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Antimicrobial resistance (AMR) is a growing global health concern, driven by
urbanization and anthropogenic activities. This study investigated AMR
distribution and dynamics across microbiomes from six U.S. cities, focusing on
resistomes, viromes, and mobile genetic elements (MGEs). Using metagenomic
data from the CAMDA 2023 challenge, we applied tools such as AMR++, Bowtie,
AMRFinderPlus, and RGI for resistome profiling, along with clustering,
normalization, and machine learning techniques to identify predictive markers.
AMR++ and Bowtie outperformed other tools in detecting diverse AMR markers,
with binary normalization improving classification accuracy. MGEs were found to
play a critical role in AMR dissemination, with 394 genes shared across all cities.
Removal of MGE-associated AMR genes altered resistome profiles and reduced
model performance. The findings reveal a heterogeneous AMR landscape in
urban microbiomes, particularly in New York City, which showed the highest
resistome diversity. These results underscore the importance of MGEs in AMR
profiling and provide valuable insights for designing targeted strategies to address
AMR in urban settings.
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1 Introduction

Antimicrobial resistance (AMR) is a phenomenon that arises when bacteria, viruses,
fungi, and parasites undergo genetic changes, rendering them insensitive to the effects of
antimicrobial agents, thereby making infections more difficult to treat and increasing the
risk of disease transmission, morbidity, and mortality (Sun et al., 2022). The emergence and
spread of AMR are inherently driven by anthropogenic factors, and it is estimated that over
one million people died due to AMR in 2019 (Murray, 2022). In conjunction with
suboptimal wastewater treatment processes that fail to degrade residual antibiotic
agents, inappropriate use of antibiotics has led to a persistent increase in the
environmental abundance of antimicrobial compounds (Aden and Bashiru, 2022).

Antimicrobial resistance genes (ARGs) are transmitted either vertically through binary
fission in bacteria or horizontally through horizontal gene transfer (HGT) mechanisms,
including conjugation, transformation, and transduction (Ochman et al., 2000).
Transformation involves bacterial uptake of genetic material from their surroundings,
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while conjugation involves the direct exchange of genetic material
between bacterial cells. Unlike these processes, transduction is
mediated by viruses and mobile genetic elements (MGEs),
highlighting the necessity of considering these dynamic entities
when investigating antimicrobial resistance (Canchaya et al.,
2003; Frost et al., 2005).

Resistome profiling, particularly in hotspots like wastewater
treatment facilities, meat processing plants, hospitals, and urban
areas, has gained significant attention (Karkman et al., 2018; Honda
et al., 2023; Aarestrup, 2012; Mulvey and Simor, 2009; Vassallo et al.,
2022). Human activities impact the resistome substantially (Vassallo
et al., 2022). The global scientific community has thus intensified
efforts to understand resistome dynamics (Cobo-Díaz et al., 2021).
One notable initiative is MetaSUB, which periodically sequences
metagenomic material from urban public spaces such as metro
stations and bus stops (Ryon et al., 2022). Metagenomics is
advantageous over culture-based methods because it allows the
identification of viable but non-culturable bacteria (VNCB),
which are often missed in traditional culturing approaches (Steen
et al., 2020; Venter et al., 2004). Additionally, in contrast to
molecular methods, metagenomics does not rely on prior
knowledge of sequences, enabling comprehensive characterization
of microbial communities and their functional potential (Quince
et al., 2017; Mason et al., 2014).

This study extensively analyses 143 urban environmental
metagenomic samples (see Table 1) and antibiotic susceptibility
data from 145 hospital patients and their delivered isolates. The
isolates referenced in this study are bacterial isolates collected from
patients, cultured, and tested independently. These isolates are not
patient-specific data but are derived from clinical samples. The
dataset included AMRs commonly associated with clinically
relevant pathogens, i.e. Escherichia coli, Klebsiella pneumoniae,
and Enterobacter hormaechei. By comparing AMRs detected in
the environmental metagenomes with those identified in the
isolates, we assessed the ability of the tools to detect resistance
markers of clinical significance.

Both datasets, i.e., the metagenomic fastq files and the isolates’
resistome profiles, were provided by the CAMDA (2023)
organization team. The metagenomic samples are an arbitrary
subset of the MetaSUB sequencing pool, where initial analysis
has led to drafting a global metagenomic map of urban
microbiomes and antimicrobial resistance (The International
MetaSUB Consortium, 2021). These samples were collected from
six major U.S. cities (Danko et al., 2021). Our investigation

encompasses their resistome, virome, and mobilome, employing a
diverse array of techniques both independently and in conjunction
(see Figure 1).

We employedmathematical modelling and statistical techniques
to analyze the metagenomic data and predict the origins of the
samples. We utilized random forest classifiers for feature selection
and classification, leveraging algorithms like Boruta and Multi-
Dimensional Feature Selector (MDFS) to identify key resistome
markers. Additionally, we computed cosine similarities between
samples based on their antimicrobial resistance (AMR) profiles
and applied clustering algorithms to explore the data structure.
Singular Value Decomposition (SVD) was used for dimensionality
reduction to enhance the accuracy of similarity calculations (Berry
et al., 1995). Furthermore, we investigated the association between
MGEs and AMRs, conducting filtering experiments to assess the
impact of MGE-associated AMRs on resistome profiles.

These mathematical and machine learning (ML) approaches
allowed us to derive meaningful insights into the distribution and
dynamics of AMR in urban microbiomes. By mapping resistome
profiles across different urban environments and evaluating the
precision and applicability of various resistome profiling tools, our
study significantly contributed to the advancement of resistome
analysis methodologies. Despite facing challenges, our findings
underscore the critical role of MGEs in resistome studies and
provide valuable insights for future research and public health
strategies.

The integration of ML techniques has transformed
environmental microbiology, enabling the analysis of large-scale
datasets and uncovering patterns and relationships often missed by
traditional methods. In this study, ML played a pivotal role in
predicting resistome dynamics. Using random forest classifiers and
derivative implementations, we identified key resistome markers
and their associations with antimicrobial resistance genes (ARGs).
These tools handle high-dimensional metagenomic data efficiently,
facilitating robust feature selection, classification, and modeling of
microbial interactions.

Additionally, ML has been instrumental in predicting sample
origins, as demonstrated in global studies like MetaSUB (The
International MetaSUB Consortium, 2021). By integrating
resistome, virome, and mobilome datasets, ML provides a
comprehensive view of microbial ecosystems (Medina et al.,
2022; Bhattacharya et al., 2022). Its application in this work not
only enhances predictive precision but also underscores ML’s critical
role in advancing environmental microbiology and shaping public
health strategies.

2 Methods

2.1 Data preparation

The study utilized fastq files obtained from a publicly available
repository of MetaSUB data (www.metasub.org) accessible through
CAMDA (2023) page. A total of 143 libraries from six different cities
in the United States were examined (Table 1). To ensure the dataset’s
quality, the MetaSUB-CAMPmetagenomic tool suite (Tierney et al.,
2023) was employed. This suite conducted quality control
procedures, including the removal of host reads (Genome

TABLE 1 Overview of sample distribution by City for the study. The table
lists each city with its corresponding ID and the number of samples
collected.

ID City Sample number

BAL Baltimore 14

DEN Denver 45

MIN Minneapolis 6

NYC New York 46

SAC Sacramento 16

SAN San Antonio 16
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Reference Consortium Human Build 38 - RefSeq assembly
accession: GCF_000001405.26) and low-quality sequences. The
quality-controlled reads were then subjected to de novo assembly
using metaSPADES (Nurk et al., 2017) with standard parameters.

2.2 Data generation

2.2.1 Resistome profiling
We constructed resistome profiles using four different analytical

methods. For short quality-controlled reads, we used AMR++ v3.0
(Microbial-Ecology-Group, 2023) and Bowtie v2.5.1 (Langmead and
Salzberg, 2012). AMR++ makes use of MEGARes v3.0, a
comprehensive AMR database with an acyclic hierarchical
annotation structure (Bonin et al., 2022). For the Bowtie approach,
we aligned the reads against a custom database with Bowtie2 using
standard parameters. This database contained a comprehensive
collection of indexed antimicrobial resistance genes, combining
sequences from the Comprehensive Antibiotic Resistance Database
(CARD) (Alcock et al., 2022) with an additional set of manually
curated genes, kindly provided by Dr. Nelly Selém (Mojica, 2023).

For elongated, assembled reads, we utilized two other methods:
AMRFinderPlus v3.11.14 (Feldgarden et al., 2021) and Resistance
Gene Identifier (RGI) V3.3.1 (CARD, 2024), developed by the
National Center for Biotechnology Information (NCBI) and CARD
team, respectively (Alcock et al., 2022). In executing AMR++,
AMRFinderPlus, and RGI, we adhered to the standard pipelines
without any modifications to the databases or pipeline parameters.

The resistome profile of isolates provided by the CAMDA (2023)
consisted of a tabular file listing antimicrobial resistance genes (ARGs)
associated with each isolate. This dataset served as a reference for
comparative analysis during the study. The table is publicly available

and can be freely downloaded from their official webpage or the dedicated
repository for this study at https://github.com/rbtoscan/frontiers_camda_
2023/blob/main/data/isolates/CAMDA2023_isolates.csv.

2.2.2 Resistome normalization
Considering the contrasting sequencing depth across the dataset,

we employed a range of normalization techniques for gene counts.
These counts were normalized against the following parameters:

1) the quantity of quality-controlled base pairs, 2) the total number
of assembled base pairs, 3) the detected small subunit ribosomal
RNA (SSU) count and 4) the count of SSUs exhibiting a minimum of
50% coverage.

Our examination of assembled contigs for SSU identification
involved the utilization of the bbduk.sh tool from the BBTools suite
(Bushnell, 2021). We referenced the SILVA Small Subunit database
(release 138.1) for this purpose Quast et al. (2013). The detection of
SSU fragments was quantified at varying coverage thresholds,
including any detectable level (above 0%) and a more stringent
criterion of over 50% coverage.

2.2.3 MGE identification, annotation and
classification

We used Mobile OG-DB (Brown et al., 2022) for the MGE
identification. Mobile OG-DB serves as a meticulously curated
database housing well-documented protein sequences of MGEs,
encompassing diverse elements such as transposons, plasmids,
integrons, and various other mobile entities.

The MGE identification process using Mobile OG-DB involves:

1. Identification of open reading frames (ORFs) using Prodigal
(Hyatt et al., 2010) with default parameters as outlined in the
MobileGo-DB documentation.

FIGURE 1
This diagram provides a high-level view of the methods workflow used in this study, illustrating the stages from data preparation through to
prediction. The process includes quality control of sequencing data, various profiling methods for resistome, virome, and mobilome, followed by
integration and analysis using feature selection and machine learning techniques.
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2. Creation of alignment summaries against the mobile
orthologous groups database using Diamond (Buchfink
et al., 2015) with default parameters as outlined in the
MobileGo-DB documentation.

3. Compilation of element-mapping data, summarizing matches
to proteins from various MGE classes.

2.2.4 MGE quantification and AMR association
We identified MGEs and quantified their frequency across the

dataset by counting the number of samples in which eachMGE gene
was detected. Specifically, we mapped reads to the MGE database
using DIAMOND, identified genes from the alignments, and
calculated the presence of each MGE gene as the number of
samples in which it was detected. Our analysis focused on MGE
genes found in more than 50% of the samples from each city. To
investigate the association between MGEs and antimicrobial
resistance (AMR), we revisited the original genetic data,
searching for AMR genes proximal to the MGE genes. MGEs
and resistome markers co-located on the same contig were
considered associated and were categorized as mobile
antimicrobial resistance markers (mAMRs).

2.2.5 Virome profiling
Virome profiling was conducted using three distinct tools,

each chosen for its specific utility in viral genome identification
and analysis. VirSorter v2.2.4 (Guo et al., 2021), a widely used
tool, employs prophage sequences to identify virus-like
signatures in microbial datasets. VirFinder (Ren et al., 2017)
v1.1 is known for its statistical learning approach, which assigns a
likelihood score to sequences for their viral origin, enhancing
detection specificity. Vibrant v1.2.1 (Kieft et al., 2020) utilizes
machine learning and known viral databases to annotate and
predict viral sequences with high accuracy. The outputs from
VirSorter, VirFinder, and Vibrant were combined, and duplicate
entries were removed to retain only unique viral sequences.
Subsequently, the unique sequences underwent a quality
control process using CheckV (Nayfach et al., 2021), which
assesses the completeness and quality of the detected viral
genomes, ensuring that the data used in further analyses are
of high integrity. These tools were integrated into the Snakemake
viral investigation pipeline (MetaSUB-CAMP, 2024), which was
operated with standard parameters to ensure consistent and
reproducible analysis across datasets.

2.2.6 K-mer profiling
K-mer profiling was conducted to assess the diversity and

complexity of the metagenomic samples. We used Jellyfish
(Marcais and Kingsford, 2011) to compute k-mer statistics,
generating a 143 × 12 table, with one row per sample and four
columns for each k-mer size (33, 55, and 77). The k-mer sizes of 33,
55, and 77 were chosen to balance sensitivity and specificity in
sequence detection. Shorter k-mers (e.g., 33) detect a broader range
of sequences and capture small genetic variations, while longer
k-mers (e.g., 77) offer higher specificity and reduce false positives
by ensuring unique matches. This multi-scale approach leverages
the benefits of different k-mer lengths, as supported by previous
genomic analysis studies (Chikhi and Medvedev, 2014; Li
et al., 2010).

The metrics calculated included unique, distinct, total, andmax_
count for each k-mer size. The unique metric counts k-mers
occurring exactly once, serving as a direct indicator of sample
diversity. The distinct metric counts the number of k-mers while
ignoring their multiplicity, representing the cardinality of the set of
k-mers. The total metric sums the occurrences of all k-mers,
reflecting the overall abundance and richness of the sample. The
max_count metric identifies the highest occurrence of any single
k-mer within a sample, indicating the presence of highly repetitive
sequences or dominant species.

2.2.7 Data integration
All intermediate analysis results from the profiling of resistome,

mobilome, virome, and k-mer counts were processed and wrangled
for subsequent interpretation and analysis through clustering,
modeling, and prediction techniques. The results generated by
each tool was compiled into matrices and analysed using the R
statistical programming language (R Core Team, 2024). The
following R packages were employed to support data processing,
visualization, feature selection, and modeling:

• Boruta: For feature selection using importance scores derived
from random forest algorithms (Kursa and Rudnicki, 2010).

• MDFS: To apply multi-dimensional feature selection based on
information theory (Piliszek et al., 2019).

• dplyr, tidyr, stringr: For data wrangling and preprocessing
(Wickham et al., 2023a; Wickham et al., 2023c;
Wickham, 2023).

• ggplot2 and reshape2: For data visualization and reshaping
(Wickham, 2016; Wickham, 2007).

• kableExtra and knitr: To generate reproducible, dynamic
tables and reports (Zhu, 2024; Xie, 2024).

• randomForest: For building random forest classification
models (Liaw and Wiener, 2002).

• pROC: For ROC curve analysis (Robin et al., 2011).
• mltools and networkD3: To support machine learning tools
and visualization of networks (Gorman, 2018; Allaire
et al., 2017).

• Readr: For efficient data import (Wickham et al., 2023b).

All packages used are open-source and available through the
Comprehensive R Archive Network (CRAN).

2.3 Analysis

2.3.1 Analysis of AMR-based city similarity
The initial goal was to perform an exploratory analysis of the

clustering structure of the urban samples derived from their AMR
profiles. To this end, clustering-based approaches were tested, based
on L2 norm cosine similarity matrix (Horn and Johnson, 1985)
computed using absence-presence tables of AMRs. It is expected that
if AMR levels are related to the geographical location of the samples,
then by using AMR-based similarity to cluster the samples, one
could recover each sample’s city assignments by inspecting the
cluster labels. However, after initial tests, we discovered that the
clustering structure cannot be easily mapped to the original city
labels. Therefore, a more fundamental approach was used, that was
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concerned with the AMR-based sample similarities themselves, not
the clusters built upon them.

To further validate the AMR profiling results, the resistome
profiles of clinical isolates were integrated into this analysis. These
profiles served as a baseline for assessing the overlap between
clinically significant AMRs and those detected in the
environmental samples. By comparing the ARGs identified in
isolates with those found in environmental datasets, we evaluated
the ability of each profiling tool (AMR++, Bowtie, AMRFinderPlus,
and RGI) to capture clinically relevant resistance markers. This
integration also allowed us to explore potential patterns of co-
occurrence between ARGs and MGEs, further elucidating their
role in AMR dissemination across urban environments.

The cosine similarity between samples was computed for each
AMR profiling approach: AMRFinderPlus, AMR++, RGI and
Bowtie. Then, a statistical analysis of the relationship between the
values of the similarities and city labels was performed. Several
variants of the cosine-based similarities were computed and
compared. Differences between the similarities inside vs. across
cities were examined, and their statistical significance was
assessed. Our protocol was aimed to answer the question of
“Does the AMR-based sample similarity carry information about
the geographical origin of the samples?.” The general outline of the
protocol is stated below:

1. For each tool, compute the sample similarities.
2. For each tool, based on sample similarities, compute summary

statistics comparing the inside-city similarity of the samples
with the between-city similarity.

3. Assess the statistical significance of the differences and
compare the statistics across different AMR finding tools
and similarity variants.

2.3.2 Cosine similarity calculation
For each tool, different variants of the cosine similarities were

computed. Each variant tested starts with a raw absence/presence
table. It is then used to compute plain cosine similarity. Optionally, a
combination of the following transformations was applied to the
data between those two elementary steps. Details of each step are
discussed in the next parts of the manuscript:

• Input markers filtering: use all available markers or only those
relevant for the decision variable “city”.

• Usage of SVD embedding: either apply SVD embedding (Wall
et al., 2003; Berry et al., 1995) on the absence/presence
table or not.

• Sparsification of the cosine similarity matrix: either zero out
weak connections or not.

Transformations were applied in the order they are listed. Effects
of each combination of these transformations were tested.

2.3.3 Transformation details
For selecting the markers related to the city indicator, relevance

was computed by a chi-squared test based on mutual information
(MI) between the decision and the features (Mnich and Rudnicki,
2020). We have used a custom function mimicking the behaviour of

the MDFS 1-D feature selector (Piliszek et al., 2019), generalized for
handling non-binary decision variables, that is, the “city indicator”.

For the SVD embedding, we have used the UD part of the SVD
decomposition (Berry et al., 1995) applied to the marker matrixM,
where M � UDV, where rows of M correspond to samples, and
columns to the markers. Each row of UD matrix represents the
joint information of the each sample contained in its AMR levels,
while first k columns carry the most variation across
different samples.

Sparsification step zeroes out weak connections, according to the
weight threshold chosen by clique counting on the thresholded
graph. A clique is a subset of vertices in a graph such that every two
distinct vertices are connected by an edge.

We choose threshold for which the number of observed cliques
of size at least 3 is maximal. Such threshold is dependent on the
structure of the graph, thus it varies between variants. This is a
heuristic we found empirically work well in various scenarios. More
details can be found in the Supplementary Material.

2.3.4 Summary statistics of the sample similarities
Here we describe a simple statistic used to assess, on average,

how well separated are samples coming from different cities. We
have computed the similarity for each of 1

2N(N − 1) pairs created
from N samples.

Set of computed similarities can be partitioned into the set of
“inside city” similarities Sin and “between city” similarities Sbtw.
Similarities between samples were computed using levels of AMRs.
If those levels are overall relevant for the geographical location of the
samples, we would expect, on average, for the “inside city” similarity
to be bigger than the “between city” similarity. Therefore, we found
it meaningful to compute the following summary statistic that
summarizes each similarity matrix:

Sin − Sbtw (1)
where �A denotes mean of elements in set A. The greater the value,
the greater the similarities between samples from the same city than
the similarities between samples from different cities.

2.3.5 Statistical significance assessment
To adjust for possible randomness of the differences between the

computed summary statistics, we have utilized both common non-
parametric approaches: resampling-based point estimate with
uncertainty estimation, as well as permutation-based significance
test where applicable (Efron and Tibshirani, 1993).

To estimate the standard error of the statistic, we have used a
variation of leave-d-out jackknife (Shao and Wu, 1989). In standard
leave-d-out jackknife, one computes the statistic for all (or random
sample of all) possible subsets of samples of the original dataset (size
N) that have N − d elements, and uses the resulting replicates to
compute the spread of original statistic. In our case, we used a
stratified variant of such procedure because of a serious class
imbalance in the variable “city.” We want to leave out 1

k samples
in each subset. Therefore, to ensure equal treatment of each class of
the “city” variable, to compute each replicate, we leave 1

k out of
each class.

We have also used a permutation test (Efron and Tibshirani,
1993) for the statistic θ̂ ≔ Sin − Sbtw.
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More detailed information on specific parameters used in the
procedures desribed above can be found in the
Supplementary Material.

2.3.6 Feature selection and classification
We used two methods for feature selection: Boruta algorithm

(Kursa and Rudnicki, 2010) and Multi Dimensional Feature Selection
(MDFS) (Mnich and Rudnicki, 2020; Piliszek et al., 2019). The feature
selection and random forest classification focused on predicting the
origin of the samples, specifically the “city” indicator. Boruta uses the
importance score from multiple runs of the RF algorithm to discover
the informative variables. In each iteration, the original data set is
extended by adding a randomized copy of each variable. MDFS is
based on information theory and considers synergistic interactions
between descriptive variables. The algorithm returns binary decisions
about variables’ relevance and ranking based on Information Gain
and p-value.

For modelling, we used Random Forest algorithm Breiman
(2001), which is based on decision trees and works well out of
the box on most data sets Fernández-Delgado et al. (2014). It also
obtains relatively well results with a small number of observations.
The classifier was used in three ways: all versus all, one versus all, and
one versus one. Models were evaluated by accuracy (multiclass cases)
and by Matthews Correlation Coefficient (MCC) Matthews (1975)
and area under the receiver operating curve (AUROC or AUC) for
binary classification.

3 Results

3.1 Data description and interpretation

3.1.1 On the resistome
Table 2 provides a summary of AMR detection counts using four

different methods: AMR++, Bowtie, RGI, and AMRFinder. AMR++
identified the highest total count of unique genes at 977, with an
average (mean) of 68 and a standard deviation of 94, indicating
considerable variability in the data. Bowtie detected a total of
342 unique genes, with a mean of 67 and a standard deviation of
57 – indicating more moderate spread around its mean. RGI
identified 252 unique genes, with a lower mean of 12 and a
standard deviation of 17, reflecting less variability compared to
AMR++ and Bowtie. AMRFinder, while detecting the fewest unique
genes at 142, had a mean of 9 and a standard deviation of 12,
indicating a relatively consistent detection rate.

Overall, AMR++ and Bowtie both show higher mean and
standard deviation counts of detected genes when compared to
RGI and AMRFinder. AMR++ and RGI both display similar level of
variability, as computed by dividing standard deviation by
mean values.

We performed a correlation analysis between the number of
genes found per sample for each of the tools and the number
sequenced nucleotides and assembled basepairs. None of the
methods displayed a significant correlation (>55%), suggesting
that the detection of AMR markers is largely independent of
sample size.

Aiming to identify the most suitable tool and normalization
method for achieving our primary goal of detecting the geographic
origin of the isolates, we compared the AUC values obtained from
four different tools: AMR++, Bowtie, AMRFinderPlus, and RGI (see
Table 3) with their standard non-processed values, simply

TABLE 2 Comparison of AMRdetectionmethods. This table summarizes the
total counts, mean values, standard deviations, and variability of antibiotic
resistance detection across four methods used to AMRs in this study.
Variability was calculated as standard deviation divided by Mean.

Method Total Mean Standard
deviation

Variability

AMR++ 977 67.8 93.5 1.4

Bowtie 342 67.2 57.1 0.9

RGI 252 12.0 17.1 1.4

AMRFinder 142 9.4 11.4 1.2

TABLE 3 Comparison of prediction results by AMR detection tools. This
table presents the accuracy scores for AMRFinder, RGI, Bowtie, and AMR++
in one-versus-all and one-versus-one prediction scenarios across different
cities.

AMRFinder RGI Bowtie AMR++

One versus all

BAL versus all 0.69 0.71 0.94 0.93

DEN versus all 0.81 0.89 0.92 0.91

MIN versus all 0.64 0.89 0.89 0.97

NYC versus all 0.96 0.92 0.97 0.96

SAC versus all 0.60 0.78 0.94 0.99

SAN versus all 1.00 0.34 0.96 0.86

Average 0.78 0.75 0.94 0.94

One versus one

DEN BAL 0.66 0.74 0.96 0.92

MIN BAL 0.96 0.96 0.82 0.99

MIN DEN 0.79 0.98 0.89 1.00

NYC BAL 0.69 0.92 0.97 0.92

NYC DEN 0.98 0.98 0.98 0.99

NYC MIN 1.00 0.98 0.93 0.96

SAC BAL 0.99 0.83 0.99 1.00

SAC DEN 0.98 0.93 0.94 0.99

SAC MIN 1.00 0.95 0.99 0.99

SAC NYC 0.91 0.88 0.99 0.99

SAN BAL 0.00 0.76 0.97 0.93

SAN DEN 0.00 1.00 0.86 0.88

SAN MIN 0.00 0.91 0.80 0.98

SAN NYC 0.00 0.92 0.99 0.99

SAN SAC 0.00 0.87 0.91 0.93

Average 0.70 0.89 0.92 0.94
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normalized by sequencing depth. AUC was chosen as it provides a
robust measure of classification performance, balancing sensitivity
and specificity across all possible thresholds. Based on these
comparisons, AMR++ was selected for downstream analysis due
to its superior detection of diverse and abundant AMR markers, as
well as its consistently higher AUC values across various
classification tasks.

Further, to optimize data pre-processing, we compared the AUC
values for six different normalization methods (see Table 4). Binary
normalization was chosen as the most effective approach, as it simplifies
the data representation by focusing on the presence or absence of
resistance genes, thus reducing noise and improving classification
performance. Other methods, including those based on sequencing
depth and SSU counts, did not significantly enhance predictive accuracy.

The UpSet plot on Figure 2 displays the overlap of antimicrobial
resistance genes (ARGs) shared among the six cities included in the
study. The horizontal bars represent the total number of ARGs

detected in each city, while the vertical bars denote the size of
intersections between sets of cities. Notably, a majority of ARGs are
unique to individual cities, with NYC exhibiting the largest set size.
The accompanying pie chart highlights the distribution of ARG
classes identified, with resistance to Beta-lactams being the most
predominant (11.5%). ARG classes with less than 1.5%
representation were excluded from the chart for clarity. This
figure underscores the heterogeneity of ARG distributions across
urban environments and the presence of metal-associated resistance,
which has been shown to foster the development and spread of
antimicrobial resistance by interacting with antibiotics, reducing
their bioactivity, and promoting resistance gene selection under
selective pressure (Sutradhar et al., 2023).

3.1.2 On the virome
A total of 70,839 viral contigs were detected; however, only

394 contigs (0.56%) were considered relevant by CheckV

TABLE 4 Comparative prediction accuracy of AMR++ Tool. This table presents the prediction accuracy results of the AMR++ tool across various
normalizationmodes, including standard, binary, SSU total, SSU cov50, reads, and genome data. The data is shown for both one-versus-all and one-versus-
one city comparison scenarios.

Standard Binary SSU total SSU cov50 Reads Genome

One versus all

DEN vs. all 0.92 0.93 0.93 0.94 0.93 0.94

NYC vs. all 0.92 0.97 0.95 0.96 0.95 0.94

SAC vs. all 0.91 0.95 0.93 0.94 0.95 0.94

BAL vs. all 0.86 0.86 0.91 0.89 0.89 0.89

MIN vs. all 0.93 0.98 0.96 0.99 0.96 0.96

SAN vs. all 0.86 0.81 0.91 0.85 0.85 0.85

Average 0.90 0.92 0.93 0.93 0.92 0.92

One versus one

DEN - NYC 0.99 0.96 0.94 0.97 0.95 0.96

DEN - SAC 0.96 0.97 0.93 0.95 0.94 0.95

DEN - BAL 0.96 0.98 0.97 0.95 0.97 0.97

DEN - MIN 0.94 0.97 0.95 0.95 0.94 0.95

DEN - SAN 0.87 0.86 0.88 0.90 0.89 0.90

NYC - SAC 0.94 0.98 0.96 0.97 0.96 0.96

NYC - BAL 0.97 0.99 0.99 0.98 0.98 0.98

NYC - MIN 0.99 0.99 0.97 0.98 0.98 0.98

NYC - SAN 0.95 0.98 0.96 0.97 0.96 0.97

SAC - BAL 0.97 1.00 0.98 0.99 0.99 0.99

SAC - MIN 0.96 1.00 0.97 0.99 0.99 0.99

SAC - SAN 0.90 0.93 0.91 0.92 0.92 0.92

BAL - MIN 0.93 0.93 0.90 0.92 0.91 0.92

BAL - SAN 0.90 0.93 0.91 0.92 0.91 0.92

MIN - SAN 0.98 1.00 0.98 1.00 1.00 1.00

Average 0.94 0.96 0.94 0.96 0.95 0.95
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(Medium-quality, High-quality, and Complete). Upon
investigation, it was observed that the number of viral contigs
was affected by the small-sized contigs generated by the assembly.
VirFinder was responsible for over 95% of the total number of
viral contigs detected, with a high false positive rate. We inferred
the high false positive rate based on the quality control performed
by the CheckV tool. Putative viral contigs detected by VirFinder
that lacked viral genes were tagged as non-viral and counted as
falsely identified as viruses.

3.1.3 On the mobilome
Table 5 illustrates the distribution of MGE genes across all

samples. We identified a total of 1660 MGE genes distributed across
six US cities. Figure 3 highlights the overlap of these genes among
the cities. Specifically, 394 MGE genes were shared across all six
cities, suggesting a conserved core set of genes. In contrast, 382 genes
were city-specific, appearing in only one city, indicating localized
variation in MGE composition.

Among theMGE genes we identified, 438MGE’s genes co-occur
with 325 AMR markers across the US cities, and a total of 12 of the
MGE-AMR gene marker patterns were found across all cities
(Table 6). A detailed table about the co-occurrence between the
MGE-AMR across US cities with city and sample information can be
found in the Supplementary Material. The Table 6 shows most
commonMGE gene and AMR gene that co-occured together among
all 6 cities of the US.

3.2 Clustering

Figure 4 shows the point estimates of the similarity comparison
statistic. Table 7 contains the FWER corrected p-values for the Sin −
Sbtw statistic. Overall, the results suggest that based on AMR levels

FIGURE 2
The UpSet plot illustrates the shared antimicrobial resistance genes (ARGs) between cities in this study. The accompanying pie chart displays the
distribution of ARG classes, annotated using the MEGARes v3 database. The Other category comprises ARG classes that ocurr less than 1.5% and were
thus removed from the plot.

TABLE 5 Distribution of MGE genes across cities. This table shows the
number of samples, genes, and protein hits (homologs) for each city
analyzed in the study.

City Samples Genes Protein_hits (homologs)

DEN 45 924 8,279

BAL 14 910 8,184

SAC 16 867 7,248

NYC 46 1,577 32798

SAN 16 666 5,051

MIN 6 532 3,943
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obtained from both AMR++ and Bowtie derived datasets we can find
that in fact similarities of samples coming from the same cities are
greater than similarities of samples coming from different cities.

Comparing the point estimates for those tools (first row of Figure 4)
shows that in terms of finding markers relevant for geographic
location, AMR++ performs slightly better. Significant difference for
the sparsified variants also suggests that indeed, the strongest
similarities form along samples from the same cities, at least for
data obtained with AMR++ and Bowtie methods.

AMRFinderPlus and RGI in that test performed worse, which is
both visible in p-values of the permutation test as well as on the point
estimate plots. For those tools, the difference between sparsified and
normal similarity variant is within the bounds of standard error,
which reinforces that observation. ‘RGI’ came up as the worst from
all of the used tools. Limitation to the significant mutual information
(MI) variables does not seem to bring much difference. In the end,
AMR++ stands out as the best approach, without any significant
difference between SVD based similarity and plain one.

We show the visualization of the similarities for the SVD
embedded samples derived from the AMR++ dataset (Figure 5).
We see that samples from different cities still have strong
connections to each other, but blocks along the diagonal are
noticeable. Overall, unsupervised analysis highlighted the need
for including information external to the clustering procedure.

SAC samples (blue colors) form a noticable cluster, as seen on
both sparsified and plain version of the heatmap plot. This
corresponds to the high classification score by ML model for that
particular city, as we show in the next section. We can also spot a
well separated cluster in the middle that corresponds to portion of

FIGURE 3
UpSet plot showing the overlap of MGE genes across six U.S. cities. Blue bars indicate the number of overlapping MGE genes between cities, while
gray bars represent the total number of unique MGE genes identified in each city. Horizontal bars on the left show the total number of MGE genes
identified per city. The pie chart displays the functional distribution of MGE genes based on the Mobile OG-DB. The Other category comprises MGE gene
functions that ocurr less than 0.5% and were thus removed from the plot.

TABLE 6 Prevalence of MGE genes and antibiotic resistance markers (AMR)
Across US Cities. This table lists the most common MGE and AMR genes,
along with the number of cities, samples, and sequencing reads in which
they were identified. Verification ensures that genes listed are distinct
despite similar names.

MGE genes AMR Cities Samples Fastq reads

gyrA GYRA 6 116 3,819

parC PARC 6 66 1,271

parE PARE 6 93 2,628

gyrB GYRB 6 73 3,601

dnaK DNAK 6 75 288

gyrB PARY 6 33 75

tnpA_IS6100 VEB 6 9 19

tnpA VEB 6 41 151

gyrB GYRBA 6 69 1,559

thyA THYA 6 20 44

ruvB RUVBM 6 18 37

gyrB GYRBZ 6 7 7
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samples coming from NYC (green colors). Baltimore group (yellow)
contains several outliers visibly distinct from the rest. Both of these
features turned out to be partly explained by k-mer content of each
sample as which we show later.

3.3 K-mer profiling results

K-mer profiling revealed significant insights into the diversity
and complexity of the metagenomic samples. As shown in Figure 6,
each row and column corresponds to a sample. The line plots on top
of the figure represent the number of unique k-mers at each X
coordinate (sample). The yellow, orange, and red curves represent
k-mer sizes 33, 55, and 77, respectively. The colors in the margins
represent samples from different cities: DEN (red), NYC (green),
SAC (blue), BAL (yellow), MIN (magenta), and SAN (black).

As observed, the peak of k-mer counts is particularly
pronounced for samples from New York City (NYC). NYC

samples are split into two distinct clusters, one with high
complexity and one with low complexity. The high complexity
cluster is exclusively composed of NYC samples, while the low
complexity cluster includes samples from Sacramento (SAC) and
potentially Baltimore (BAL). This clustering pattern suggests that
elevated k-mer counts from NYC samples may be due to shared
genetic elements or contamination, leading to unexpected clustering
across different cities.

3.4 Modelling

The four tools and the six normalization approaches were tested.
The multi-class models yielded poor results. The likely reason was
the large number of classes with a small number of in-class samples.
Consequently, we have focused on pairwise classification. Those
were done in one-vs-all and one-vs-one manner and can be seen in
Table 3. Notably, Bowtie and AMR++ displayed the best results,

FIGURE 4
Estimates of Sin − Sbtw , for datasets generated by different tools (columns) and similarity variants (colors). Y-axis of each plot is the value of the
statistic. Each X position corresponds to each variant. Left of each color corresponds to statistic computed on whole similarity matrix. Right corresponds
to statistic computed on sparsified matrix. “X” marks the value computed on real data, jitter plots show distribution of the jackknife replicates. Error bars
signify standard errors. Top row shows results of calculation using all markers, bottomone– limited tomarkers significant to “city” variable byMI test.

TABLE 7 Holm corrected p-values of the permutation test on the Sin − Sbtw statistic. All similarity variants were calculated using all markers (without filtering
relevant ones).

Similarity variant AMRFinderPlus AMR++ Bowtie RGI

SVD, sparse 0.005 0 0 0.005

Plain, sparse 0.005 0 0 0.0028

SVD, non-sparse 0.0016 0 0 0.005

Plain, non-sparse 0.0036 0 0 0.005
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indicating that reads-based resistome profiling is more accurate than
assembled-based profiling. Bowtie and AMR++ consistently
demonstrated the highest performance across the pairwise

classifications. Specifically, in the one-vs-all evaluations, Bowtie
and AMR++ achieved average AUC scores of 0.94. Similarly, in
the one-vs-one comparisons, Bowtie and AMR++ maintained high
performance, with average AUC scores of 0.92 and 0.94,
respectively. This indicates that reads-based resistome profiling,
utilized by Bowtie and AMR++, tends to be more accurate than
assembly-based approaches, as evidenced by their superior AUC
values. The results reveal a significant deviation from randomness
(an AUC of 0.5), demonstrating the effectiveness of Bowtie and
AMR++ in accurately profiling the resistome.

The resistome profile generated by AMR++ was used for further
experiments. The reason was manyfold: 1) It had the highest and
most diverse number of AMRs detected (Table 2), 2) the highest
number of AMRs detected that matched the AMRs present in the
isolates, 3) the highest inter-city dissimilarity, and 4) higher AUC
values for the different modelling approaches. Table 4 displays the
AUC values for different normalization approaches using AMR++
data. The values found on upper part of the table display how
distinguishable is a given city from the rest of the dataset while the
values on the lower part display how distinguishable is a city from
another, pairwise. Each column represents a different pre-
processing approach. The “Standard” column shows the values
directly outputted by AMR++. The “binary” column represents
the binary version of these values, where the data is converted
into binary form, indicating the presence or absence of features. The
best-preprocessing approach was the binarization. It has shown the
highest values across all comparisons, followed by Standard ouput.
Normalization by the number of SSU units (SSU total and SSU
cov50) did not significantly improve modelling results. The same
was observed for normalization based on sequencing and assembly
nucleotides.

FIGURE 5
Heatmaps of the sample similarities for the AMR++ derived dataset, using the SVD embedding applied on significant MI markers. Right shows
sparsifiedmatrix, left– the plain one. Each row/column corresponds to each sample. Row/columns are arranged by the city labels, which are alsomarked
by the side colors. Cities are arranged in following order (left to right): DEN, NYC, SAC, BAL, MIN, SAN.

FIGURE 6
The line plots represent the number of unique k-mers at each X
coordinate, with the yellow, orange, and red curves corresponding to
k-mer sizes 33, 55, and 77, respectively. The margin colors indicate
samples from different cities: DEN (red), NYC (green), SAC (blue),
BAL (yellow), MIN (magenta), and SAN (black). The peak k-mer counts
are notably higher for New York City (NYC) samples, which are divided
into two clusters: one with high complexity containing only NYC
samples, and one with low complexity, shared with samples from
Sacramento (SAC) and potentially Baltimore (BAL).
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3.5 Linking AMRs to MGEs and viruses

Aiming to observe howMGEs and viruses influence AMR-based
modelling, we excluded antimicrobial resistance genes (AMRs)
associated with these elements and repeated the classification
process. This involved removing virus-associated AMRs (vAMRs)
and MGE-associated AMRs (mAMRs) through a two-step process.
First, we used Bowtie2 mapping to identify reads linked to either
viruses or MGEs. Then, we examined the remaining reads using the
AMR++ tool. Out of nearly 70,000 viral contigs detected, only 4 were
associated with resistance markers, all belonging to New York City.
Therefore, we decided to utilize only mAMRs in the
downstream analysis.

The data were processed to identify co-localization patterns
between AMRs and MGEs across urban microbiomes. ARG
subclasses, MGE functions, and city-specific counts were
combined into a single dataset, with redundant entries removed

and MGE descriptions standardized. ARG-MGE associations were
filtered to retain only those appearing at least three times. EachMGE
function was further split into its components for detailed mapping
to ARG subclasses.

The heatmap (Figure 7) illustrates the co-occurrence patterns
between ARG subclasses and MGE functions across the dataset.
These visualizations reveal distinct trends, where functions such
as replication, transfer, and regulation consistently co-occur with
a broad range of ARGs, suggesting their pivotal role in resistance
dissemination. Other MGE functions, such as lysogeny and
excision, appear more specific to certain ARG subclasses,
reflecting potential niche adaptation or targeted mechanisms
of horizontal gene transfer. The overall patterns highlight the
significant influence of MGEs on the dissemination and
maintenance of AMR genes in urban microbiomes,
underscoring the complexity of these interactions. The
individual heatmaps for each city, illustrating city-specific

FIGURE 7
Heatmap illustrating the co-occurrence matrix between antimicrobial resistance (AMR) gene classes (x-axis) and MGE functions (y-axis) across the
dataset. The intensity of the color indicates the frequency of association, with brighter colors representing stronger associations. This visualization
highlights key AMR-MGE pairings, suggesting potential mechanisms of horizontal gene transfer and their role in antimicrobial resistance dissemination.
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AMR-MGE associations, are provided in the Supplementary
Material of this submission for further reference.

3.6 Filtering mAMRs

We analyzed MGEs observed in more than one city, focusing on
their proportions in each location.When selectingMGEs to filter, we
considered two criteria: 1) MGEsmust be observed inmore than one
city, and 2) each city must have a minimum presence of 30%, 50%,
80%, or 100%. Additionally, we selected MGEs for removal by
randomly removing reads equal to the number removed during
the 50% filtering criteria from each sample. These filtering criteria
were used to identify potential candidates for mAMRs. The mAMRs
were then filtered at the FASTQ read level by removing reads
containing the selected MGEs. Subsequently, we have computed
a new resistome profile using the AMR++ tool.

We utilized the newly generated antibiotic resistance matrix
from the AMR++ detection to reassess AMR city similarity analysis
and modeling (Figure 8). Among the four MGE filtering
percentages, the 30% criterion resulted in minimal changes, while
the 100% criterion led to a complete reshuffling of antibiotic
resistance (AMR) clusters and deterioration in model
performance (Table 8). The 50% criterion showed some
improvements in the models, although the AMR clusters
exhibited minimal variation, as our analysis was based on
binarized information. Random removal of MGEs did not affect
the results of AMR city similarity analysis and models.

These results suggest that certain resistome markers are
inherently connected with MGEs. The removal of these markers
significantly alters the resistome profile, impacting the efficiency of

resistome modeling. Therefore, careful consideration must be given
when filtering MGEs, as their presence or absence can drastically
change the resistome profile and affect the accuracy of AMR
detection and modeling. Our findings highlight the importance of
preserving key MGEs in resistome studies to maintain the integrity
and predictive power of resistome profiling models.

4 Closure

4.1 Conclusion and discussion

AMR exhibits a heterogeneous distribution across the dataset,
with varying resistome profiles that do not correlate with sample
depth. The investigated samples did not present nearly half of the
ARGs presented in the isolates, indicating that either: 1) the
sequencing depth of the urban samples was insufficient, 2) the
isolated species were not dominant in the urban dataset, or 3) the
classification methods were limited by incomplete
reference databases.

Statistical analysis of the similarities suggested that the link
between the origin of the sample and its AMR levels is non-
random. In regards to how much of location-relevant markers
each tool finds, we can see non-negligible variability between
approaches, highlighting AMR++ and Bowtie as most
informative in that aspect. Regardless of all of these general
considerations, in practice we still see pairs of samples coming
from different cities which are more strongly connected than
pairs from the same city, which means that inferring their origin
based on the clustering would not be effective. For some of the
cities, such as DEN and SAC we can see that all of the samples are

FIGURE 8
Heatmaps of the sample similarities for the AMR++ derived dataset, using the SVD embedding applied on significant MI markers. Left (50% MGE
filtering) shows clear clusters, while right (100% MGE filtering) no longer shows clusters after removing mAMRs. Each row/column corresponds to each
sample. Row/columns are arranged by the city labels, which are also marked by the side colors. Cities are arranged in following order (left to right): DEN,
NYC, SAC, BAL, MIN, SAN.
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tightly connected. However, for clusters cross city boundaries
and inside some of the cities we can spot subgroups not related to
each other at all (e.g., DEN and NYC). This fact seems to
correspond to different counts of total k-mer content,
especially evident by split within NYC group. Interestingly,
removal of MGE related reads leads to disappearance of the
clusters, which highlights their importance to the study of AMRs.

4.1.1 Resistome profiles
Beta-lactam resistance genes were the most abundant across all

cities, comprising 11.5% of the total ARGs detected. New York City
exhibited the highest diversity of ARGs, while cities like Minneapolis
and San Antonio showed fewer unique ARGs, potentially reflecting
differences in urban anthropogenic activities. The overlap of ARGs
between environmental samples and clinical isolates highlights the
clinical relevance of Beta-lactam resistance genes, which were
predominantly associated with key pathogens. One of the main

challenges of this study was modeling the resistome given that most
antimicrobial resistance genes originated from New York City
samples, resulting in a significant sample imbalance that affected
downstream analyses.

4.1.2 Virome profiles
A total of 70,839 viral contigs were identified, with only 394

(0.56%) passing quality control thresholds. Most viral contigs were
detected in New York City, possibly due to unique viral dynamics or
contamination. Viral-AMR associations were rare, with only four
vAMRs identified, all exclusively in New York City, suggesting the
limited role of viruses in ARG dissemination across the studied
urban environments. Surprisingly, such a small proportion of viral
particles passed quality control. We hypothesize that this is due to
the low sequencing depth of the samples, which were purposefully
selected for the CAMDA challenge to emphasize analytical
challenges.

TABLE 8 Prediction accuracy for AMR++ with MGE removal scenarios. This table compares the accuracy when mobile antimicrobial Resistance Markers
(mAMRs) are removed under two conditions: “Removal MGE 50cov” where mAMRs in at least 50% present, and “Removal all MGE” where all mAMRs are
excluded. Results are shown for one-versus-one and one-versus-all city comparisons to assess the impact of MGE on predictive accuracy.

Removal MGE 50cov Standard Removall all MGE

One versus one

DEN BAL 0.9247 0.9869 0.9231

MIN BAL 1.0000 0.9556 0.9487

MIN DEN 1.0000 0.9941 0.9259

NYC BAL 0.8947 0.9327 0.8979

NYC DEN 1.0000 1.0000 0.9221

NYC MIN 0.9211 0.9636 0.9316

SAC BAL 1.0000 1.0000 0.7835

SAC DEN 0.9924 0.9958 0.8750

SAC MIN 1.0000 0.9714 1.0000

SAC NYC 1.0000 1.0000 0.8329

SAN BAL 0.8951 0.9877 0.9402

SAN DEN 0.8615 1.0000 0.9568

SAN MIN 0.9692 0.9556 0.9815

SAN NYC 0.9798 1.0000 0.8913

SAN SAC 0.9256 1.0000 0.9583

Average 0.9577 0.9861 0.9181

One versus all

BAL versus all 0.8709 0.9520 0.5887

DEN versus all 0.9359 0.9088 0.8129

MIN versus all 0.9571 0.9890 0.8660

NYC versus all 0.9611 0.9748 0.8683

SAC versus all 0.9831 0.9944 0.7378

SAN versus all 0.8957 0.9474 0.6891

Average 0.9340 0.9611 0.7605
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4.1.3 Mobilome profiles
We identified 1,660 MGE genes, with 394 shared across all six

cities and 382 being city-specific. Key MGE-AMR associations
included gyrA and parC, found in all cities, which facilitate
resistance to quinolones and highlight the pivotal role of MGEs
in horizontal gene transfer. Functional analysis revealed replication
and transfer as dominant MGE activities co-occurring with ARGs,
indicating their significant contribution to AMR dissemination.
City-specific variations in MGE profiles suggest localized selective
pressures influencing resistome dynamics.

4.1.4 Mobilome-resistome interaction
Across all cities, MGEs associated with transfer, replication, and

recombination functions exhibited the strongest connections to
ARGs, particularly beta-lactam and multidrug resistance genes.
These interactions emphasize the pivotal role of MGEs in
horizontal gene transfer, facilitating the spread of clinically
relevant resistance markers across diverse urban settings. A
subset of these interactions was shared across all cities, indicating
conserved mechanisms of resistance dissemination that transcend
local environmental differences.

While specific patterns varied between cities, the overall trends
reflect a common framework of resistance spread driven by MGEs.
Detailed heatmaps for each city and combined analyses are
provided in the Supplementary Material, offering insights into
localized variations and broader patterns. These findings
contribute to our understanding of how MGEs mediate ARG
dissemination in urban environments, reinforcing the
importance of addressing MGEs as a central component of
antimicrobial resistance mitigation strategies.

4.1.5 Modelling
AMR++ has proven to be the best tool for resistomemodeling. It

relies on quality-controlled reads rather than assemblies, allowing it
to detect the highest and most diverse number of AMR markers.
Additionally, it achieves the highest AUC scores in random forest
prediction of sampling sites. This is encouraging news for
newcomers in the field, as the assembly process can be a
significant bottleneck due to its high demand for
computational resources.

Binarization appears to be the most effective data pre-processing
approach because it simplifies the data, reduces noise and
overfitting, and enhances the detection of critical signals by
focusing on the presence or absence of resistance genes rather
than their abundance. This method generally achieved higher
AUC scores, suggesting improved classification performance and
predictive power.

4.1.6 Isolates prediction
Classification proved to be challenging, with multiclass

prediction resulting in many misclassifications. AMR++ was the
only tool that produced noteworthy results, but they were still
incorrect. Limitations of the database and the uneven number of
samples for each city skewed predictions towards NYC. Efforts to
clean the dataset by removing AMR markers associated with viruses
or MGEs influenced the modeling but did not improve the
predictions.

4.2 Limitations and future work

While this study has provided valuable insights into the
distribution and diversity of AMRs in urban microbiomes, future
studies could achieve more robust results by including a larger
sample size, deeper sequencing, and a wider range of AMR
identification tools and databases, along with additional
metadata. These efforts could offer a more comprehensive
understanding of the AMR landscape in urban environments and
the effects of anthropogenic influence, thereby fostering the
development of effective prevention strategies.
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