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Introduction: Intellectual disability, autosomal dominant 29 is a rare disorder
resulting from pathogenic variants of SETBP1 gene with no specific mutation
hotspot identified. Systematic descriptions of new cases are crucial for
understanding the genotypic and phenotypic spectrums of the disease.

Case presentation: A pregnant woman was referred to the prenatal diagnosis
center at our hospital because she has an intellectual disability and has previously
given birth to a child with intellectual disabilities. Karyotype, CNV-seq and whole-
exome sequencing (WES) were employed to investigate the potential genetic
issues in the family. The SETBP1NM_015559.2: c.2425C>T (p.Gln809*) nonsense
variant was found in the proband and mother, who were diagnosed with MRD29.
Amniocentesis and genetic analysis (CNV-seq and sanger sequencing for
mutation site) were performed as fetal cortical abnormalities and
subependymal cystic area presented by ultrasonic examination at 25 +
5 gestational weeks. The genetic analysis confirmed the SETBP1 c.2425C>T
(p.Gln809*) nonsense mutation in the fetus. The parents terminated the
pregnancy at 30 + 4 gestational weeks.

Conclusion: The SETBP1 NM_015559.2: c.2425C>T (p.Gln809*) nonsense
variant is pathogenic and SETBP1 haploinsufficiency may be associated with
fatal cortical abnormalities. More prenatal clinical data is helpful for a better
productive decision making and patient management.

KEYWORDS

MRD29, SETBP1, prenatal diagnosis, WES, cortical abnormalities

1 Introduction

Intellectual disability, autosomal dominant 29 (MRD29, MIM #616078) is a rare
disorder that commonly associated with speech impairment, mild motor developmental
delay and intellectual disability as reported in small case series. Additionally, hypotonia,
vision impairment, concentration deficits, and hyperactivity have been documented in
several cases. Prior to Jansen et al.’s delineation of the clinical spectrum of MRD29 among
34 individuals in 2021, there were no systematic descriptions of the disorder’s phenotypic
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and genotypic spectrums (Jansen et al., 2021). Subsequently,
Morgan et al. emphasized the centrality of speech and language
deficits among 31 individuals (Morgan et al., 2021). Nevertheless,
the underlying mechanisms remain unclear.

With the advancement of next-generation sequencing (NGS),
SET binding protein 1(SETBP1) has been identified as the disease-
causing gene for MRD29. SETBP1 gene is located at 18q12.3 and
encodes a protein with molecular mass of ~170 kDa in most
tissues. The SETBP1 protein possesses multiple functional
domains, including a SET-binding region, an oncoprotein SKI
homologous region, three bipartite NLS (nuclear localization
signal) motifs, three AT hook domains, six PEST sequences,
three sequential proline-rich repeats, four KxKHKxK, eight
LSxxL and ten PxxPS repeated sentences (Minakuchi et al.,
2001). The SKI-homology domain shares homology with the
nuclear oncoprotein SKI and contains a degron motif that is
recognized by the proteasome for protein degradation
(Minakuchi et al., 2001).

MRD29 is believed associated with heterozygous gene deletion
or loss-of-function (LoF) variants of SETBP1, without clear
mutation hotspots (Jansen et al., 2021). In contrast, gain-of-
function mutations in the SKI domain lead to the more sever
Schinzel-Giedion syndrome (SGS, OMIM ID: 269150)
characterized by recognizable facial characteristics, severe
intellectual disability, and various congenital anomalies
(Hoischen et al., 2010). These observations indicate a dose-
dependent effect of SETBP1. However, the underlying mechanism
of how altered SETBP1 protein dosage affects brain development
remains elusive. Research utilizing human embryonic stem cells
(hESCs) has demonstrated that SETBP1 deficiency affects forebrain

progenitor expansion and neurogenic differentiation (Cardo et al.,
2023). Nevertheless, few cases have reported abnormal brain MRI
findings, implying that there may be issues with the timing of brain
development detection.

In this report, clinical andmolecular findings in a Chinese family
with MRD29 are presented. Whole-exome sequencing (WES)
analysis identified a nonsense variant. To discuss the prenatal
diagnosis of MRD29 disease and improve understanding of the
disease, previously reported cases were reviewed.

2 Case presentation

A 29-year-old pregnant woman, gravida 3, para 1, was
referred to Tianjin Central Hospital of Obstetrics and
Gynecology due to intellectual disability and a history of
intellectual disability childbirth at 19+5 weeks of gestation.
The pregnant woman exhibited intellectual disability, delayed
language development, and could not use complete sentences
before the age of 14 years old. She and her partner were un-
related, and no disorder was reported about her partner. Their
first child, a 6-year-old son (proband), presented with intellectual
disability (Wechsler Intelligence Scale for Children-IQ test score
of 52) and an inability to use complete sentences.

Peripheral blood samples of the parents and proband were
collected at 20 weeks gestational age for karyotype analysis and
chromosome copy number variation sequencing (CNV-seq)
initially. As no abnormality was detected but nonnegligible
genetic predisposition, trio-exome sequencing was then
employed. Written informed consent was obtained from patients

FIGURE 1
Schematic representation of validation results by Sanger sequencing. The heterozyous variants presented in the proband (A), mother (B) and fetus
(D). The wild type SETBP1 presented in the father (C).
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clarifying the benefits and risks of clinical whole-exome sequencing
testing. As expected, the mother and proband were found to have a
heterozygous SETBP1 c.2425C>T (p.Gln809*) nonsense mutation
(Figures 1A, B). While, no pathogenic variant of the SETBP1 gene
was detected in the father (Figure 1C). Considering the clinical
features presented and potential genetic mechanism, the proband
and mother was diagnosed with MRD29.

At 25+5 weeks of gestation, fetal cortical abnormalities and
subependymal cystic area were detected by ultrasonic examination
(Figure 2). Subsequently, amniocentesis was performed at
26+2 weeks of gestation for genetic analysis (CNV-seq and
Sanger sequencing). A heterozygous SETBP1 c.2425C>T
(p.Gln809*) nonsense mutation was detected (Figure 1D), and
the fetus was subsequently diagnosed with MRD29 prenatally.
The parents chose to terminate the pregnancy at 30+4 weeks of
gestation and declined a post-mortem examination of the fetus. The
patient’s general condition was good at discharge.

To summarize the clinical phenotype of MRD29 disorder,
“MRD29 and SETBP1” were used as the formula for literature
retrieval in the PubMed database. All variants and their positions
are summarized in Figure 3. The clinical spectrum of individuals,

including prenatal and brainMRI findings, is systematically outlined
in Supplementary Table 1.

3 Discussion and conclusion

We report a SETBP1 c.2425C>T variant here, and the mutation
results in the 809th amino acid, glutamine, in the protein SKI domain
replaced by a stop codon and causes termination of the SETBP1 protein.
This is the first time a fetus with SETBP1 haploinsufficiency has been
reported. Given the limited number ofMRD29 cases reported to date, it
is critical to focus on the phenotypic features of individuals with
different variants. We systematically evaluated the phenotypes in
59 individuals reported to date: speech delay was reported in almost
all cases evaluated (55/56, 98.21%); motor development delay (51/57,
89.47%) and intellectual disability (49/51, 96.08%) were also reported in
almost all cases; 22 out of 42 (52.38%) cases had a history of feeding
difficulties; 19 out of 36 (52.78%) cases were reported with vision
impairments, including hypermetropia (9 cases), astigmatism (4 cases),
strabismus (6 cases), myopia (3 cases), amblyopia (1 case), color
blindness (1 case), and lack of binocular vision (1 case); hypotonia

FIGURE 2
Ultrasound examination image of the fetal (A) Malformation of cortical development indicated by an increased Sylvian fissure angle; (B)
Measurement of the Sylvian fissure angle; (C) Subependymal cyst; (D)Magnified image of the indicated cystic area, presented by ultrasonic examination at
25+5 weeks of gestation.
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(19/30, 63.33%) and attention/concentration deficit (29/41, 70.73%)
were also commonly reported, as shown in Supplementary Table 1
(Jansen et al., 2021; Morgan et al., 2021; Marseglia et al., 2012; Hamdan
et al., 2014;Miolo et al., 2024; Kaspi et al., 2023; Vrkic Boban et al., 2022;
Wang et al., 2023; Zhou et al., 2022; Rauch et al., 2012; Filges et al., 2011;
Coe et al., 2014; Eising et al., 2019; Hildebrand et al., 2020; Alesi et al.,
2024). The clinical findings in this family align with current knowledge
on the spectrum ofMRD29, including speech problems and intellectual
disability.

We have reported for the first time the delayed development of the
Sylvian fissure in the fetus as well as subependymal cysts. As we
illustrated in Figures 2A, B, the development of Sylvian fissure was
delayed according to works conducted by Chen et al. (2017) and Pooh
et al. (2019). These works summarized the changing appearance on
prenatal ultrasound of the sylvian fissure and determined sylvian fissure
changes as important part of fetal cortical development. Interestingly,
most individuals were previously reported to have normal brain MRI
scans, with the exception of three cases under 4 years old who were
identified with delayed myelination (Jansen et al., 2021; Morgan et al.,
2021; Hamdan et al., 2014; Filges et al., 2011; Coe et al., 2014). In line
with these reports, the mother and proband also presented normalMRI
scans in this Chinese family. This finding underscores the need for
further investigation into the role of SETBP1 in neurological phenotypes
during early brain development, as well as its potential association with
speech and language disorders at an early stage of life. However, our
understanding of the prenatal characteristics of the MRD29 disorder
remains limited, with only a few reported cases involving amniotic fluid
abnormalities, fetal heart arrhythmia, fetal heart bradycardia,
dysmaturity, hypotonia, fetal distress, and the presence of a single
uterine artery. Further research is warranted to elucidate the full
prenatal profile of this disorder and to establish a correlation
analysis between prenatal and postnatal phenotypes, enabling
personalized management strategies for patients.

Mechanistically, Lucia F. et al. have revealed that SETBP1-
deficiency affects forebrain progenitor expansion and neurogenic

differentiation by CRISPR/Cas9 genome editing hESC lines (Cardo
et al., 2023). However, the precise role of SETBP1 in aggravating brain
pathology remains unclear. Specifically, the cerebral cortex,
particularly the posterior regions surrounding the Sylvian fissure, is
crucial for regulating speech and language functions. Recently, Cabet
S. et al. found that a prenatal lack of opercularization of the Sylvian
fissure, without any other extracranial anomalies, is associated with
speech delay (Cabet et al., 2024). Given our observation of delayed
development of the Sylvian fissure in certain cases, we hypothesize
that SETBP1 plays a role in the development of this fissure, which in
turn regulates language and speech abilities. To clearly explore the
influence of SETBP1 mutation on the development of the Sylvian
fissure, animal experiments should be conducted. It is also important
to note that more high-quality cases describing prenatal findings are
needed, given the potential for significant heterogeneity in the
manifestation of SETBP1 disorders.

Data availability statement

The original contributions presented in the study are publicly
available. This data can be found here: ClinVar repository, accession
number SCV005442721, https://www.ncbi.nlm.nih.gov/clinvar/variation/
807682/?oq=SCV005442721&m=NM_015559.3(SETBP1):c.2425C%3ET
%20(p.Gln809Ter).
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FIGURE 3
Schematic diagram of SETBP1 functional domains and variants identified in relation to MRD29.
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