protein primarily expressed
in red blood cells, where it is involved in cell adhesion and maintaining
structural integrity. Although its role in pulmonary diseases is not well
understood, previous studies have proposed the red blood cell as a
biosensor for monitoring oxidative stress and imbalance in COPD
(Lucantoni et al., 2006). N our study, GYPC expression was

significantly upregulated in COPD patients, indicating its potential
involvement in the altered immune landscape in COPD and its
promise as a biomarker for disease progression.

Solute carrier family 2 member 3 (SLC2A3), also known as GLUT3,
is a high-affinity glucose transporter involved in cellular energy
metabolism. Overexpression of SLC2A3 has been shown to promote
cell survival and growth in cancer (Yao et al., 2020; Yan et al., 2023). Our
analysis, which focused on the immune microenvironment of COPD
patients, revealed that SLC2A3 was expressed in macrophages from
COPD patients and was upregulated in THP-M cells and lung tissues of
these patients (Zhang et al., 2023). In COPD, SLC2A3 appears to play a
crucial role in maintaining energy homeostasis under conditions of
chronic inflammation and hypoxic stress. These findings suggest that
SLC2A3 could be a promising biomarker for COPD diagnosis and
therapy, particularly in the context of metabolic reprogramming during
disease progression.

To uncover diagnostic indications for COPD, we applied SVM-RFE,
LASSO, and RF algorithms, and used CIBERSORT to examine immune
cell infiltration. This study identified MRC1, BCL2A1, GYPC and
SLC2A3 as COPD diagnostic indicators. However, studying has
several limitations. Firstly, the key genes should be validated by
qPCR, and their localization and distribution should be verified.

FIGURE 8
Immune cell distribution in COPD. (A) Differences in infiltrated immune cells between COPD and control groups. (B) Correlation analysis between
key genes and immune cells.
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Secondly, the study scope did not include detailed in vivo and in vitro
validation. Finally, our findings were derived from bioinformatics
analysis, and the specific mechanisms by which key genes affect
COPD prognosis need further experimental confirmation.

One limitation of this study is the relatively small sample size,
with the validation set comprising only 21 COPD patients and
19 controls. This may limit the statistical power and generalizability
of the findings. However, despite the small sample size, we ensured
the robustness of our results by validating the identified hub genes
and pathways across multiple independent datasets. These datasets
consistently supported our findings, which enhances the reliability
of our conclusions and suggests that the observed gene expression
patterns may be applicable to other cohorts.

Another limitation is the use of older datasets, with one
microarray dataset being nearly 20 years old. Although these
datasets are still widely cited, advances in sequencing technologies
and metadata standards may impact their generalizability. Therefore,
future studies should incorporate updated datasets and experimental
validation to further confirm our findings.

To address the sample size limitation, we emphasize the need for
future studies to utilize larger validation cohorts. A larger sample size
would not only improve statistical power but also increase the
generalizability of our findings across different patient populations.
We believe these efforts will provide a more solid foundation for
confirming the clinical relevance of the identified genes and pathways.
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