
Calculating maternal polygenic
risk scores from prenatal
screening by cell-free DNA data

Victoria Corey, Mauro Chavez, Layla Qasim, Tevfik U. Dincer,
Angela Henry, Salome Bagayan, Sasha Treadup, Mike Mehan,
Eileen de Feo and Sung Kim*

Illumina, Inc., San Diego, CA, United States

Polygenic Risk Scores (PRS) have enabled quantification of genetic risk for many
common and complex traits. Here we developed a novel method to estimate
maternal PRS using low-coverage whole genome sequencing data from prenatal
screening by cell-free DNA data intended to screen for fetal chromosomal
aneuploidies. A prospective study was conducted where 455 consented
patients that performed prenatal screening by cell-free DNA as part of their
standard of care were randomly selected. Cell-free DNA and genomic DNA were
isolated from the plasma and buffy coat of the blood drawn from pregnant
women, respectively. Cell-free DNA was sequenced at ~0.25x coverage while
genomic DNA was sequenced at ~15x coverage. The sequence data was used to
impute genotypeswhichwere then used to calculate PRS for paired comparisons.
There was a high correlation (average = ~0.9 across different PRS panels and
panel sizes) between PRS from prenatal screening by cfDNA data and PRS from
genome sequence data of the buffy coat. This proof-of-concept study illustrates
that maternal PRS can be calculated using low-coverage prenatal screening by
cfDNA sequence data with high accuracy.
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1 Introduction

Polygenic risk scores (PRS) are numerically weighted summarizations of genotypic
alleles of an individual that capture their genetic traits or disease risk (Choi et al., 2020).
Large databases, like the United Kingdom Biobank, have enabled the dissection, evaluation
and validation of PRS in concert with genome-wide association studies across many
complex traits and diseases (Thompson et al., 2022). These studies move the bar to
precision medicine where application of PRS can improve diagnosis of disease risk, inform
clinicians in choosing therapeutics, and inspire risk-reducing lifestyle habits (Polygenic Risk
Score Task Force of the International Common Disease Alliance, 2021).

Despite advances in sequencing technologies, high coverage sequencing initiatives for
population scale PRS related studies remain costly. Therefore, genotyping arrays and low
depth sequence data (4X coverage) are still used to conduct PRS studies to circumvent the
need for cost prohibitive high coverage whole genome sequence data for all samples. To
overcome challenges of missing genetic information from both approaches, statistical
methods were developed to impute (probabilistic inference based on observed data) the
missing genotypes (Rubinacci et al., 2023). Further, reference panels like 1,000 Genomes

OPEN ACCESS

EDITED BY

Xiaonan Zhao,
Baylor College of Medicine, United States

REVIEWED BY

Joy Nakitandwe,
Cleveland Clinic, United States
Kalpita R. Karan,
Weill Cornell Medical Center, NewYork-
Presbyterian, United States

*CORRESPONDENCE

Sung Kim,
skim4@illumina.com

RECEIVED 12 September 2024
ACCEPTED 27 January 2025
PUBLISHED 20 February 2025

CITATION

Corey V, Chavez M, Qasim L, Dincer TU,
Henry A, Bagayan S, Treadup S, Mehan M,
de Feo E and Kim S (2025) Calculating maternal
polygenic risk scores from prenatal screening
by cell-free DNA data.
Front. Genet. 16:1495604.
doi: 10.3389/fgene.2025.1495604

COPYRIGHT

© 2025 Corey, Chavez, Qasim, Dincer, Henry,
Bagayan, Treadup, Mehan, de Feo and Kim. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Brief Research Report
PUBLISHED 20 February 2025
DOI 10.3389/fgene.2025.1495604

https://www.frontiersin.org/articles/10.3389/fgene.2025.1495604/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1495604/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1495604/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1495604&domain=pdf&date_stamp=2025-02-20
mailto:skim4@illumina.com
mailto:skim4@illumina.com
https://doi.org/10.3389/fgene.2025.1495604
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1495604


(The 1000 Genomes Project Consortium, 2015) Project and the
multi-ethnic NHLBI Trans-Omics for Precision Medicine
(TOPMed) (Taliun et al., 2021) program gave way to improve
accuracy of imputation. These two advances have thus paved the
way for alternative and cost-effective methods to conduct PRS
studies at population scale.

One alternative and cost-effective approach may be whole
genome sequencing (WGS) based Non-Invasive Prenatal Testing
(NIPT). WGS NIPT sequences cell free DNA (cfDNA) isolated from
the plasma of pregnant women as early as 10 weeks gestation to
screen for the presence or absence of fetal chromosomal
abnormalities, such as Trisomy 21 (Palomaki et al., 2011; Pertile
et al., 2021). Further, WGS NIPT typically generates mostly
maternal sequence reads, on average 90% (Kinnings et al., 2015),
at shallow depth (~0.25x) which may be sufficient to calculate
maternal PRS. As NIPT is standard of care for hundreds of
thousands of pregnancies, this may provide an interesting
opportunity for population scale clinical studies to evaluate both
maternal genetic risk for disease and pregnancy related condition.
For example, increased hypertension risk has been linked to
increased risk for pre-eclampsia and early determination of
elevated genetic risk could inform and improve pregnancy
management and delivery interventions (Roberts and
Gammill, 2005).

In this study, we conduct a proof-of-concept study to evaluate
whether WGS NIPT can be a data source for future PRS studies and
methods. Specifically, we evaluate 1) whether WGS NIPT data at
very low coverage (0.25x) is sufficient for accurate genotypic
imputation and 2) whether maternal PRS can be calculated when
cfDNA is a mixture of fetal and maternal DNA.

2 Materials and methods

2.1 In-silico study

The accuracy of maternal PRS calculations using whole genome
sequence data from prenatal screening by cfDNA results have two
challenges: 1) low sequence coverage of ~0.25x and 2) mixture of
fetal and maternal genetic information.

To assess the impact of low sequence coverage, 10 samples from
the 1000 Genomes Project (The 1000 Genomes Project Consortium,
2015) were in silico down sampled using FASTQ files to generate
sequence coverages of 0.2x and 1.0x (Supplementary Table S1). For
down sampled data with less than 30x coverage, the following steps
outline bioinformatic analysis pipeline. First, use DRAGEN™
v4.0 Germline with forced genotyping to generate vcf files for
low coverage data. Second, apply DRAGEN Imputation v4.2.4 to
generate imputed vcf files. The vcf files from imputed 0.2x, imputed
1.0x, and 30X samples were then processed by PLINK (Purcell et al.,
2007) (v. 1.07) to calculate PRS. In brief, PRS is the sum of calculated
weights conditional on the presence or absence of a specific genotype

marker. Specifically, PRSj � ∑
N

i
βi*Gij

Mj
where for each sample j, and

each SNP i = 1, . . . ,N, the sum of each weighted (β) imputed
genotype (G) are normalized by a scalar parameter (M). 2

Forced genotyping is a necessary step that enables genotyping
calls at pre-specified genomic positions pre-identified by the

DRAGEN Imputation reference panel v1. This is in part critical
due to the extremely low coverage data. Accuracy of PRS were then
assessed by comparing scores generated from 0.2x and 1.0x data
relative to 30x data.

To assess the impact of using maternal sequence data
confounded by fetal genetic information, paired mother and child
from the 1000 Genomes Project (The 1000 Genomes Project
Consortium, 2015) were in silico mixed to emulate prenatal
screening by cfDNA data. Sequence reads from 2 paired mother
and child (NA12877 and NA12878) were mixed at ratios of 100:0,
95:5, 90:10 and 85:15 respectively to mimic a range of fetal fractions
observed in plasma of pregnant women (Kinnings et al., 2015). The
in silico mixtures were then down sampled to create 7 replicates for
each mixture with 0.25X coverage and processed through the
bioinformatic pipeline described above. This allowed for
comparisons of PRS scores from the maternal genotypes with
and without average fetal genotypic contributions expected in
samples derived from prenatal screening by cfDNA testing.

2.2 Prospective study

A prospective study was conducted where 450 consented de-
identified patients that performed prenatal screening by cfDNA as
part of their standard of care for their pregnancy were randomly
selected. The study was intentionally designed with samples that
screened negative for fetal aneuploidy to assess practicality of
maternal PRS calculation. The remnant patient samples were
initially collected by Illumina Laboratory Services, Foster City,
CA during the period of September 2022 to December 2022 for the
NIPT laboratory developed test (LDT). Supplementary Table S2
describes basic demographic information obtained during patient
intake. To generate the NIPT data, cfDNA was isolated from the
plasma of the blood drawn from pregnant women and was
processed by an LDT adaptation of the VeriSeq™ NIPT
Solution v2 (Pertile et al., 2021) The cfDNA was sequenced at
48-plexity to generate ~0.25x genome-wide coverage per sample
on NextSeq™ 550.

gDNA was subsequently isolated from the buffy coat from the
same blood samples using a QIAsympony SP instrument and
QIAsymphony DSP DNA Midi Kit. The extracted gDNA was
fragmented using a Covaris LE220-Plus sonicator and converted
into libraries using automated methods of the TruSeq™ DNA
Nano High Throughput Library Preparation kit. The libraries
were quantified using qPCR KAPA library quantification kits and
normalized to 1.5 nM. To generate the maternal genetic data, the
normalized libraries were combined into 64-plexity pools and
sequenced on NovaSeq™ 6,000 using S4 flowcells and using the
NovaSeq 6,000 xP workflow, resulting in ~15x genome-wide
coverage per sample. Identical to the in silico study described
above, all sequence data were analysed using DRAGEN™
v4.0 and imputed by DRAGEN Imputation v4.2.4. PRS was
then calculated using PLINK which utilized the imputed
genotypes and 100 PRS panels from the Polygenic Score
Catalogue (https://www.pgscatalog.org). Selected pregnancy-
related phenotypes for PRS calculations include diabetes,
hypertension, and breast cancer (see Supplementary Table S3
for list of PRS panels evaluated).
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3 Results

3.1 In-silico study results

Ten samples from the 1,000 Genomes study were selected for in
silico down sampling to assess the impact of calculating PRS from
sequence coverages that mimic prenatal screening by cfDNA testing.
Figure 1A illustrates the 3-way comparison of PRS for breast cancer
(PGS000332) calculated using 0.2X, 1.0X and 30X sequence
coverage data. Correlation of PRS was highest when comparing
imputed 1X to non-imputed 30X genotype data (corr ≥0.999) and
lowest when comparing imputed 0.2X to imputed 1X genotype data
(corr ≥0.970). This slight reduction in correlation is likely a result of
reduction in genotype imputation accuracy due to the reduction of
sequence coverage data, i.e., genetic information content, from
30X to 0.2X.

Calculation of maternal PRS using prenatal screening by
cfDNA data is not straight forward as the sequence contains
both maternal and fetal genotype information. By generating in

silico mixtures, the impact of the fetal genotype on maternal PRS
can be assessed at different levels of fetal fraction. Figure 1B
highlights the impact of adding fetal genotype information on
maternal PRS score calculations. Specifically, the impact of fetal
genotype increases variability and bias of PRS as fetal
contribution increases in its calculation. Nonetheless,
correlation between mixtures remained high when comparing
0%–5%, 0%–10% and 0%–15% with correlation measures of
0.985, 0.942 and 0.875, respectively. These in silico studies
support and provide simulated evidence that PRS from whole
genome sequencing in the context of a prenatal screening by
cfDNA testing is feasible.

3.2 Prospective study results

Imputed genotype data generated from analyzing whole genome
sequence data of cfDNA and gDNA isolated from the blood of
pregnant women were used to demonstrate proof of concept

FIGURE 1
(A) Comparison of polygenic risk scores (PRS) for PGS000332 from imputed genotypes using 0.2X and 1.0X sequence coverage data and non-
imputed 30X sequence coverage data. Correlations were 2:0.999 for lX vs 30X (left), 0.968 for 0.2X vs 30X (middle) and 0.970 for 0.2X vs LOX (right). (B)
Impact of maternal PRS with and without in silico mixture of 0, 5, 10 and 15% fetal and maternal genotype information.
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evidence in the feasibility of calculating maternal PRS. Figure 2
illustrates paired scores from 6 different PRS hypertension panels
calculated using sequence data from gDNA and cfDNA. The
correlation for the 6 PRS ranged from 0.87 to 0.93 consistent
with the observed simulated results. Overall, there was high
correlation (average = ~0.90 across different PRS panels and

panel sizes) between PRS from prenatal screening by cfDNA data
and PRS from genome sequence data of the buffy coat (Figure 3A;
Supplementary Table S3). Furthermore, panel size had on average a
minor effect where panels with <1M markers had correlation
~0.90 whereas panels with >1M markers had correlation
~0.95 (Figure 3B).

FIGURE 2
Comparison of six different hypertension polygenic risk score (PRS) panels from buffy coat genomic DNA (gDNA) and NIPT cell-free DNA (cfDNA).
Red-dashed and blue lines denote the identity line and the fitted linear model, respectively. Colors denote flow cell batches, i,e, sample sets.

FIGURE 3
(A)Correlation of polygenic risk scores (PRS) from genome sequence data of the buffy coat vs PRS from prenatal screening by cell-free DNA (cfDNA)
data. PRS panels of breast cancer, type I or type 11 diabetes, hypertension and “Other” (that include arthritis and coronary artery disease) with varying PRS
panel sizes ranging from <50 to >IM genetic markers. (B) Comparison of PRS correlations conditional on PRS panel/profile size.
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Although PRS comparisons demonstrated high concordance,
estimating maternal PRS from prenatal screening by cfDNA data is
suboptimal because the sequence data contains genetic information
from both mother and fetus. Specifically, genetic information from
the fetus may confound the accuracy of PRS as the presence of fetal
alleles may lead to imputation errors. This is illustrated by higher
PRS correlations (mean ~ = 0.92) in samples with lower fetal fraction
(FF) compared to samples with higher FF (mean correlation ~ =
0.88) (Figure 4). We estimated the impact of this confounder on risk
categorization for clinical applications to be as low as 2%
(Supplementary Figure S1) for previously proposed high-risk
cutoffs of 5% of the population (Lennon et al., 2024).

4 Discussion

Understanding and providing early detection of genetic risk is
intended to improve patient care and health management. Indeed,
availability of large-scale cohort databases with aims of enabling PRS to
quantify and predict genetic risk for many common and rare/complex
traits has increased. However, biobanks and large-scale databases often
rely on population scale initiatives for genomics which can lead to
ascertainment biases, limited opportunities in adoption for participants,
and unknown and inaccurate clinical predictive power of PRS panels
especially in under-represented populations. However, as more studies
directly tackle these issues (Chen et al., 2020;Martin et al., 2021; Duncan
et al., 2019), PRS accuracy, diversity, and application will improve over
time as more data becomes available.

One alternative to this paradigm is leveraging pre-existing high
throughput standard of care workflows built around next-
generation sequencing technologies. Low-coverage prenatal
screening by cfDNA sequencing is one such avenue. In many
countries, 25%–50% of women have performed prenatal

screening by cfDNA (Gadsbøll et al., 2020). This scale and
utilization provide direct opportunities to 1) create new large-
scale database for PRS improvements without additional costs to
healthcare systems or funding for large-scale genomics 2) enables
retrospective and prospective studies by evaluating PRS against
electronic medical records to establish analytical validity and
clinical utility 3) provide direct and early intervention and
adoption for improved pregnancy management.

The goal for this proof-of-concept study was to illustrate that
maternal PRS can be calculated using low-coverage prenatal
screening by cfDNA sequence data intended to screen for fetal
chromosomal aneuploidies with high accuracy. This study was not
designed to consider or evaluate the robustness of imputation or PRS
in a population but rather the reproducibility of a PRS score at an
individual level from a novel data source. Ultimately, maternal PRS
may be used to improve patient and pregnancy care as genetic data
from prenatal screening by cfDNA can be applied to many other
PRS panels that are designed to find genetic risk factors for specific
phenotypes. For example, there is evidence that genetic risk for
hypertension or type II diabetes have been implicated to increase
patient’s risk of pre-eclampsia and gestational diabetes, respectively.
Identifying patients as early as 10 weeks gestation that are potentially
high risk for either of these conditions could be beneficial.

Although the aims of the study were specifically to assess the
technical feasibility of calculating maternal PRS from sequence data
generated by prenatal screening by cfDNA testing, this study
outlined two limitations. First is the impact of FF and the bias of
maternal PRS. As our results suggest, FF is a confounding factor in
the accuracy of maternal PRS. However, the overall magnitude of the
effect is likely small for clinical applications of PRS as PRS typically
relies on validated risk stratification thresholds. Predicted
misclassification of NIPT-based PRS scores relative to maternal
PRS scores are on the order of 2%–8%. A potential bioinformatic

FIGURE 4
Impact of fetal fraction (FF) on polygenic risk score (PRS) correlation. Higher FF resulted in a slight reduction in correlation in PRS most likely due to
reduction in imputation accuracy resulting from the presence of the fetal haplotype.
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solution that leverages known fragment length differences between
maternal and fetal cfDNAmay be applied; fetal cfDNA is on average
shorter than maternal cfDNA. Lo et al. found maternal cfDNA to
have a peak at 166-base pairs (bp) while fetal cfDNA has a peak at
143-bp (Lo et al., 2010), and this physical size difference may provide
an opportunity to improve maternal PRS calculation. However, the
in silico removal of shorter fragment length sequences prior to
imputation with the intent to reduce fetal signal did not reduce the
bias of imputation incurred by the presence of the fetal alleles. This
suggests that more sophisticated methodologies may be warranted
or that the reduction of sequence and genetic information from
down-sampling NIPT data outpaces the expected reduction of fetal
bias in PRS calculation.

Second, clinical validation and follow up is limited as the study
was conducted with consented de-identified screen negative patient
samples. Though clinical results are not necessary for this technical
feasibility study, the clinical indications for PRS would benefit
greatly from its utility for patient and pregnancy health
management. In addition, evaluating samples with positive fetal
aneuploidy could also help better understand overall robustness in
maternal PRS calculations. Further work on obtaining clinical follow
up and test indications is warranted to demonstrate how PRS panels
can predict genetic risk factors for pregnancy related conditions
such as pre-eclampsia and gestational diabetes.
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