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Introduction: Chromosomal structural variations (SVs) play an important role in
the formation of human cancers, including leukemias. However, many complex
SVs cannot be identified by conventional tools, including karyotyping,
fluorescence in situ hybridization, microarrays, and multiplex ligation-
dependent probe amplification (MLPA).

Methods: Optical genome mapping (OGM) and whole genome sequencing
(WGS) were employed to analyze five leukemia samples with SVs detected by
karyotyping, MLPA, and RNA sequencing (RNA-seq). OGM was performed using
the Saphyr chip on a Bionano Saphyr system. Copy number variation and rare
variant assembly analyses were performed with Bionano software v3.7. WGS was
analyzed by the Manta program for SVs.

Results: The leukemia samples had an average of 477 insertions, 457 deletions,
and 32 inversions, whichwere significantly greater than those of the normal blood
samples (p = 0.016, 0.028, and 0.028, respectively). In Case 1, OGM detected a
sequential translocation between chromosomes 5, 8, 12, and 21 and ETV6::
RUNX1 and BCAT1::BAALC gene fusions. Case 2 had two pathogenic SVs and a
BCR::ABL1 fusion. Case 3 had one pathogenic SV and an IGH::DUSP22 fusion.
Case 4 had two pathogenic SVs and a CBFB::MYH11 fusion. Case 5 had an STIL::
TAL1 fusion. All breakpoint sequenceswere defined byWGS. An IGH::DUX4 fusion
previously found by RNA-seq in Case 3 was not confirmed because DUX4, which
has multiple pseudogenes, was refractory to OGM and WGS analyses.
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Conclusion: OGM is a fundamental tool that complements G-banding analysis in
identifying complex SVs in leukemia samples, and WGS effectively closes the gaps
in OGM mapping.
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1 Introduction

Chromosomal structural variations (SVs) are defined as regions
of DNA larger than 1 kb that show changes in copy number
(deletions and duplications), orientation (inversions), or
chromosomal location (insertions and translocations) between
individuals (Escaramis et al., 2015). SVs can affect gene
expression and are associated with a wide range of genetic and
cancer-related conditions. Multiple tools, including karyotyping,
fluorescence in situ hybridization (FISH), microarrays, multiplex
ligation-dependent probe amplification (MLPA), PCR (polymerase
chain reaction) and RT-PCR (reverse transcription polymerase
chain reaction), have been used to analyze SVs (Smeets, 2004;
Vissers et al., 2005). Karyotyping has a maximum banding
resolution of approximately 5 Mb (Neveling et al., 2021). FISH
requires a priori knowledge of the loci and has limited throughput
(Neveling et al., 2021). Microarrays have a resolution of a few kb but
are unable to detect balanced chromosomal aberrations, including
translocations and inversions (Neveling et al., 2021). In addition,
microarrays are limited in their ability to detect low-percentage
clones or subclones, particularly in cancer cells. These limitations of
conventional SV analytic tools cause difficulties in the analysis of
leukemia samples, which frequently exhibit complex SVs. Acute
leukemias, including acute myeloid leukemia and acute
lymphoblastic leukemia, are hematologic malignancies originating
from progenitor cells that have acquired chromosomal aberrations
or somatic mutations that provide selective advantages. SVs play a
pivotal role in the pathogenesis of leukemia, and chromosomal
aberrations are detected in up to 65% of adult acute leukemia
patients and 75% of pediatric patients (Mrozek et al., 2004).
Knowledge of chromosomal aberrations plays an essential role in
defining the etiology of leukemias, establishing risk and prognosis,
and guiding therapeutic strategies (Alaggio et al., 2022; Khoury et al.,
2022; Dohner et al., 2022). The workflow for diagnosing acute
leukemia typically entails a battery of tests, including karyotype
analysis, FISH studies targeting common chromosomal deletions
and translocations, and reverse transcriptase PCR (RT–PCR) or
RNA sequencing (RNA-seq) (Baranger et al., 2016). Although these
tests are time-consuming, a significant portion of complex SVs still
cannot be identified, and the breaking point sequences are
frequently unknown.

Short-read next-generation sequencing (NGS), including whole
exome sequencing (WES) and whole genome sequencing (WGS), is
commonly used to detect sequence variations but has a low
sensitivity for detecting SVs. Long-read sequencing methods,
such as PacBio or Nanopore sequencing, are more capable of
identifying SVs, but the costs are high (Marx, 2023). Bionano
optical genome mapping (OGM), a cutting-edge technology for
analyzing ultrahigh-molecular-weight DNA molecules, can provide

high-resolution and long-range genome-wide assessments of
structural anomalies (Sahajpal et al., 2021; Dremsek et al., 2021).
In OGM, DNA is typically fluorescently labeled through covalent
modification at CTTAAG hexamer motifs, resulting in genome-
wide labeling of approximately 14–17 signals per 100 kb in
sequence-specific patterns. The labeled DNA is loaded onto
silicon chips with hundreds of thousands of parallel
nanochannels, where individual DNA molecules are linearized,
imaged, and digitized. This imaging technology evaluates the
fluorescent labeling pattern of individual DNA molecules to
conduct an unbiased assessment of genome-wide structural
variants as small as 500 base pairs in size. OGM technology has
advanced our understanding of the human genome and improved
the diagnosis and treatment of genetic and cancer-related disorders.
OGM has the potential to enhance structural variation
characterization in hematologic malignancies, especially for
complex variants. Integration of OGM into a unified testing
pipeline reduces personnel and overall costs for laboratories,
facilitating in-depth genomic analysis of rare malignancies. This
technology is expected to reveal previously unknown genetic
alterations in both common and rare hematologic malignancies,
advancing our understanding of disease mechanisms (Smith
et al., 2022).

In the present study, we employed OGM to evaluate five
leukemia samples known to harbor multiple chromosomal SVs.
We found that OGM, as a single test, detected more SVs in these
samples than multiple conventional tools and was a very powerful
tool for identifying complex SVs. We further demonstrated that
WGS alone has low sensitivity for detecting SVs (Nakagawa and
Fujita, 2018) and that the sequence gaps left by OGM are
easily closed.

2 Methods

2.1 Leukemia and control samples, and
conventional techniques used

Bone marrow aspiration samples were obtained from patients
with leukemia. The samples were frozen in 10% dimethyl sulfoxide
(DMSO) and 90% fetal calf serum in liquid nitrogen (Yu et al., 2022).
SVs were detected in these samples using the following tools.
Karyotyping was performed by standard G-banding methods.
MLPA kits P036, P327 and P335 (MRC-Holland, Amsterdam,
Netherlands) were used for B-cell leukemia samples: P036 for
subtelomeric regions; P327 for the ERG gene and
intrachromosomal amplification of chromosome 21; and P335 for
the EBF1, IKZF1, CDKN2A, CDKN2B, PAX5, ETV6, RB1 and BTG1
genes. MLPA kits P383 (MRC-Holland, Amsterdam, Netherlands)
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was used for T-cell leukemia sample for STIL::TAL1, LEF1,
CASP8AP2, MYB, EZH2, MLLT3, MTAP, CDKN2A/B, NUP214::
ABL1, PTEN, LMO1, LMO2, NF1, SUZ12, PTPN2 and PHF6. Gene
fusion events were detected by either targeted RT‒PCR or RNA-seq.
Peripheral blood samples from five healthy donors were used as
controls. The study received approval from the Institutional Review
Board of National Taiwan University Hospital.

2.2 Sample preparation for OGM and WGS

In this study, peripheral blood cells were used as controls, while
bone marrow cells were utilized for leukemia samples. The selection
of sample types was guided by the clinical relevance of these sources:
peripheral blood cells (n = 5) provide a non-invasive and readily
available source for controls, while bone marrow cells (n = 5) are the
standard diagnostic sample for leukemia due to their higher yield of
leukemic cells.

Ultrahigh molecular weight DNAwas extracted from 1.5 million
cells. Peripheral blood samples were used within 48 h of collection,
and after red blood cell (RBC) removal (RBC lysis buffer, Qiagen),
DNA was extracted with a Bionano Prep™ kit (Bionano Genomics).
Frozen bone marrow samples were thawed in a 37 °C water bath and
washed three times with a 10% DMSO solution, after which DNA
was extracted with a Bionano Prep SP Frozen Human Blood DNA
Isolation kit (Bionano Genomics). Extracted DNA was quantitated
using a Qubit fluorometer.

2.3 Optical genome mapping (OGM)

DNA DL-green fluorophore labeling was performed using the
Bionano Direct Label and Stain kit. After washing out excess
fluorophores, the labeled DNA was loaded on a Saphyr Chip®

and analyzed on a Bionano Saphyr system (Bionano Genomics).
Optical images of the labeled molecules were used to generate rare
variant pipeline assembled genome maps with the default setting of
the Bionano Solve pipeline (Bionano software v3.7). All SVs (hg38),
including deletions, insertions, inversions, and translocations, were
annotated with the Variant Annotation Pipeline.

2.4 Whole genome sequencing (WGS)

WGS was conducted on an Illumina NovaSeq 6000 system with
an average coverage depth of 30X. The raw sequencing reads were
aligned to the hg38 reference genome using the BWA-GATK-
ANNOVAR pipeline. SVs identified by the Manta program were
searched for in the gaps left by OGM alignments.

2.5 Statistics

The statistical analyses were performed using SPSS software
(version 25.0 and 22.0; IBM Corp., Armonk, NY, United States).
Variables related to leukemia group and the control group were
analyzed using the Mann‒Whitney U test for comparison. A p
value <0.05 was considered to indicate statistical significance.

3 Results

3.1 SVs detected by OGM in leukemia and
control samples

OGM analysis of the five leukemia samples achieved an effective
coverage of >300x in all samples, with an average label density of
15.07 per 100 kb (SD 0.93) and a mapping rate of 87.8% (SD 4.49).
After filtering, an average of 1,044 SVs were identified in each
sample, including 477 insertions, 457 deletions, 32 inversions, and
73 duplications (Supplementary Table S1). In comparison, an
average of 650 SVs were identified in the control samples,
including 315 insertions (p = 0.016), 284 deletions (p = 0.028),
32 inversions (p = 0.028), and 17 duplications (Supplementary Table
S1). Chromosomal translocation (intertranslocation) was observed
only in leukemia samples.

3.2 Comparison between OGM and
conventional diagnostic tool

OGM detected all previously known SVs except for the IGH::
DUX4 fusion detected by RNA-seq in Case 3. OGM also detected
additional SVs in these samples (Table 1).

Case 1. Conventional tests yielded a karyotype of 46,XX,t(5;8)(q31;
q24),?der(12)t(11;12)(q13;p11),idic(21)(p11)[8]/46,XX
[12]. The ETV6::RUNX1 fusion (t(12;21)(p13;q22) (exon 5-
exon 3)) was detected by RT‒PCR, and the 21q11.2-
22.12 duplication, ETV6 exon 8 deletion, and ETV6 exons
1–5 duplication were detected by MLPA. OGM analysis
revealed a more complicated karyotype, including
sequential translocations between chromosomes 5, 8, 12,
and 21 at 5q23, 8q22.3, 12p12.1, and 21q22 (Figures 1, 2).
Additionally, a deletion in chromosome 12 (p12.1 to p13.2)
was detected only by OGM. The changes in chromosome
21 are more complicated than those observed by
conventional karyotyping; for example, 12p13.2 was first
translocated to 21q22, and 21q22 was subsequently
translocated to 5q23; second, the derived 21q was
duplicated, which led to the formation of a dicentric
chromosome 21. OGM also detected a translocation
between the termini of chromosomes 1 and 2. All gaps at
breakpoints mapped by OGM were closed by WGS
(Supplementary Table S2), including the BCAT1::BAALC
fusion between chromosomes 8 and 12.

Case 2. Conventional tests yielded a karyotype of 46,XX in 20 cells,
BCR::ABL1 fusion (t(9;22)(q34;q11) (exon 1-exon 2)) by
RT‒PCR and deletions of IKZF1 exons 2–7 (7p12.2),
CDKN2A/2B (9p21.3), and PAX5 exons 7–10 (9p13.2)
by MPLA. OGM revealed a translocation between
chromosomes 9 and 22, which explained the BCR::ABL1
fusion. OGM revealed a large deletion of chromosome 9p
(p13.3 to p21.3), which encompassed 16,321,476 base pairs
and contained 245 genes, including CDKN2A/2B and
PAX5. OGM further revealed a smaller deletion of
88,550 base pairs on chromosome 7 involving IKZF1.
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The large deletion (>16 Mb) identified by OGM may have
been missed by karyotyping due to the mosaic nature of the
cancer cells (with a deletion heterozygosity of
approximately 20%) or their reduced proliferative
capacity in standard culture conditions. WGS defined
the breakpoint for the Philadelphia chromosome as chr9:
130813896 fused with chr22:23227330 and chr22:
23227334 fused with chr9:130813908.

Case 3. The only previously known abnormality in this patient
was the IGH::DUX4 fusion with the highly expressive of
DUX4 gene detected by RNA-seq (Yu et al., 2022). OGM
revealed a terminal translocation between chromosomes
6p25.2 and 14q32.3 and an IGH::DUSP22 fusion
(Figures 3A,B). This gene fusion has been associated
with chronic myeloid leukemia and lymphoma. (Savage
and Slack, 2023; Pedersen et al., 2017) We could not
confirm the fusion of IGH::DUX4. There were few OGM
probes in this region, and WGS could not map this
region because of the presence of multiple DUX4
pseudogenes (Figures 3C,D).

Case 4. Conventional tests yielded a karyotype of 46,XX,inv(16)
(p13q22), and the CBFB::MYH11 fusion (chr16:15721182-
67089716) was detected by RT-PCR. OGM/WGS
identified both the breakpoint of the MYH11::CBFB
fusion and 676 genes in the inversion region. Since
Case 4 is AML, and prognostic factors for AML are
typically SNVs, MLPA was not performed.

Case 5. Conventional karyotyping results were normal, an STIL::
TAL1 fusion was detected by RT‒PCR, and CDKN2A/2B
(9p21.3) and STIL (1p33) deletions were detected by
MPLA. OGM determined that the STIL::TAL1 fusion on

chromosome 1 was caused by an 81,839 bp deletion, and
another 115,539 bp deletion was detected on chromosome
9, which involved CDKN2A/2B.

4 Discussion

4.1 SVs detected by OGM in leukemia and
control samples

In our study, we found that the leukemia samples had an
average of 477 insertions, 457 deletions, and 32 inversions, which
were significantly greater than those observed in the normal
blood samples (p = 0.016, 0.028, and 0.028, respectively).
Fresh peripheral blood was used as controls, while frozen
bone marrow was used for patients. Although freeze-thaw may
cause random DNA breakage, the accuracy of OGM was not
affected because DNA fragment lengths were sufficiently long in
all samples.

4.2 Conventional approaches for identifying
SVs in leukemia sample

The current study demonstrated the power of OGM as a single
test for detecting SVs in leukemia patients. Cytogenetic studies have
been shown to be crucial for identifying genes implicated in the
development of human leukemia (Nowell, 1993). However, only a
portion of gene fusion events can be detected by karyotyping alone.
FISH can detect a panel of chromosomal aberrations but requires
time-consuming techniques (Neveling et al., 2021). Microarrays are
an efficient alternative to karyotyping in leukemia diagnosis, which
is mainly associated with SVs (Neveling et al., 2021). Therefore, the
most common practice is to design a panel for RT‒PCR or MLPA to

TABLE 1 Structural variations detected by various methods in five leukemia samples.

Conventional tool Bionano OGM

No Type Karyotype Fusion
gene

MLPA for specific
region

Karyotype generated
from OGM (>5 Mb)

Involved gene

1 B-ALL 46,XX,t(5;8)(q31;q24), ?der(12)
t(11;12)(q13;p11), idic(21)(p11)
[8]/46,XX[12]

ETV6::
RUNX1
(RT‒PCR)

Duplication: 21q11.2-
22.12 Deletion: ETV6 exon
8 Duplication:
ETV6 exons 1–5

46,XX,t(1;2)(q42.3;p25.3), der(5)t(5;8;
12;21)(q23;q22.3;p12.1;q22), der(8)t(5;
8;12;21)(q23;q22.3;p12.1;q22), der(12)
t(5;8;12;21)(q23;q22.3;p12.1;q22),
del(12)(p12.1p13.2) der(21;21)(12pter
→ 12p13.2::21q22 → 21p11.1::
21p11.1→21q22::12p13.2→12pter)

ETV6::RUNX1 BCAT1::
BAALC

2 B-ALL 46,XX[20] BCR::ABL1
(RT‒PCR)

Deletion: IKZF1 exons
2–7 Deletion: CDKN2A/2B
Deletion: PAX5 exons 7–10

46,XX,t(9;22)(q34;q11),
del(9)(p13.3p21.3)

BCR::ABL1 CDKN2A/2B
deletion PAX5 exon
7–10 deletion

3 B-ALL 46,XY[20] IGH::DUX4
(RNA-seq)

No change 46,XY,t(6,14)(p25.2,q32.3) IGH::DUSP22

4 AML 46,XX,inv(16)(p13q22)[20] CBFB::
MYH11
(RT‒PCR)

Not done 46,XX,inv(16)(p13q22) CBFB::MYH11

5 T-ALL 46,XY[20] STIL::TAL1
(RT‒PCR)

Deletion: CDKN2A/2B
Deletion: STIL exons 6–12

46,XY STIL::TAL1 CDKN2A/
2B deletion
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detect known SVs involved in leukemia (Smeets, 2004; Vissers et al.,
2005). In contrast, OGM efficiently detected SVs in a
straightforward way. It would be useful since high hyperdiploid

is the most common subtype of leukemia. The cost of OGM is
probably similar to the combined cost of conventional tests but less
than that of long-read sequencing.

FIGURE 1
Complex chromosomal translocations identified by OGM in Case 1. (A) Circos plot of the interchromosomal translocations detected by OGM. (B)
Model diagrams illustrating the sequential translocations of chromosomes 5, 8, 12, and 21. (C) The structures of the derived chromosomes 5, 8, 12, and 21.
There was an additional deletion of chromosome 12p. The derived chromosome 21 was duplicated into an isodicentric chromosome.
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4.3 New information derived from OGM/
WGS in the present study

In Case 1, OGM detected the BCAT1::BAALC fusion. Although
the BCAT1::BAALC fusion has not been previously reported, both
BCAT1 and BAALC are associated with chronic myeloid leukemia
(Hattori et al., 2017). BCAT1 catalyzes the initial step of branched-
chain amino acid catabolism and is known to promote cancer
proliferation and invasion through the activation of either the
phosphatidylinositol 3-kinase/protein kinase B/mammalian target
of rapamycin pathway or Wnt/β-catenin signal transduction (Nong

et al., 2022). BAALC expression has also been associated with acute
lymphoblastic leukemia and acute myeloid leukemia (Tanner et al.,
2001). In Case 3, OGMdetected the IGH::DUSP22 fusion.DUSP22 is
a tumor suppressor gene, and rearrangements in this gene have been
associated with favorable outcomes in patients with kinase-negative
anaplastic large cell lymphoma (Pedersen et al., 2017). DUSP22 is
located at the end of chromosome 6p, a location difficult to identify
by karyotyping. The translocation of the IGH proto-oncogene is a
common driver event in leukemia (Tian et al., 2019). The
significance of these findings is further underscored by recent
observations linking monoallelic 6p25.3 rearrangements with

FIGURE 2
OGM reads determining chromosomal translocations in Case 1. The blue bars are the OGM reads, the green bars are the reference chromosomes,
and the gray lines are themappedOGMprobes. Genes surrounding the breakpoints are also labeled. The red bars within the blue bars indicate gaps left by
OGM. (A) Chromosome 1 to 2 translocation. (B) Chromosome 5 to 8 translocation. (C) Chromosome 8 to 12 translocation. (D) Chromosome 12 to
21 translocation. (E) Chromosome 21 to 5 translocation.
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DUSP22 to lymphoma and leukemia (Savage and Slack, 2023;
Arruga et al., 2017). The multiplex reciprocal translocation in
Case 1 is intriguing. This variant likely involved sequential
translocations of chromosomes 5, 8, 12, and 21. The four
chromosomes might be organized together in the nucleus, so the

four translocations could occur simultaneously. The use of OGM to
detect new fusion genes can provide invaluable insights for
cancer research.

OGM detected all SVs known from conventional tools in Case 2,
Case 4, and Case 5. OGM also revealed other SVs currently lack

FIGURE 3
Structural variant in Case 3. (A)Model diagrams illustrating the chromosome 6 to 14 translocation. (B)OGM reads identifying the chromosome 6 to
14 translocation. The blue bars are the OGM reads, the green bars are the reference chromosomes, and the gray lines are the mapped OGM probes.
Genes surrounding the breakpoints are also labeled. The red bars within the blue bars indicate gaps left by OGM. (C) The end of chromosome 4, which
contains the DUX4 gene, was poorly mapped by OGM because of the lack of probes in this region. (D)WGS could not be used tomap the DUX gene
because of poor alignment due to the presence of multiple DUX4 pseudogenes.
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established clinical significance, but these information could be
valuable for future researches. The clinical implications of these
results obtained by OGM are multifaceted. First, OGM offers higher
resolution for SVs than by conventional tools like karyotyping or
FISH. This leads to improved diagnostic accuracy, which is crucial
for personalized medicine. Second, OGM enables the identification
of novel or rare SVs, enabling understanding of disease mechanisms
or finding new biomarkers useful for classification or prognosis.
Third, OGM generates comprehensive SV information that can be
generated bymultiple conventional tests. Therefore, OGM simplifies
diagnostic workflows, reduces turnaround times, and may lower
overall costs, making it a powerful tool for advancing
precision medicine.

4.4 Coupling OGM with WGS

OGM can detect chromosomal translocations, deletions,
duplications, and inversions throughout the genome. However,
because OGM depends on the location of fluorescence markers
within the genome, the exact sequences at the breakpoints have not
been resolved. For novel gene fusion events or fusion events in which
the reading frames of the downstream gene are important, it may be
important to sequence the breakpoint. This can be accomplished by
designing breakpoint PCR and Sanger sequencing methods. In the
present study, we employed short-read WGS to close the gap in the
breakpoint left by OGM. Short-read WGS is thought to have low
sensitivity for SVs, and most tools usually generate tens of thousands
of SVs from a single analysis; these SVs are almost impossible to
interpret (Nakagawa and Fujita, 2018). However, in the present
study, when we had already located the breakpoint within a few kb of
sequences by OGM, it was quite easy to identify the breakpoint read
by WGS and precisely define the breakpoint, including the read
frames. Because WGS is inexpensive and quick, it is not a burden to
add WGS to OGM, and the entire process can be completed in days.
Therefore, short-read WGS effectively close the gap at the
breakpoints of SVs detected by OGM. However, short-read WGS
itself, or conventional WGS, does not unambiguously detect SVs. A
key advantage of OGM/WGS is their ability to bypass the need for
cell culture. Karyotyping and FISH typically require 14 days to
1 month for cell culture. While MLPA and RT-PCR are fast, they
only target specific regions (Supplementary Table S3). In recent
years, artificial intelligence (AI) has aided both conventional
cytogenetics and new technologies like OGM to improve cancer
cytogenetic analysis (Alain, 2024).

4.5 Limitations

In Case 3, the IGH::DUX4 fusion previously detected by RNA-
seq could not be confirmed by either OGMorWGS.DUX4 is located
at the terminal end of chromosome 4 and contains 11 to more than
100 D4Z4 repeats (Dib et al., 2019). Unfortunately, OGM coverage
in this particular region was low, and this region was also refractory
to short-read sequencing alignment. Recently, long-read sequencing
has been shown to detect D4Z4 repeat contraction in patients with
facioscapulohumeral muscular dystrophy (FSHD) (Pearson, 2010;

Yeetong et al., 2023). Therefore, long-read sequencing may be
needed to confirm the IGH::DUX4 fusion.

5 Conclusion

The OGM is a fundamental tool complementing the G-banding
analysis, providing the characterization of the chromosomal
rearrangement as well as the genes involved, undoubtedly leading
to an advance in the knowledge of the biology of the disease and with
application in precision medicine.
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