
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Genet.
Sec. Human and Medical Genomics
Volume 16 - 2025 | doi: 10.3389/fgene.2025.1499456
This article is part of the Research TopicApplication of Next-Generation Sequencing in Clinical SettingsView all 9 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Though short read high-throughput sequencing, commonly known as Next Generation Sequencing (NGS), has revolutionized genomics and genetic testing, there is no single genetic test that can accurately detect single nucleotide variants (SNVs), small insertions/deletions (indels), complex structural variants (SVs), repetitive genomic alterations, and variants in genes with highly homologous pseudogenes. The implementation of a unified comprehensive technique that can simultaneously detect a broad spectrum of genetic variation would substantially increase efficiency of the diagnostic process. The current study evaluated the clinical utility of long-read sequencing as a comprehensive genetic test for diagnosis of inherited conditions. Using Oxford Nanopore Technology (ONT) long read nanopore sequencing, we successfully developed and validated a clinically deployable integrated bioinformatics pipeline that utilizes a combination of eight publicly available variant callers. A concordance assessment comparing the known variant calls from a well-characterized, benchmarked sample called NA12878 from the National Institute of Standards and Technology (NIST) with the variants detected by our pipeline for this sample, determined that the analytical sensitivity of our pipeline was 98.87% and the analytical specificity exceeded 99.99%. We then evaluated our pipeline's ability to detect 167 clinically relevant variants from 72 clinical samples. This set of variants consisted of 80 SNVs, 26 indels, 32 SVs, and 29 repeat expansions, including 14 variants in genes with highly homologous pseudogenes. The overall detection concordance for these clinically relevant variants was 99.4% (95% CI: 99.7%-99.9%). Importantly, in addition to detecting known clinically relevant variants, in four cases, our pipeline yielded valuable additional information in support of clinical diagnoses that could not have been established using short-read NGS alone. Our findings suggest that long-read sequencing is successful in identifying diverse genomic alterations and that our pipeline functions well as the basis for a single diagnostic test for patients with suspected genetic disease.
Keywords: Long-read sequencing, Oxford Nanopore Technology, clinical genomics, whole genome sequencing, Tandem repeat expansions, Complex structural variants
Received: 20 Sep 2024; Accepted: 15 Apr 2025.
Copyright: © 2025 Sen, Handler, Victorsen, Flaten, Ellison, Knutson, Munro, Martinez, Billington, Laffin, Bray, Mroz, Yohe, Nelson, Bower and Thyagarajan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Siddhartha Sen, University of Minnesota Health Sciences, University of Minnesota Medical Center, Minneapolis, United States
Bharat Thyagarajan, University of Minnesota Health Sciences, University of Minnesota Medical Center, Minneapolis, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.