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Background: Epidemiological studies have observed an association between
atrial fibrillation (AF) and breast cancer (BC). However, the underlying
mechanisms linking these two conditions remain unclear. This study aims to
systematically explore the genetic association between AF and BC.

Methods: We utilized the largest available genome-wide association study
(GWAS) datasets for European individuals, including summary data for AF (N =
1,030,836) and BC (N = 247,173). Multiple approaches were employed to
systematically investigate the genetic relationship between AF and BC from
the perspectives of pleiotropy and causality.

Results: Global genetic analysis using LDSC and HDL revealed a genetic
correlation between AF and BC (rg = 0.0435, P = 0.039). Mixer predicted
genetic overlap between non-MHC regions of the two conditions (n = 125,
rg = 0.05). Local genetic analyses using LAVA and GWAS-PW identified 22 regions
with potential genetic sharing. Cross-trait meta-analysis by CPASSOC identified
one novel pleiotropic SNP and 14 pleiotropic SNPs, which were subsequently
annotated. Eight of these SNPs passed Bayesian colocalization tests, including
one novel pleiotropic SNP. Further fine-mapping analysis identified a set of causal
SNPs for each significant SNP. TWAS analyses using JTI and FOCUSmodels jointly
identified 10 pleiotropic genes. Phenome-wide association study (PheWAS) of
novel pleiotropic SNPs identified two eQTLs (PELO, ITGA1). Gene-based PheWAS
results showed strong associations with BMI, height, and educational attainment.
PCGA methods combining GTEx V8 tissue data and single-cell RNA data
identified 16 co-enriched tissue types (including cardiovascular, reproductive,
and digestive systems) and 5 cell types (including macrophages and smooth
muscle cells). Finally, univariable and multivariable bidirectional Mendelian
randomization analyses excluded a causal relationship between AF and BC.

Conclusion: This study systematically investigated the shared genetic overlap
between AF and BC. Several pleiotropic SNPs and genes were identified, and co-
enriched tissue and cell types were revealed. The findings highlight common
mechanisms from a genetic perspective rather than a causal relationship. This
study provides new insights into the AF-BC association and suggests potential
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experimental targets and directions for future research. Additionally, the results
underscore the importance of monitoring the potential risk of one disease in
patients diagnosed with the other.
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gene, causal inference

Introduction

Cardiovascular diseases and cancer are the two most common
diseases that endanger human health (Siegel et al., 2024; Chen et al.,
2022; Schnabel et al., 2015). Among them, breast cancer (BC) is one
of the main factors endangering women’s health (Siegel et al., 2024),
and atrial fibrillation (AF) is one of the most common
cardiovascular diseases, also a significant cause of cardiovascular
mortality (Chen et al., 2022; Schnabel et al., 2015). Studies have
shown that patients with AF are at an increased risk of developing
BC (Boutas et al., 2023; Conen et al., 2016; Guzzetti et al., 2008; Yao
et al., 2023). Conversely, BC patients are also at an increased risk of
cardiovascular diseases (Guha et al., 2022; Matthews et al., 2021;
Gulati andMulvagh, 2018), with AF being the most common among
them (D’Souza et al., 2019). Although common factors such as
smoking, alcohol consumption, and inflammation partially explain
the association between the two diseases (Giza et al., 2017; Koene
et al., 2016), the results of studies are contradictory (Guha et al.,
2022; Saliba et al., 2018; Wassertheil-Smoller et al., 2017), and the
association between BC and AF remains unclear.

Studies have found that the pharmacological treatment of AF is
associated with the occurrence of BC (Su et al., 2013). Conversely, the
treatment of BC can also increase the incidence of cardiovascular diseases
(Gulati and Mulvagh, 2018). However, this still does not explain the
potential biological mechanisms between them. Studies have shown that
both AF and BC are influenced by genetic factors (Miyazawa et al., 2023;
Moller et al., 2016). By using statistical genetics methods to cross-analyze
the two diseases, genetic sharing between the two can be discovered (Zhu
et al., 2021). This could provide new insights into epidemiological causal
inference and potential biological mechanisms.

In this study, we used large-scale Genome-wide association
study (GWAS) summary data to delve into the genetic
correlations, common risk loci, and potential functions of genes
between AF and BC, which may pave the way for precise treatment
strategies for patients with AF and BC.

Methods

Data sources

We obtained GWAS data containing 60,620 cases of AF and
970,216 controls from a meta-analysis that included six studies
(Nielsen et al., 2018). We filtered out single nucleotide
polymorphisms (SNPs) with a minor allele frequency of less than
1%. After removing SNPs with duplicate rsids and missing data, we
acquired a summary dataset consisting of 9,358,555 autosomal SNPs.

BC GWAS data were sourced from the Breast Cancer
Association Consortium (BCAC), which included 133,384 cases

and 113,789 controls (Zhang et al., 2020). Similarly, we filtered
out SNPs with a minor allele frequency of less than 1% and removed
SNPs with duplicate rsids and missing data, ultimately obtaining
9,435,343 autosomal summary data.

There was no sample overlap between the two GWAS datasets.
Both were aligned with the human reference consortium build
37 and originated from European populations (details in
Supplementary Table S1). All GWAS datasets were approved by
their respective ethical review boards. The overall study process is
shown in the figure (Figure 1).

Global genetic correlation analysis

We performed global genetic correlation analysis using linkage
disequilibrium score regression (LDSC) and high-definition likelihood
(HDL) methods (Bulik-Sullivan et al., 2015; Ning et al., 2020). The
results of genome-wide genetic correlation (rg) ranged from −1 to 1,
indicating negative and positive correlations, respectively. LDSCutilized
pre-calculated linkage disequilibrium (LD) scores from the
1000 Genomes Project to analyze SNPs in HapMap 3. HDL used
reference data from the HapMap3 SNPs imputed version from the
United Kingdom Biobank, utilizing full GWAS data for analysis.
Compared to LDSC, HDL provides a smaller error estimate for
correlation, enhancing result accuracy (Ning et al., 2020).

Local genetic correlation analysis

We further estimated the local genetic correlation between AF
and BC using LAVA and pairwise-GWAS (GWAS-PW) (Pickrell
et al., 2016; Werme et al., 2022). GWAS-PW, employing a Bayesian
framework, calculated the posterior probabilities of association
(PPA) for genomic regions (Pickrell et al., 2016). It used
1,703 pre-partitioned 1000 Genomes Project data as reference.
LAVA divided the phase 3 LD panel of the 1,000 Genomes into
approximately 1 Mb semi-independent genetic regions, estimating
local genetic correlations using significant regions for each
phenotype (0.05/2495) (Werme et al., 2022). Segments with
PPA>0.5 were also considered locally associated areas. We
converted these segments into cytogenetic location using the R
package “biomaRt” (version 2.56.1) (Durinck et al., 2009).

Genetic overlap analysis

We quantified the genetic overlap between AF and BC using the
bivariate MiXeR approach. This method assumes that only a portion
of the variation affects the trait (Frei et al., 2019). Following official
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recommendations, we excluded SNPs from the MHC region in both
phenotypes due to LD structure (Frei et al., 2019). The results of the
bivariate MiXeR were represented using a Venn diagram.

Cross-trait GWAS meta-analysis

We utilized the cross-phenotype association analysis
(CPASSOC) to identify common risk SNPs between AF and BC
(Li and Zhu, 2017). CPASSOC, particularly Shet, offers robust
statistical power in the presence of heterogeneity. Therefore, this
study chose Shet for analysis.

A threshold of 5e-8 represents the widely accepted genome-
wide significance level (Sangurdekar et al., 2019; Li et al., 2022).
Therefore, in CPASSOC, a P-value < 5e-8 was considered
significant for SNPs associated with both phenotypes. PLINK
is a widely used open-source toolset for genome-wide association
analysis, known for its high computational efficiency and
comprehensive genetic analysis capabilities (Purcell et al.,

2007). We referenced the 1000 Genomes Project phase 3 data,
using Shet in PLINK to identify the most related independent
SNPs within a 1.0 Mb area for both trait (Purcell et al., 2007;
Byrska-Bishop et al., 2022). The specific parameters and their
significance are as follows: SNPs with a P-value ≤5 × 10−8

(–clump-p1) were selected as index SNPs, and SNPs within
a ±1 Mb range (–clump-kb 1,000) were searched for with a
P-value ≤1 × 10−5 (–clump-p2) and LD r2 ≥ 0.01 (–clump-r2)
with the index SNP. These SNPs were grouped into the index
SNP’s clump and excluded. Finally, only independent
representative SNPs were retained. SNPs with a CPASSOC P <
5e-8 and a single-trait P < 1e-3 were considered pleiotropic.
Additionally, SNPs with a P single-trait > 5e-8 and not previously
associated with BC or AF were considered new, unreported
pleiotropic SNPs (Wu et al., 2023a).

Lastly, we performed functional annotation of identified
pleiotropic SNPs using the Ensembl Variant Effect Predictor
(VEP) and 3DSNP (Zerbino et al., 2018; Lu et al., 2017). VEP
selects candidate genes based on simple physical proximity (Zerbino

FIGURE 1
Flowchart of this study. (A) Heritability analysis using LDSC for two phenotypes: AF and BC. (B) Genetic correlation analysis using LDSC, comparing
the genetic correlation between the two diseases. (C)Genetic overlap estimated byMiXeR for AF and BC. (D) PPI network analysis showing key pleiotropic
genes, including DNMT3A, related to both diseases. (E) Colocalization analysis of GWAS for both diseases, showing shared genetic variants. (F) Basic
assumptions in MR analysis, including assumptions related to IVs, exposure, and outcome. (G) Flowchart summarizing the genetic and causal
analysis steps.
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et al., 2018). 3DSNP annotates the regulatory functions of SNPs by
exploring their 3D interactions with genes mediated by chromatin
(Lu et al., 2017).

Colocalization analysis and fine mapping
credible set analysis

To explore whether the same variants cause the two traits, we
employed Coloc for colocalization analysis of pleiotropic SNPs
(Giambartolomei et al., 2014). This method provides posterior
probabilities for five mutually exclusive hypotheses regarding
causal variant sharing in a genomic region. We extracted
summary statistics for variants within a 500 kb range of each
shared pleiotropic SNP and calculated the posterior probability of
PPH4 (the probability of both traits being associated through a
shared single causal variant). If PPH4 > 0.75, the locus was
considered colocalized. In fine-mapping analysis, PLINK and the
1000 Genomes Project reference panel are required for LD
estimation. Additionally, we calculated R2 values for SNPs within
a 500 Kb range of each pleiotropic SNP (Purcell et al., 2007; Byrska-
Bishop et al., 2022). Using the Bayesian fine-mapping algorithm
FM-summary (https://github.com/hailianghuang/FM-summary),
we determined a 99% credible set of causal SNPs for each
pleiotropic SNP within this range, aiming to provide reliable
targets for downstream experiments (Farh et al., 2015).

Tissue and cell type enrichment analysis

To identify tissues and cell types closely related to the shared
genes, we used the online tool PCGA (https://pmglab.top/pcga) to
analyze enrichment in 54 human tissues and cell types from tissues
closely associated with AF and BC such as Artery, Blood, Breast,
Endothelial cells, Heart, Immune cell, and Immune system (Xue
et al., 2022). PCGA employs an iterative estimation framework
based on the method of driver tissue estimation by selective
expression. It has collected data from 54 types of human tissues
via gtxv8 and single-cell RNA data from 2,214 cell types. By
integrating GWAS summary statistics and transcriptome data, it
effectively estimates related tissue/cell types and genes. Cell
enrichment P-values were corrected using False Discovery Rate
Correction (FDR).

Transcriptome-wide association
studies (TWAS)

Considering that genetic variations can influence traits by
affecting gene expression, we conducted TWAS to identify
overlapping genes potentially having causal relationships. We
used Joint-tissue imputation (JTI) models based on multi-tissue
transcriptomic data from GTEx v8 comprising 49 tissues (Zhou
et al., 2020; Consortium, 2013). This analysis utilized pre-trained
expression quantitative trait locus (eQTL) models and GWAS
summary statistics. This method accounts for shared genetic
effects across different tissues and unique genetic regulation in
target tissues. Compared to models like PrediXcan and

UTMOST, JTI significantly enhances predictive capability
(Zhou et al., 2020). We conducted TWAS using the JTI
models for 49 tissues, adjusting p-values within each
tissue using FDR.

TWAS fine mapping

We employed Fine-mapping of causal gene sets (FOCUS) to
further evaluate the significance of genes identified in the TWAS
(Mancuso et al., 2019). FOCUS utilizes predicted eQTL weights, LD,
and GWAS summary data to estimate potential pathogenic genes
from TWAS. It uses a Bayesian algorithm to assess the posterior
inclusion probability (PIP) of each feature in the association region.
We utilized GTEx v8 eQTL weights from FUSION across 49 tissues
(Gusev et al., 2016). Genes with significant p-values in the JTI results
and a PIP >0.5 in FOCUS analysis were considered potential
pathogenic genes.

Phenome-wide association studies (phewas)

We conducted a Phewas of the newly identified pleiotropic SNPs
using an online tool (https://gwas.mrcieu.ac.uk/phewas/) with a
threshold of P < 5e-8 (Elsworth et al., 2020). Additionally, we
performed a Phewas of the genes identified by TWAS using
publicly available data from the GWAS Atlas (https://atlas.ctglab.
nl) for 4756 phenotypes with a significance threshold of P <
0.05/4756.

Protein-protein interaction (PPI)

To determine if there are interrelationships among the identified
pleiotropic genes, we analyzed relevant genes annotated by VEP and
3DSNP, and pleiotropic genes identified through TWAS using
STING (https://string-db.org/) (von Mering et al., 2003).

Causal inference

Genetic correlation may be due to pleiotropy or causal
relationships (Zhu et al., 2015). Pleiotropy represents the same
genetic variation affecting two traits simultaneously. In contrast,
causal relationships imply that genetic variation can influence one
trait and thereby affect another.

To explore the genetic causal relationship between AF and BC,
we designed a Mendelian randomization (MR) analysis based on the
STROBE-MR guidelines (Supplementary Materials). We used
software packages such as “TwoSampleMR,” “RadialMR,”
“CAUSE,” “GSMR,” and “MendelianRandomization” to perform
MR analysis on GWAS data. MR analysis relies on three core
assumptions (Zheng et al., 2017): (1) the instrumental variables
(IVs) is closely associated with the exposure; (2) the IVs is unrelated
to confounders; (3) the IVs affects the outcome only through the
exposure (Figure 1F).

Initially, we performed univariate MR analysis using seven
methods at a threshold of P < 5e-8, including inverse variance
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weighting (IVW), weighted median, MR-Egger, weighted mode,
simple mode, GSMR, CAUSE. Before MR analysis, LD was
removed using 1,000 Genomes reference data. Subsequently, we
used the GWAS catalog to eliminate SNPs related to known
common confounders such as obesity, smoking, and alcohol
consumption (Sollis et al., 2023). Sensitivity analyses were then
conducted to remove outliers to stabilize results. MR-Egger
intercept testing and Cochran’s Q statistic assessed pleiotropy
and heterogeneity. Outliers were removed using MR-Presso,
radial IVW, and radial Egger. In univariate MR analysis, IVW
served as the primary outcome. GSMR analysis considered
potential LD among SNPs (Zhu et al., 2018). CAUSE controls
for potential pleiotropy, significantly reducing the false-positive
rate (Morrison et al., 2020). We included these methods to aid in
interpreting results. Finally, a leave-one-out analysis was
performed to detect influential SNPs, and statistical power was
calculated using mRnd (Brion et al., 2013).

To better manage potential confounders, we performed an
additional multivariable MR (MVMR) analysis. This analysis
incorporated phenotypes related to obesity from the FinnGen
research project (R10) (Kurki et al., 2023). It also included
phenotypes for smoking initiation and alcohol consumption from
the GWAS and Sequencing Consortium of Alcohol and Nicotine use
[GSCAN] study, excluding samples from the United Kingdom
Biobank (Liu et al., 2019). MVMR-IVW was the primary
outcome, capable of detecting potential outliers and pleiotropy.
Additional methods like MVMR-Lasso, MVMR-Egger, and
MVMR-Median were used to consolidate results.

Results

Global genetic analysis

In the unrestricted LDSC analysis, the results indicated a
potential genetic correlation between AF and BC with rg =
0.0435 and P = 0.0388 (Figure 1B). Although the HDL
analysis did not reach a significant threshold, it also showed a
positive correlation between AF and BC (rg = 0.0319, P =
0.101, Table 1).

Local genetic analysis

In reference to the results of global genetic analysis, we analyzed
the local genetic characteristics between AF and BC. After FDR
correction, LAVA identified 11 significant regions (PFDR < 0.05,
Supplementary Table S2). GWAS-PW identified 12 significant
regions with PPA3 > 0.05 between AF and BC (Supplementary
Table S3). Notably, the region near 11p15.5 (chromosome 11:
1,857,846-2,477,449) was consistently validated by both
methods (Figure 2).

Genetic overlap

In the bivariate MiXer analysis excluding the MHC region, the
rg between the two was 0.05. MiXer predicted 348 variants affecting
AF and approximately 568 for BC, with about 125 shared variants
between them (Figure 1C). The bivariate stratified QQ plot for AF
and BC showed a significant left shift in the groups of SNPs with
higher significance (Figure 3), strengthening the notion of shared
genetic overlap between AF and BC.

Cross-trait GWAS meta-analysis, pleiotropic
loci, and colocalization analysis

Given the observed genetic overlap between AF and BC, we used
CPASSOC to explore individual genetic variations. At a genome-
wide threshold (P < 5e-8), CPASSOC identified 323 independent
SNPs (Supplementary Table S4), including 14 pleiotropic SNPs and
1 new pleiotropic SNP (Table 2). Of the total 15 pleiotropic SNPs,
8 SNPs representing loci were supported by colocalization (PP.H4 >
0.75, N = 8; PP.H4 > 0.9, N = 7), suggesting these loci as key in
influencing both traits, reinforcing the causal association between
the loci and traits (Supplementary Figures S1–S8). This includes a
new pleiotropic SNP, rs114414434, which colocalization results also
suggest as a key site affecting both traits (PP.H4 = 0.794, Table 2). At
a genome-wide threshold (P < 5e-8), the Phewas results for the
newly identified pleiotropic SNP rs114414434 show significant
associations with high expression of ENSG00000152684 (P =
2.76e-15) and ENSG00000213949 (P = 2.20e-08)
(Supplementary Table S5).

For each pleiotropic SNP, we identified a 99% credible set of
causal SNPs within a 500 kb range, totaling 2,035 SNPs related to AF
and BC (Supplementary Table S6).

Tissue and cell type enrichment

Our findings indicate that AF and BC are jointly enriched in
16 tissues including “Breast - Mammary Tissue,” “Vagina,” “Artery -
Tibial,” “Artery - Aorta,” “Artery - Coronary,” “Uterus,” “Heart -
Atrial Appendage,” “Colon” (Figure 4A; Supplementary Tables
S7–S9). Moreover, cell type enrichment analysis in disease-related
tissues such as Artery, Blood, Breast, Endothelial cells, Heart,
Immune cell, Immune system showed joint enrichment in
Fibroblast, Smooth muscle cell, Endothelial cell, Myofibroblast,
Macrophage (Figure 4B; Supplementary Tables S10, S11).

TABLE 1 Results of the global genetic analysis between AF and BC.

Atrial fibrillation Breast cancer P value

Heritability (standard error)

LDSC 0.0259 (0.0033) 0.1295 (0.0117)

LDSC-no
intercept

0.0286 (0.0035) 0.1618 (0.0123)

HDL 0.0227 (0.0037) 0.149 (0.0126)

Genetic Correlation (standard error)

LDSC 0.0435 (0.021) 0.039

LDSC-no
intercept

0.0293 (0.0147) 0.047

HDL 0.0319 (0.0194) 0.101

LDSC, linkage disequilibrium Score; HDL, high-definition likelihood
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TWAS analysis and TWAS fine mapping

Using JTI models across 49 tissues, we identified 1,276 genes
(PFDR < 0.05), reducing to 205 unique genes after accounting for
tissue origin (Supplementary Table S12). The FOCUS method
identified 61 genes across 49 tissues (PIP >0.5), reducing to
30 unique genes after considering tissue origin (Supplementary
Table S13). Of these, 23 genes confirmed by both methods, were
reduced to 10 unique genes after removing duplicates
(Supplementary Table S14). These included “GMCL1,”
“DNMT3A,” “SNRNP27,” “NRBF2,” “FBXO32,” “JMJD1C,”
“GTF2IRD2,” “ANXA4,” “RUSC1-AS1,” “GTF2I.”

Phewas associated nine genes (ANXA4, DNMT3A, FBXO32,
GMCL1, GTF2I, GTF2IRD2, JMJD1C, NRBF2, SNRNP27) with
459 phenotypes under a threshold of P < 0.05/4756, with the most
frequently associated traits being body mass index (N = 23),
Height (N = 9), and educational attainment (N = 8)
(Supplementary Table S15).

Among the total of 30 relevant genes identified by VEP, 3DSNP
annotations, and TWAS, PPI analysis at a confidence score
threshold of 0.15 showed that DNMT3A had the most
associations with other genes (Figure 1D).

Causal relationships

Finally, we predicted the causal relationship between AF and BC
from a genetic perspective using two-sampleMendelian randomization.
We used 79 A F-related SNPs as IVs to test for potential causal effects of
AF on BC (F-statistic from 29.7–510.6, Supplementary Table S16) and
121 BC-related SNPs as IVs for potential causal effects of BC on AF
(F-statistic from 29.8-958.4, Supplementary Table S17). The
F-statistic >10, avoiding bias from weak IVs (Burgess et al., 2011).
Univariate MR results indicated no positive or negative causal
relationship between AF and BC (Figure 5A). Results from CAUSE,
GSMR, and LOO analyses reinforced this view (Supplementary Figures
S10–S15; Supplementary Tables S18, S19). Statistical power is detailed
in Supplementary Table S20.

In MVMR analysis incorporating major confounders such as
obesity, alcohol use, and smoking, we used random effects IVW,
which allows for heterogeneity in sensitivity tests (Papadimitriou
et al., 2020). By incorporating SNPs associated with relevant
confounding factors into the MVMR, the final MVMR results,
using 136 SNPs as IVs for AF and 164 SNPs for BC, still showed
no positive or negative causal relationship between AF and
BC (Figure 5).

FIGURE 2
(A) represents the results of the LAVA analysis, with the X-axis representing genetic correlation and the Y-axis representing the -log10 (PFDR) values.
The dashed line represents -log10 (0.05). (B, C) respectively represent the results for AF and BC from the GWAS-PW analysis, with the X-axis showing the
maximum absolute value of the Z-score, and the Y-axis displaying data for PPA 3.
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Discussion

In previous epidemiological studies, while a link between AF and
BC was observed, the mechanisms underlying this association were
unclear. Therefore, we utilized the largest GWAS summary data
available for AF and BC to systematically investigate their potential
shared genetic structures from both SNP and gene levels. To our
knowledge, this is the first comprehensive study to examine the
shared genetic architecture between AF and BC. Our results
demonstrate significant shared genetics between AF and BC in
both global and local genetic analyses. We further analyzed the
pleiotropy and causality of these genetic overlaps, ultimately
identifying multiple pleiotropic SNPs and genes. Moreover, our
findings indicate no causal relationship between AF and BC from a
genetic standpoint, which partially explains the epidemiological link
observed between these conditions. Our approach from the SNP and
gene perspective offers new insights into the association and
causality between these conditions.

Previous meta-analysis has elucidated the bidirectional
association between AF and BC (Yao et al., 2023). Potential
mechanisms include systemic inflammation, with elevated
inflammatory markers (such as CRP, TNF-α, and IL-6) in BC

patients, and AF sharing pathways with the NLRP-3
inflammasome (Yao et al., 2018; Scott et al., 2019; Ershaid et al.,
2019). Furthermore, cancer treatments, such as anthracyclines and
trastuzumab, can lead to AF (Leong et al., 2016; Khouri et al., 2012).
Conversely, AF medications, such as amiodarone and digoxin, may
increase the risk of BC (Fares, 2013; Biggar et al., 2011). However,
there is currently a lack of relevant studies from a genetic
perspective. Therefore, this study is the first to explore the
association between AF and BC from a genetic perspective,
providing new insights into the shared pathogenesis of these two
diseases, which has important implications for future clinical
prevention and treatment strategies.

Our initial analysis using unconstrained intercept LDSC
identified a significant overall genetic correlation between AF and
BC. To solidify these results and considering no sample overlap, we
employed constrained intercept LDSC and HDL methods.
Constrained intercept LDSC also indicated significant genetic
correlation, and HDL suggested a positive genetic correlation
between AF and BC. These findings were corroborated by MiXer
(rg = 0.05), which revealed potential genetic overlap outside the
MHC region. In local genetic correlation analysis, both LAVA and
GWAS-PW highlighted significant regions, notably around 11p15.5

FIGURE 3
(A) A Venn diagram represents the data on the potential pleiotropic genetic overlap between AF and BC from the MiXer results. (B) QQ plots
represent the results stratified by P-values for BC and AF. (C) The negative log-likelihood plot shows a minimum model score of about 15, a maximum
score of about 110, and the best model score close to 0, indicating a good fit of the model.
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(chr11: 1,857,846-2,477,449). Using the R package “biomaRt,” we
identified 27 genes within this segment, including MIR483, LSP1,
IGF2, which are associated with the onset and progression of BC
(Luo et al., 2021; Hemminki et al., 2010; Cui et al., 2019), and H19,
KCNQ1, linked to AF (Chen et al., 2003; Guo et al., 2022).

Considering the pleiotropic genetic variations and genes that can
simultaneously affect AF and BC, we initially identified 15 pleiotropic
SNPs at the SNP level. Among these 15 pleiotropic SNPs,
rs2936870 located near 10q26.13 represented the strongest shared
signal (PShet < 5e-324, PP.H4 = 0.932). Multiple studies have
reported its close association with BC (Lei and Deng, 2017; Xu
et al., 2011). Research has also found that in mouse models, it plays
an important role in the recovery of cardiac function and vascular
remodeling after myocardial ischemia-reperfusion injury (House et al.,
2016). Among other pleiotropic SNPs, rs146518726, rs11205303,
rs6440006, rs1973765, rs2936870, and rs35005436 are all located at
loci with positive genetic correlations. In the Phewas of the new
pleiotropic SNPs, they are shown to be related to the expression of
two genes. ENSG00000152684 (PELO) is involved in regulating the
ATPase activity of the NOD-like receptor family, controlling its
oligomerization assembly and activation, thus participating in the
regulation of various immune inflammatory responses mediated by
the NLR family (Wu et al., 2023b). Studies related to
ENSG00000213949 (ITGA1) have found that elevated levels of
ITGA1 are closely associated with cardiac dysfunction in type
2 diabetes (Su et al., 2024) and also linked to the development of
various cancers (Boudjadi et al., 2016). However, more detailed
functional studies are needed for these pleiotropic sites to help us
discover their relationship with AF and BC.

Then, we explored possible pleiotropic genes at the gene level
using JTI and FOCUS methods. Among the 10 pleiotropic genes
identified by TWAS, ANXA4 is reported to be a key immune-related
gene in AF (Yan et al., 2021). Moreover, ANXA4 can activate the
JAK-STAT3 signaling pathway by increasing the expression of
JAK1 and phosphorylation of STAT3, ultimately affecting the
progression of BC (Li et al., 2020). FBXO32 has been reported to
be associated with BC risk (Wang et al., 2021). In diabetic mouse
models, FBXO32 was found to regulate the expression of small
conductance calcium-activated potassium channel 2 (SK2) in the
atria, thereby increasing the risk of AF (Ling et al., 2019). Studies
have found that silencing of the NRBF2 promoter may be related to
the development of breast cancer (Darabi et al., 2015). Additionally,
variations within the NRBF2 region have been found to have a
significant statistical correlation with the risk of AF in European and
East Asian populations (Hong et al., 2021). Changes in the
expression of the SNRNP27 gene may play a role in the
susceptibility to AF (Hsu et al., 2018). SNRNP27, as one of the
potential targets of miR-146b-5p, may play a role in liver
inflammation and liver cancer (Kirchmeyer et al., 2018).
Mutations in DNMT3A are more common in patients with AF
than in individuals without it (Ahn et al., 2024). DNMT3A may
promote cardiac fibrosis by silencing RASSF1A, thereby activating
the ERK1/2 signaling pathway, which may lead to AF (Tao et al.,
2014). In young women receiving BC treatment, DNMT3A is one of
the most common mutated genes (Gibson et al., 2023). The PPI
results also indicate that DNMT3A could be a key gene between BC
and AF. In other genes, such as GTF2I, JMJD1C, RUSC1-AS1, while
reported to be associated with the development of BC, they have not

TABLE 2 Annotation and colocalization analysis results of 15 pleiotropic SNPs.

SNP Band Symbol Z value P value PP.H4 3D.interacting.gene

BC AF BC AF Shet

rs146518726 1p32.3 3.4 7.8 0.000725 8.27E-15 7.09E-16 0.181

rs11205303 1q21.2 MTMR11 8.1 4.1 5.07E-16 3.38E-05 3.20E-15 0.931 HIST2H2AB and other 8

rs7578393 2p23.3 KIF3C 3.8 7.0 0.000137 2.42E-12 1.32E-13 0.519 KIF3C and other 4

rs6440006 3q23 ZBTB38 8.0 5.0 1.59E-15 7.07E-07 9.85E-15 0.972

rs114414434 5q11.2 3.7 −5.0 0.00019 7.26E-07 4.15E-08 0.794

rs56180201 5q35.2 CPEB4 −3.9 −6.9 8.06E-05 8.09E-12 2.13E-13 0.944 C5orf47 and other 2

rs35005436 7q11.23 GTF2I 5.1 6.3 4.11E-07 3.34E-10 2.07E-12 0.982

rs56201652 7q21.2 CDK6 3.5 −7.1 0.00047 1.74E-12 6.15E-14 9.94E-05 FAM133B and other 2

rs12245149 10q21.3 REEP3 4.1 −7.0 4.01E-05 1.66E-12 3.18E-14 0.036 JMJD1C and other 2

rs2936870 10q26.13 FGFR2 −39.2 4.1 <5e-324 3.75E-05 <5e-324 0.932 FGFR2

rs1973765 11p15.5 LSP1 −12.4 4.3 1.77E-35 1.63E-05 2.19E-34 0.963 SYT8 and other 12

rs1061657 12q24.21 TBX3 6.3 4.4 2.52E-10 1.12E-05 1.22E-09 1.89E-06 TBX3

rs6598541 15q26.3 IGF1R −3.4 −6.3 0.000678 2.22E-10 2.21E-11 0.338 IGF1R,MIR4714

rs62048402 16q12.2 FTO −9.7 4.4 1.94E-22 1.38E-05 1.57E-21 0.924 RPGRIP1L and other 3

rs2696608 17q21.31 KANSL1 −6.1 6.1 1.24E-09 1.12E-09 7.65E-13 0.394

SNP, single nucleotide polymorphism; Band, Cytogenetic location; AF, atrial fibrillation; BC, breast cancer; Symbol, The gene physically closest to the SNP, annotated by VEP;

3D.interacting.gene, The gene interacting with the variant, annotated by 3DSNP.
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been reported in relation to AF (Watanabe et al., 2013; Li et al., 2019;
Niinaka et al., 2010). Furthermore, we identified two potential new
pleiotropic genes, including GMCL1 and GTF2IRD2. GTF2IRD2 is
thought to be derived from the GTF2I sequence (Makeyev et al.,
2004), and PPI results reinforce this view. GTF2IRD2 has been
reported to play a crucial role in the pathogenesis of Williams-
Beuren syndrome (Makeyev et al., 2004). GMCL1 is considered a
candidate tumor suppressor gene, and its encoded protein is
involved in the control of the MDM2-P53 axis (Masuhara et al.,
2003). Abnormal expression of the GMCL1 gene has been found to
affect the prognosis of diffuse large B-cell lymphoma (Fournier et al.,

2010). In the Phewas of these pleiotropic genes, we found that these
genes were most strongly associated with BMI, height, and
educational attainment. Furthermore, obesity and height are
currently considered independent risk factors for AF and BC
(Koene et al., 2016; Aune et al., 2017; Kofler et al., 2017; Gremke
et al., 2022), suggesting that the epidemiological observation of a link
between AF and BC may be due to risk factors such as obesity.
Furthermore, TWAS results and tissue and cell enrichment results
show that the shared pathways between AF and BC may extend to
multiple systems such as the digestive, reproductive, and circulatory
systems. For example, it has been found that gut microbiota can

FIGURE 4
Co-enriched tissues and cell types between atrial fibrillation and breast cancer. Red font indicates co-enrichment. (A): Represents the tissue types.
(B): Represents the cell types.
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increase the risk of AF or BC (Li et al., 2023; Zhang et al., 2021). In
addition, among the 5 cell types enriched in common between AF
and BC, macrophages have been reported to participate in tissue
regeneration and myocardial injury (Leanca et al., 2022). Resident
cardiac macrophages are a subtype of self-renewing cells that can
reproduce to protect the myocardium (Sansonetti et al., 2020). In
breast development, there is also a resident macrophage subtype
(Boutas et al., 2023). Resident macrophages have been found to
facilitate the metastatic cascade and growth of tumors (Nalio Ramos
et al., 2022). These study results indicate that the relationship

between AF and BC may be very complex. The diseases share
many common risk genes, which can genetically explain the link
between AF and BC. According to the enrichment results, the link
between the two can even be traced back to the origins of related
tissues and cell types. However, more research is needed to discover
the pathophysiological mechanisms between the two.

In the use of genetic tools to predict causal relationships, there is
no potential causal link between AF and BC. This result suggests that
the potential link between AF and BC may be caused by common
risk factors, related treatments for AF or BC, or common pleiotropic

FIGURE 5
(A) Results of univariate and multivariate Mendelian randomization analyses between AF and BC. This includes 7 methods of univariate MR analysis
and 4methods ofmultivariate MR analysis. (B) Scatter plot of univariate MR analysis from AF to BC. (C) Funnel plot of univariate MR analysis from AF to BC.
(D) Leave-one-out (LOO) plot of univariate MR analysis from AF to BC. (E) Scatter plot of univariate MR analysis from BC to AF. (F) Funnel plot of univariate
MR analysis from BC to AF. (G) LOO plot of univariate MR analysis from BC to AF.
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genetic outcomes, such as the use of amiodarone, which has been
found to be related to an increased risk of cancer (Wassertheil-
Smoller et al., 2017; Su et al., 2013). A recent study has shown that
young BC patients undergoing breast-conserving surgery have a
higher risk of AF, and the use of anthracycline drugs may also be
associated with an increased risk of AF (Park et al., 2024). It is
noteworthy that these results may mask the potential inherent
association between AF and BC, causing us to overlook the
inherent link between AF and BC. Our study results indicate that
there is some genetic overlap shared between AF and BC. Our study
utilizes the largest available AF and BC GWAS summary data to
systematically investigate their concurrent relationship, revealing
shared genetic pleiotropy rather than a direct causal link. By
identifying pleiotropic genes and pathways, our findings suggest
potential biological mechanisms that may contribute to the observed
epidemiological association. These results provide valuable targets
for future research, guiding efforts toward understanding the
molecular basis of AF and BC co-occurrence and informing
potential risk stratification or therapeutic interventions. Further
studies incorporating functional validation and multi-ancestry
analyses are warranted to refine these findings and explore their
clinical implications.

We acknowledge some limitations in this study. First, our study
only uses data from European populations, which does not have
universal applicability to other races. Secondly, because the BC
population includes only female samples, and due to the limited
availability of summary data, we were unable to conduct gender-
stratified analysis. Therefore, the distribution of information on the
X chromosome is not balanced between the two populations, and most
tools used in this study do not support analysis of the X chromosome.
Thus, our study did not conduct a more in-depth study of the X
chromosome. Third, as this study focuses on the relationship between
overall BC and AF throughout the day, it did not further explore the
associations between BC subtypes and AF. Finally, more in-depth
experimental work and more complete cohort studies are needed to
help us better understand the relationship between AF and BC and the
pathophysiological mechanisms between them.

Conclusion

Our study provides a genetic correlation analysis between AF and
BC, revealing genetic overlaps and identifying 15 pleiotropic SNPs and
10 pleiotropic genes.We further analyzed cross-enriched tissues and cell
types and provided evidence from a genetic perspective using MR and
MVMR for a non-causal relationship between AF and BC. Our findings
enhance understanding of the potential biological mechanisms between
AF andBC, which could influence future research aimed at reducing the
risks of both conditions.
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