
Experiences from dual genome
next-generation sequencing
panel testing for mitochondrial
disorders: a comprehensive
molecular diagnosis

Elizabeth Gorman1†, Hongzheng Dai1,2†, Yanming Feng1,
William James Craigen1,2, David C. Y. Chen1, Fan Xia1,2,
Linyan Meng1,2, Pengfei Liu1,2, Robert Rigobello1, Arpita Neogi1,
Christine M. Eng1,2 and Yue Wang1,2*
1Baylor Genetics, Houston, TX, United States, 2Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, TX, United States

Introduction: Themolecular diagnosis of mitochondrial disorders is complicated
by phenotypic variability, genetic heterogeneity, and the complexity of
mitochondrial heteroplasmy. Next-generation sequencing (NGS) of the
mitochondrial genome in combination with a targeted panel of nuclear genes
associated with mitochondrial disease provides the highest likelihood of
obtaining a comprehensive molecular diagnosis. To assess the clinical utility of
this approach, we describe the results from a retrospective review of patients
having dual genome panel testing for mitochondrial disease.

Methods: Dual genome panel testing by NGS was performed on a cohort of
1,509 unrelated affected individuals with suspected mitochondrial disorders. This
test included 163 nuclear genes associated with mitochondrial diseases and the
entire mitochondrial genome. A retrospective review was performed to evaluate
diagnostic yield, disease-gene contributions, and heteroplasmy levels of
pathogenic/likely pathogenic (P/LP) mitochondrial DNA (mtDNA) variants.

Results: The overall diagnostic yield was 14.6%, with 7.7% from the nuclear
genome and 6.9% from the mtDNA genome. P/LP variants in nuclear genes
were enriched in both well-established genes (e.g., POLG) and more recently
described genes (e.g., FBXL4), highlighting the importance of keeping the panel
design updated.

Conclusion: Variants in nuclear and mitochondrial genomes equally contributed
to a 14.6% diagnostic yield in this patient cohort. Dual genome NGS testing
provides a comprehensive framework for diagnosing mitochondrial disorders,
offering clinical utility that can be considered as first-tier approach compared to
single genome testing. Characterizing disease-causing genes, variants, and
mtDNA heteroplasmy enhances understanding of mitochondrial disorders.
Testing alternative tissues can further increase diagnostic yield.
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Introduction

While individually rare, the overall worldwide incidence of all
mitochondrial diseases is approximately one in every 5,000 live
births (Plutino et al., 2018). Due to the vast genotypic and
phenotypic heterogeneity of mitochondrial diseases, obtaining
an accurate and prompt diagnosis is often quite challenging,
especially at the molecular level. Part of this complexity arises
from normal mitochondrial function being the product of both
the nuclear and mitochondrial genomes (Abadie, 2024; Craven
et al., 2017; Kendall, 2012). Furthermore, although there are more
than one thousand nuclear genes that have been implicated in
mitochondrial biology (Pagliarini et al., 2008), only a small
fraction of genes have established disease associations (Online
mendelian inheritance in man, OMIM®, 2025; Stenson et al.,
2014). In addition to sequencing the mitochondrial genome,
targeted panels for next-generation sequencing (NGS) of
nuclear genes for mitochondrial disorders are often offered by
diagnostic laboratories. Separate mitochondrial genome panels
are also available commercially (Wong, 2013; McCormick et al.,
2013). Various factors, including known clinical relevance,
disease prevalence, and cost are taken into consideration
during the design of these panels. Because of this, commercial
dual genome panels can often vary by hundreds of genes or have
varying coverage of included genes. The advantage of
simultaneously analyzing both the mitochondrial genome and
nuclear mitochondrial genes has been recognized for some time,
however, this approach is not always the standard of care (Abicht
et al., 2018; Bonnen et al., 2013). This, to our knowledge, is the
largest systematic evaluation on the clinical utility of dual
genome NGS panels in the diagnosis of mitochondrial
disorders. Although interactions between nuclear genes and
mitochondrial genes are necessary to maintain mitochondrial
function, there has been no practical evaluation of the actual
contributions of each genome to the etiology of mitochondrial
disease at this large a scale.

In this report, we summarize our experience as a clinical
diagnostic laboratory in performing mitochondrial and nuclear
NGS testing on a cohort suspected of having mitochondrial
disorders. Preliminary analysis of results from diagnosed cases
suggests that both genomes contribute equally. We show that the
dual-genome NGS testing approach provides a comprehensive
tool for the diagnosis of mitochondrial diseases. To our
knowledge, this is one of the largest systematic analysis where
interrogation of the mitochondrial and nuclear genomes was
performed simultaneously.

Method and materials

A retrospective analysis was performed on de-identified
clinical and genetic data from 1,509 proband-only samples
from patients with suspected mitochondrial disorders
submitted to our laboratory for Dual Genome NGS panel
testing. The mitochondrial genome was evaluated for all
37 mitochondrial genes with a minimum sequencing depth of
2,000x and an average sequencing depth of greater than 20,000x
depth to allow for heteroplasmy calls down to 1.5%. The nuclear

genome was evaluated for 163 nuclear genes with a minimum
sequencing depth of 20x and an average sequencing depth of
approximately 200x (see Supplementary Table 1 for nuclear gene
list). Sample types included blood (n = 1,184), muscle (n = 214),
extracted DNA (n = 78), and other (n = 33). Samples with one or
more variants classified as pathogenic (P) or likely pathogenic
(LP), within the genes assessed were tabulated. Genes were
grouped by function to identify which pathways were most or
least affected in patients with mitochondrial disease. This study
was performed in accordance with protocols approved by the
institutional review board for Human Subject Research at Baylor
College of Medicine. Informed consent was obtained for genetic
testing performed in a Clinical Laboratory Improvement
Amendments (CLIA) and College of American Pathologist
(CAP) accredited laboratory.

Results

The overall diagnostic yield from the dual genome panel test
was 14.6% (n = 220/1509). Of the 220 cases with a molecular
diagnosis, the etiology of 115 cases was solely attributed to
nuclear gene mutations, and the etiology of 103 cases was
solely attributed to mitochondrial DNA mutations (see
Supplementary Tables 2–4 for variant details). Two cases
carried a dual diagnosis involving both genomes (Table 1).
The diagnostic yield from nuclear genome testing was 7.7%
whereas the mitochondrial genome yield was 6.9%.

The breakdown of nuclear genes implicated in solved cases is
shown in Figure 1A. Most of these genes have been implicated in
mitochondrial disease for more than 20 years. Most P/LP variants
were in POLG, (n = 39, 33%). The second highest contributor to
solved cases was FBXL4 (Plutino et al., 2018), (n = 9, 8%), associated
with mtDNA depletion syndrome 13. Among the solved cases, using
functional groups, Mitochondrial DNA Maintenance, Expression,
and Translation–Replication, maintenance, and transcription was
the most enriched and Metabolism of cofactors–Biotin metabolism
and Lipoic acid biosynthesis were the most scarce
(Supplementary Table 5).

As shown in Figure 1B, 614 nuclear pathogenic or likely
pathogenic (P/LP) variants were identified. The highest number
of these variants was observed in POLG (Saneto and Naviaux, 2010).
In the nuclear genome, P/LP variants from the top 10 genes account
for almost half of the P/LP variants identified in our cohort.
However, extensive genetic heterogeneity is present within this
cohort which supports the utility of more extensive testing.

With the abundant variants and clinical cases collected, we also
reviewed which functional pathways were primarily affected in
patients with mitochondrial disorders. Grouped by function,
(Stenton and Prokisch, 2020), there is the greatest enrichment of
P/LP variants in Mitochondrial DNA maintenance, expression, and
translation–Replication, maintenance, transcription genes and the
most reduction in Mitochondrial dynamics, homeostasis, and
quality control - Fusion genes (Supplementary Table 6).

Mitochondrial variants were detected at various levels of
heteroplasmy within different sample types. The mitochondrial
P/LP variants appear to occur primarily at both high and low
heteroplasmy in a bimodal distribution (Figure 2A). While there
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were recurrent variants in this cohort, there were no identifiable
correlations between genotype and heteroplasmy compared to
phenotype. In the mitochondrial genome, transfer RNA (tRNA)
genes have the highest mutation rate (50%), although they comprise
only 9% of the mitochondrial sequence (Anderson et al., 1981)
(Supplementary Table 7). The common mutation, m.3243 A > G
tRNA Leu (tRNA Leu1), was the most prevalent mitochondrial
mutation in our cohort (Figure 2B).

In our cohort there are two cases that have pathogenic variants
in both nuclear genes and mitochondrial genes. Patient 1 was
diagnosed with developmental delay and muscle weakness in
early childhood. This patient was found to carry a homozygous
pathogenic variant in TK2 and a m.13042G > A (p.A236T, MT-
ND5) pathogenic variant at 3.1% heteroplasmy in a blood specimen.
Patient 2 was a toddler with intractable refractory myoclonus/
myoclonic seizures, hypotonia, lethargy and lactic acid peaks in
basal ganglia. She was determined to have biallelic pathogenic
variants in POLG and a homoplasmic m.11778G > A (p.R340H,
MT-ND4) pathogenic variant, one of the common primary
pathogenic variants associated with Leber Hereditary Optic
Neuropathy (LHON).

Since the inheritance patterns are distinct for mtDNA-related
disorders versus nuclear DNA-related disorders, these groups were
examined for possible differences in age stratification. Our cohort
showed meaningful age differences based on genomic etiology. The
mean and median age at analysis for the group with nuclear gene
defects are 12.4 and 3.2 years, respectively, while those for the group
with mitochondrial DNA defects are 16.4 and 7.8 years, respectively
(p-value = 0.013, two-tailed Mann-Whitney U test).

Discussion

The most striking observation from our analysis is the nearly
equal distribution of mitochondrial and nuclear gene defects among
the solved cases in our cohort. A mitochondrial-only diagnostic rate
of 6.7% has been reported over a 6-year period (Tang et al., 2013). A
previous review found that the diagnostic rate for mitochondrial
disease ranged from 8% to 24% when mtDNA was examined as a
standalone test or as part of gene panels (Abicht et al., 2018). This
finding emphasizes the importance of investigating both nuclear and
mitochondrial genes concurrently. Simultaneous testing of the

TABLE 1 Molecular diagnosis made by findings in dual genome test.

Total dual
genome cases

Solved by nuclear
genome variants

only

Solved by mitochondrial
genome small variations

only

Solved by mitochondrial
genome large deletions

Dual diagnosis in
both genomes

1509 115 92 11 2

The 220 cases molecularly diagnosed through the dual genome panel test constituted 14.6% of all cases.

FIGURE 1
Contribution of observed nuclear genes/variants in patient cohort. (A) Distribution of causative defects in nuclear genes calculated from 117 solved
cases. The size of the colored sectors represents the relative percentage of each causative nuclear gene. (B) Distribution of 614 unique pathogenic/likely
pathogenic variants in nuclear genes regardless of causative (cases solved) or not (cases not solved) status. The size of the colored sector represents the
relative percentage of unique pathogenic/likely pathogenic variant counts in genes annotated accordingly. There are 73 genes with a percentage of
less than 1% of unique pathogenic/likely pathogenic variant, which are combined under “Others”.

Frontiers in Genetics frontiersin.org03

Gorman et al. 10.3389/fgene.2025.1488956

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1488956


nuclear genome or exome in conjunction with high-read-depth
mtDNA sequencing is often both expedient and cost-effective.
Abicht et al. showed that high sequencing depth can identify
low-level mtDNA heteroplasmy that would have been missed by
standard WES analysis (Abicht et al., 2018). A dual diagnosis
(nuclear and mitochondrial) could be missed if only one genome
is assessed.

Our study also demonstrates the importance of updating panel
design based on emerging literature. One gene, FBXL4was originally
discovered through whole exome sequencing (Tang et al., 2013) and
subsequently added to our panel. Since then, a significant number of
FBXL4 patients have been identified through our updated panel
(Posey et al., 2017). FBXL4 mutations contributed to an
unexpectedly high fraction (9%) of solved cases. Since FBXL4
dysfunction leads to an increase in mitochondrial fissioning and
subsequent autophagy (Alsina et al., 2020) this suggests that the
autophagic pathway is a major vulnerability of mitochondrial
disease etiology. By extension, our study shows the importance of
reanalysis by more comprehensive testing for capturing diagnoses
from newly added genes like FBXL4. (Dai et al., 2017; Emperador
et al., 2020; Liu et al., 2019). Additionally, the significant
contribution of this gene to the etiology of mitochondrial
disorders warrants further investigation on the mechanism
of disease.

The most prevalent mitochondrial mutation, m.3243A > G in
tRNA Leu, detected in about 1/4 of pathogenic variants in the
mitochondrial genome in our cohort, aligns with the organelle
control theory of mtDNA quality control. This theory suggests
that selective degradation effectively targets mtDNA mutations in
protein-coding genes but is less effective for mt-tRNA mutations
(Kowald and Kirkwood, 2011).

The percentage of cases with a multi-locus molecular diagnosis
(2/220) is lower than previously reported (Tang et al., 2013). This
may be partially explained by the fact that patients in our cohort
were analyzed by panel testing rather than by whole genome or
exome sequencing (WGS/WES). Our patient cohort differs from
those typically analyzed for mitochondrial disorders by WES, which
may account for why certain genes are more frequently seen and
diagnosed through our dual genome testing compared to WES.
Additionally, our dual genome test is designed not only to identify
mitochondrial disorders but also to identify metabolic disorders
which may have a similar phenotype to those seen with
mitochondrial disorders.

However, there were limitations to this study. In many cases, the
clinical information was either very limited or not provided beyond
a suspicion that the patient has a mitochondrial disease, making it
difficult to establish correlations between genotypes and specific
phenotypes.

Our nuclear panel size covers roughly one-tenth of the nuclear
genes known to be involved in mitochondrial production and
function. Although the exact role of many of these additional
genes in causing mitochondrial disease may be unclear, a larger
panel might increase the diagnostic yield in nuclear genes. Lastly,
while the capture methodology of our nuclear gene panel offers
much higher coverage of every base pair in the targeted regions, it is
limited to exonic regions and ±20 bp of intronic borders.

This analysis highlights the benefits of comprehensive dual
genome testing. In addition, it illustrates the need for frequent
review of the literature and internal data to support continued
improvements to this approach. Amending the gene list and
including additional methodologies to target variants not
captured adequately by NGS can further increase yield. While

FIGURE 2
Observed defects in mitochondrial genome in the patient cohort. (A) Distribution of heteroplasmy level for observed pathogenic/likely pathogenic
variants. Sample types were blood (78.5%), muscle (14.2%), extracted DNA (5.2%) and others (2.2%). (B) Distribution of pathogenic/likely pathogenic
mitochondrial variants detected in our patient cohort. The size of the colored sectors represents the relative percentage of the number of pathogenic/
likely pathogenic variants in genes annotated accordingly.
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testing approaches combining WGS or WES with mitochondrial
genome analysis have higher diagnostic yields, these approaches can
be impeded by the lack of payor coverage and cost as well as varying
levels of NGS coverage across different genes. Overall, the diagnostic
yield for testing each genome individually was about half of the total
diagnostic yield within our cohort. Our study highlights the clinical
utility of a dual genome testing approach compared to single
genome testing for evaluation of suspected mitochondrial disease.
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