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Objective: Gastric cancer is a harmful disease, the comorbidity mechanism
and causality relationship between this disease and other diseases are
worth studying.

Methods: Using a two-sample Mendelian Randomization method, this study
revealed the potential causal effect of atrial fibrillation (AF) on gastric cancer (GC)
risk by constructing a genetic instrument containing 136 AF associated SNPs.
Subsequently, analysis identifies 62 AF-GC co-associated genes and constructs a
protein-protein interaction network of key genes. High-throughput sequencing
data were further used to analyze the association between the two and their
impact on the survival outcome of gastric cancer.

Results: The results showed that AF was negatively associated with gastric
cancer, and further analysis revealed that this relationship was independent of
GC risk factors such as chronic gastritis,Helicobacter pylori infection, and alcohol
consumption. Enrichment analysis reveals associations of key genes with
pathways related to cardiovascular disease, inflammatory gastrointestinal
diseases, and tumorigenesis. Through single-cell sequencing data analysis,
fibroblast subpopulations associated with the key gene set are identified in
GC, showing significant correlations with cancer progression and
inflammation regulation pathways. Transcription factor analysis and
developmental trajectory analysis reveal the potential role of fibroblasts in GC
development. Finally, prognosis analysis and genemutation analysis using TCGA-
STAD data indicate an adverse prognosis associated with the key gene set in GC.
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Conclusion: This study provides new insights into the association between AF and
GC and offers novel clues for understanding its impact on the pathogenesis and
therapeutic strategies of GC.

KEYWORDS

atrial fibrillation, gastric cancer, genetic instrument, mendelian randomization, single-cell
sequencing, fibroblasts

Introduction

Gastric cancer (GC) ranks as the fifth most common cancer
globally and is the fourth leading cause of cancer-related deaths
(Sung et al., 2021). Despite significant progress in the diagnosis and
treatment of GC, there remain many areas in this field that require
further exploration (Smyth et al., 2020). GC is a complex disease
influenced by various factors, including environmental and genetic
factors. Among these factors, Helicobacter pylori infection is
considered a primary pathogen. Additionally, due to the
stomach’s central role in the digestive process, dietary factors
play a crucial role in GC occurrence. Known risk factors include
chronic gastritis, alcohol consumption, low intake of fresh fruits and
vegetables, and excessive consumption of pickled and smoked foods
(Van Cutsem et al., 2016). Furthermore, research has focused on
exploring the relationship between GC and other diseases, such as
cardiovascular diseases, which has become a research focus.

Atrial fibrillation (AF) is a common cardiac arrhythmia,
affecting approximately 10% of the population (Krijthe et al.,
2013; Joseph et al., 2020). Early studies on AF often focused on
its potential to trigger cardiac and vascular thrombosis.

Contemporary research has revealed a potential connection
between AF and cancer incidence, with newly diagnosed AF
patients found to have a 41% increased risk of developing
malignant tumors compared to the general population (Joseph
et al., 2020). However, the relationship between AF and GC
remains uncertain, primarily due to a lack of further stratified
analysis and unclear temporal relationships. Therefore, our focus
is on investigating AF, a common cardiac arrhythmia, its impact on
GC occurrence, and exploring the related mechanisms.

Traditional observational studies face inherent challenges,
including potential biases from confounding variables and reverse
causality. Establishing a causal relationship between AF and GC
using traditional clinical researchmethods is challenging. Mendelian
Randomization studies can eliminate the influence of confounding
factors and provide new insights into AF as a risk factor for GC
development (Smith and Ebrahim, 2003; Smith and Ebrahim, 2004;
Haaland et al., 2017). Meanwhile, high-throughput sequencing data
link clinical phenomena with mechanisms. Through GC-related
single-cell transcriptome sequencing data, potential mechanisms of
how AF-related genes affect GC can be further explored. The
research process is illustrated in Figure 1.

FIGURE 1
Research workflow.
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Methods

Data source for mendelian
randomization study

This study constitutes an analysis of previously collected and
publicly available data, including statistical summaries related to AF,
GC,Helicobacter pylori infection, and alcohol consumption from large-
scale public Genome-Wide Association Studies (GWAS), as detailed in
Table 1. Due to the source and nature of the data, no additional ethical
review or informed consent was required for this study.We employed a
two-sample Mendelian Randomization analysis to assess the causal
relationship between AF and GC. We chose AF as the exposure factor
and GC as the outcome indicator. Additionally, we conducted two-
sample Mendelian Randomization analyses using AF as the exposure
factor andHelicobacter pylori infection, as well as alcohol consumption
status, as the outcome indicators to examine whether AF affects GC
through intermediary factors. The Mendelian Randomization study
design process, as constructed in this paper, is illustrated in Figure 2.

Selection of genetic instrument variables

This study strictly adhered to quality control procedures. Initially,
we selected Genome-Wide Association Studies (GWAS) data with
deterministic correlations and filtered SNP loci with genome-wide
significance (p < 5 × 10–6) for amalgamation. Subsequently, to
mitigate the influence of linkage disequilibrium (LD) on the results,
we conducted a clustering process by setting a parameter threshold
(r2 < 0.001) to assess LD between SNPs, ensuring independence. The
instrumental variables (IVs) used as exposure factors needed to satisfy
three fundamental assumptions, the fulfillment of which enhances the
IV’s testability and estimation accuracy: (1) the relevance assumption:
genetic variants are associated with the exposure; (2) the independence
assumption: genetic variants are unrelated to confounders between
exposure and outcome; (3) the exclusion-restriction assumption:
genetic variants affect the outcome solely through the exposure
(Lawlor, 2016). Subsequently, summary statistics of qualified SNPs
were extracted from the outcome GWAS. Finally, we ensured that the
SNPs included in the dataset met the requirements of instrumental

TABLE 1 Mendelian randomized data source summary.

Phenotype Type of
trait

Author, published
year

Consortium Sample
size

No. of cases (binary
trait)

PMID

Atrial fibrillation Binary Roselli C et al., 2018 NA 537,409 55,114 29,892,015

Gastric cancer Binary Ishigaki K et al., 2019 NA 202,308 6,563 NA

Chronic gastritis Binary Ben Elsworth et al., 2018 MRC-IEU 463,010 1,467 NA

helicobacter pylori Binary Ben Elsworth et al., 2019 MRC-IEU 462,933 1,329 NA

Alcohol drinker status:
Current

Binary Neale lab et al., 2018 NA 360,726 336,919 NA

FIGURE 2
Workflow of two-sample mendelian randomization study.
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variables. Palindromic sequences were excluded to ensure that the
influence of SNPs on exposure and outcome stemmed from the same
allele. This series of steps ultimately identified the SNPs serving as
genetic IVs in this study.

Statistical analysis of mendelian
randomization

After harmonizing the Genome-Wide Association Studies
(GWAS) effect alleles for AF, GC, Helicobacter pylori (HP)
infection, and alcohol consumption status, four Mendelian
Randomization methods were selected. These methods include
the Inverse Variance Weighted (IVW) test, Weighted Median
Estimation, MR-Egger regression, and the Weighted Mode
Estimation (WME). These methods were employed to evaluate
the causal relationship between AF and GC risk as well as risk
factors. The primary analytical method used was IVW, while WME
and Cochran’s Q test were utilized to estimate heterogeneity in the
causal effects of individual genetic variants. If level-specific effects or
heterogeneity were detected, the fixed-effect IVW analysis should be
chosen; conversely, random-effect IVW analysis should be
employed (Burgess et al., 2013; Bowden et al., 2018). The IVW
method does not consider the presence of intercept terms and
utilizes the variance of the outcomes as fitting weights.
Conversely, this method corrects for pleiotropic biases and
detects directional pleiotropy but is susceptible to instrumental
variable assumptions. When the Egger intercept of the linear
regression approaches zero, it indicates the absence of directional
pleiotropy, thus satisfying the exclusion-restriction assumption. The
Weighted Median method combines data from multiple genetic
variants into a single causal estimate and requires over 50% of the
weight to come from valid instrumental variables to obtain reliable
estimates of causal effects (Bowden et al., 2016). To ensure the
reliability of Mendelian Randomization estimates, we also detected
outliers that may affect Mendelian Randomization estimates by
examining forest plots, funnel plots, scatter plots, and leave-one-
out analysis.

To test the first assumption of relevance, we also used the F
statistic (F = β2/SD̂2, where β is the effect size of the allele and SD is
the standard deviation) to assess the strength of the relationship
between instrumental variables and the phenotype, where F >
10 indicates a strong correlation between instrumental variables
and the phenotype (Von Hinke et al., 2011). All the aforementioned
Mendelian Randomization-related statistical analyses were
conducted using the TwoSampleMendelian Randomization
package in R 4.3.2 software.

Sequencing data acquisition and
preprocessing

Using GENECARD, we retrieved genes associated with both
AF and GC, selecting genes with correlation coefficients greater
than 10 to form the relevant gene set. Subsequently, we
downloaded the GSE251990, GSE62254 dataset from the
GEO website, comprising single-cell data from 22 cases of
normal gastric tissue, intestinal tissue, and GC, for

subsequent analysis. It is important to emphasize that all
data reanalyzed in this study were previously publicly
available in prior reports.

Construction and filtering of the interaction
network of key genes

By intersecting the genes previously retrieved, we obtained a set
of genes co-related with both AF and GC, serving as the key gene set.
Subsequently, we uploaded these genes to the STRING online
database (http://cn.string-db.org/) and set the confidence
threshold to be greater than 0.4. We chose to hide disconnected
nodes as the filtering criterion.

Functional analysis of gene sets

To gain deeper insights into the functional significance of the
identified key genes, gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were employed (Xu et al.,
2023). Enrichment was determined using Fisher’s exact test,
considering p < 0.05 as significant. The methodology for KEGG
pathway enrichment analysis followed similar principles, aiding in
comprehensively understanding the biological processes influenced
by the AF-related gene set on GC. The “scMetabolism” R package
utilizing the VISION method enabled quantification of metabolic
activity at the single-cell resolution. This package encompasses
85 KEGG pathways, facilitating comprehensive analysis.
Metabolic activity across different clusters was assessed using
scMetabolism, and the results were visualized using the
DotPlot.metabolism function (Jin et al., 2020).

Preprocessing of single-cell RNA-seq data

The raw single-cell RNA sequencing (scRNA-seq) data were
processed using the Seurat R package (version 5.0) to remove low-
quality cells and visualize the data (Hao et al., 2023). Cells were
filtered out if they exhibited characteristics such as having more than
200 genes per cell or having mitochondrial genes exceeding 20%.
Subsequently, after identifying the top 2,000 highly variable genes
(HGV), normalization and scaling of the scRNA-seq data were
performed using Seurat. The harmony R package (version 0.1.1)
was utilized to address batch effects among samples. Principal
component analysis (PCA) was then conducted, and 20 principal
components (PCs) were selected. Clusters were generated using two-
dimensional Uniform Manifold Approximation and Projection
(UMAP) visualization based on the selected PCs, followed by
identification of cell clusters using the “FindClusters” function.
Cell types were annotated based on well-established marker
genes, and highly expressed genes within each cell cluster were
identified using Seurat. UMAP plots were created using the
“RunUMAP” function based on the top 30 principal
components. Cell type annotations were performed using known
cell type-specific markers and other cell markers from previous
studies, and the proportions of cell types at each stage were
calculated. Additionally, the R package AUCell was employed to
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score cell subpopulations and different samples based on the
expression levels of the key gene set.

Assessing cellular stemness
using CytoTRACE

CytoTRACE introduces a novel framework for computing cellular
differentiation potential (Gulati et al., 2020). This framework utilizes
gene counts at the single-cell level to significantly enhance the
assessment of cellular differentiation. Unlike most existing lineage
trajectory analysis methods, CytoTRACE can predict relative states
and differentiation directions, regardless of specific time scales or the
presence of continuous developmental processes in the data. In this
study, CytoTRACE was employed to compute the stemness score of
fibroblast cells.

Pseudotime trajectory analysis

We utilized Monocle two to establish potential developmental
trajectories between cell subtypes (Qiu et al., 2017). To examine the
developmental trajectory of fibroblast cells, we employed the Seurat
v5.0 FindVariableFeatures function to select the top 2,000 highly
variable genes from cell clusters. Subsequently, a principal tree was

constructed using DDRTree to elucidate the progression of
individual cells throughout the biological process and reconstruct
their trajectories, while also calculating the key regulatory genes.

Single-cell transcription factor regulatory
network analysis

To identify key transcription factors (TFs) in different cell types, we
performed cis-regulatory analysis using SCENIC (version 1.3.1) (Aibar
et al., 2017; Suo et al., 2018). SCENIC is a tool based on co-expression
and DNA motif analysis used to infer gene regulatory networks.
Subsequently, we evaluated the network activity of each cell by
calculating the area under the curve (AUC). In summary, we
employed SCENIC to identify transcription factors, assembling them
intomodules (regulons), and analyzed them using RcisTarget with gene
motif rankings: 500 bp upstream and 100 bp downstream of the
transcription start site (TSS). Then, we used AUCell to score the
activity of regulons in each cell in the dataset and visualized the results.

Analysis of meta-programs expression

A meta-progam (MP) refers to a set of genes co-expressed in
cells or tissues, which may participate in specific biological processes

FIGURE 3
Mendelian Randomization Study Results (A) Forest plot of four assessment methods from the two-sample Mendelian Randomization study with AF
as the exposure factor and GC as the outcome factor. (B) Scatter plot showing the causal effect of AF on the risk of GC. (C) Sensitivity analysis of the causal
impact of AF on the risk of GC. (D) Funnel plot illustrating the causal effect of AF on the risk of GC.
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or phenotypes. These MPs may represent different biological
processes or subtypes, aiding in the understanding of
transcriptional heterogeneity at different stages of tumorigenesis
(Gavish et al., 2023). We downloaded the gene list of MPs, scored
each cell using AUCell, and visualized the results.

Establishment of nomogram and ROC curve

This study utilized TCGA-STAD data to establish a
Nomogram. The Nomogram was developed based on three
parameters: age, TNM classification, pathological stage, and

the expression of core genes. ROC curves were generated for
the Nomogram.

Mutation analysis

To analyze mutation data and clinical details, we utilized the
“maftools” R package. The function “read.maf” was employed to
import information from TCGA-STAD into the MAF file format.
Subsequently, we utilized “plotmafSummary” to examine the
mutation landscape of STAD patients in the TCGA dataset,
visualizing the mutation status of pivotal genes.

FIGURE 4
Key Gene Set of Co-associated Genes between AF and GC and Their PPI Network Construction with Functional Enrichment Analysis (A) Venn
diagram showing the intersection of 217 AF-related genes and 2066 GC-related genes. (B) Protein-protein interaction (PPI) network diagram of the
62 key genes. (C) Circular plot depicting the enrichment results of the key gene set in the KEGG database (fdr <0.01, p < 0.05). (D) Circular plot displaying
the enrichment results of the key gene set in the GO:CC database (fdr <0.01, p < 0.05). (E) Circular plot illustrating the enrichment results of the key
gene set in the GO:BP database (fdr <0.01, p < 0.05). (F) Circular plot demonstrating the enrichment results of the key gene set in the GO:MF database
(fdr <0.01, p < 0.05).
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FIGURE 5
Expression Analysis of Key Gene Set in GC-Associated Single-Cell Data (A) UMAP plot of integrated single-cell data. (B) Bar plot showing the cellular
composition across three stages in the single-cell sequencing data. (C) Bubble plot of cluster markers. (D) Violin plot displaying AUCell scores of the key
gene set across three stages of samples. (E) Box plot showing AUCell scores of the key gene set across different cell types (Kruskal–Wallis, p < 0.001). (F)
UMAP plot of fibroblast clustering. (G) Bubble plot of top markers for fibroblast subgroups. (H) UMAP plot displaying AUCell scores of the key gene

(Continued )
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Statistical analysis

This study employed R for statistical assessment and data
analysis. Kruskal–Wallis test was utilized for multi-group
differential analysis, where p < 0.05 was considered statistically
significant. Survival analysis was conducted using Kaplan-Meier
method and Cox proportional hazards regression model.
Differences in survival curves were assessed using the log-rank
test. Multivariate Cox regression analysis was performed on the
constructed core genes to determine their prognostic value (Rich
et al., 2010). A p-value less than 0.05 was considered statistically
significant. Hazard ratios (HR) and their 95% confidence intervals
(CI) were computed to assess the risk associated with each gene in
the signature.

Results

Two-sample mendelian randomization
revealed the potential causal effect of AF on
the risk of GC

Based on the methods described earlier, this study
constructed a genetic instrument consisting of 136 SNPs to
reveal the potential causal effect of AF on the risk of GC
(Supplementary Table S1, S2). Through the inverse variance-
weighted method, a negative correlation between AF and GC
occurrence was observed (OR = 0.919, 95% CI = 0.88–0.96, p <
0.001). Consistent results of risk estimation (OR = 0.88–0.90)
were observed across various methods, all of which were
statistically significant (Figures 3A, B), and no evidence of
pleiotropy or directional pleiotropy was found. Sensitivity
analysis and funnel plot results supported the aforementioned
findings (Figures 3C,D).

Two-sample mendelian randomization
reveals the relationship between AF and
other risk factors for GC

Further research indicates that there is no causal relationship
between AF and other risk factors for GC, such as chronic
gastritis, Helicobacter pylori infection, and alcohol
consumption (Supplementary Material S2). This suggests that
the association between AF, determined by genetics, and the risk
of GC is not influenced by these specific risk factors. This further
supports the validity of the Mendelian Randomization
study results.

Construction of key genes involved in the
impact of AF on GC and analysis of protein
interaction networks

Through GeneCard, we obtained a total of 217 genes associated
with AF and 2066 genes related to GC. By intersecting the genes
associated with AF and those associated with GC, we identified 62 genes
as the common correlated genes (Figure 4A), serving as the key gene set.
Further, utilizing the STRING database, we constructed a protein-
protein interaction network for the key gene set (Figure 4B).

Enrichment analysis of potential
mechanisms of key gene set

Enrichment analysis using the KEGG database (Figure 4C) and
GO databases (Figures 4D–F) investigated the potential mechanisms
of the key gene set. The results of the enrichment analysis revealed
associations of the key gene set with various pathways related to
cardiovascular diseases, inflammatory gastrointestinal diseases, and
tumorigenesis. These findings suggest that the key gene set may be
involved in the pathogenesis of multiple diseases, tumor mutations,
and carcinogenic pathways.

Analysis of GC cell subtypes and
identification of key subtypes

By analyzing single-cell sequencing data from normal gastric
tissue, intestinalized tissue, and GC obtained from the GEO
database, we identified seven major subgroups: epithelial cells
(Epi), endothelial cells (Endo), B cells (B), myeloid cells (Myeloid
cell), T cells (T), fibroblasts (Fio), and plasma cells (Plasma cell)
(Figure 5A), and analyzed the composition of cells at three stages
(Figure 5B). The markers used for identification were derived from
previous studies, as shown in Figure 5C.

Using the previously identified key gene set, we performed AUC
scoring for cell subgroups and pathological stages (Figures 5D, E).
The results showed significant differences in AUC scores of cells at
different developmental stages and disease states (p < 0.01).
Specifically, fibroblasts had the highest AUC score, thus we
selected fibroblasts for subsequent analysis.

After subtyping fibroblasts, we identified differential genes using
the COSGmethod and excluded genes with FDR values greater than
0.05. Subsequently, we named cell subgroups based on the gene with
the maximum LOG2FC, resulting in the identification of
13 fibroblast subgroups (Figures 5F, G). Further analysis revealed
that the scores of HSPA1A + Fio, ARGE + Fio, and MMP3+Fio

FIGURE 5 (Continued)

set in fibroblasts. (I) Box plot showing AUCell scores of the key gene set in fibroblast subgroups (Kruskal–Wallis, p < 0.001). (J) Bubble plot showing
the top 10 enriched pathways in the KEGG database for marker genes of the HSPA1A + Fio subgroup (fdr <0.01, p < 0.05). (K) Bubble plot showing the top
10 enriched pathways in the GO database for marker genes of the HSPA1A + Fio subgroup (fdr <0.01, p < 0.05). (L) Bubble plot showing the top
10 enriched pathways in the KEGG database for marker genes of the AREG + Fio subgroup (fdr <0.01, p < 0.05). (M) Bubble plot showing the top
10 enriched pathways in the GO database for marker genes of the AREG + Fio subgroup (fdr <0.01, p < 0.05).
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subgroups within fibroblasts were higher than other subgroups,
indicating that these may be key subgroups for the effect of AF-
related genes on GC (Figures 5H, I). Enrichment analysis of the top
100 genes calculated by the COSG method for ARGE + Fio and
HSPA1A + Fio subgroups using AUCell revealed significant
associations with cell adhesion, inflammation regulation, receptor
activity, cell development, and blood circulation pathways, similar to
our previous key gene set enrichment results (Figures 5J–M).

Fibroblast differentiation, developmental
trajectory analysis, and transcription factor
regulation revealed its potential role in GC
development

Through CytoTRACE assessment of fibroblast subgroups (Figures
6A, B), the HSPA1A + Fio subgroup was found to belong to more
mature and less stem-like fibroblasts, while the ARGE + Fio and
MMP3+Fio subgroups exhibited lower differentiation and stronger
stem-like characteristics. Subsequently, we conducted pseudotime
analysis using MONOCLE2, revealing the developmental trajectory

of fibroblasts (Figures 6C–H). We observed significant expression
changes in genes such as ACTN1, ANKRD10, and BMP4 during
the developmental process (Figure 6I). Subsequent transcription
factor analysis of fibroblasts (Figures 7A, B) revealed significant
upregulation of transcription factors associated with GC
development, including FOXF1, LEF1, and FOXQ1, in key
subgroups (Figures 7C–F).

Differential cancer-associated
metaprogram and metabolic regulatory
features in fibroblast subpopulations

We performed cancer-associated metaprogram expression analysis
in fibroblasts, using AUCell to score each cell based on previously
reported cancer-associated metaprograms. Among the key
subpopulations, processes such as Secreted I and EMT-II, which are
associated with tumor progression, were upregulated (Figure 7G).
scMetabolism was utilized to measure single-cell metabolic activities,
revealing differences in metabolic pathways among 13 clusters.
Particularly, the ARGE + Fio cluster exhibited higher activity in

FIGURE 6
Analysis of Stemness and Developmental Trajectory of Fibroblast Subgroups (A) UMAP plot of fibroblast subpopulations’ stemness assessed by
CytoTrace. (B) Boxplot showing the assessment of fibroblast subpopulations’ stemness based on CytoTrace. (C) UMAP plot of fibroblast subpopulations’
different states evaluated by Monocle2. (D) UMAP plot depicting the developmental time sequence of fibroblast subpopulations based on Monocle2. (E)
Developmental trajectory plot of fibroblasts (based on inferred developmental time). (F) Developmental trajectory plot of fibroblasts (based on
sample pathological stages). (G) Phylogenetic tree of fibroblast lineage. (H) Mountain plot illustrating the distribution of pathological stages during
fibroblast development. (I) Line chart displaying genes influencing fibroblast development.
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pathways such as fatty acid metabolism and fat-soluble vitamin
metabolism, showing significant metabolic differences compared to
other fibroblast subpopulations (Figure 7H).

Prognostic analysis and mutation validation
of key gene sets based on the
TCGA-STAD cohort

In this study, we utilized the R package “survival” to integrate
survival time, survival status, and data from key gene sets. Cox

proportional hazards regression analysis was performed to evaluate
the prognostic significance of these features in a cohort of
350 samples from TCGA-STAD (Figure 8A). The overall
prognostic difference was found to be significant (logtest = 3.2e-
05, sctest = 2.1e-05, waldtest = 0.00021), with a C-index of 0.719.
Additionally, we identified 13 distant genes with prognostic
significance. Using the R package “maxstat” (Maximally selected
rank statistics with several p-value approximations version: 0.7–25),
we calculated the optimal cutoff value for RiskScore. The minimum
sample size in each group was set to be greater than 25%, and the
maximum sample size was set to be less than 75%. The optimal

FIGURE 7
Transcription factor, cell metaprogram, and metabolic pathway analysis of fibroblast subpopulations. (A) Heatmap of transcription factor analysis in
fibroblasts. (B)Heatmap of upregulated transcription factors in key subpopulations. (C)UMAP plot depicting the expression level of FOXF1_147 g in fibroblasts. (D)
UMAPplot illustrating the expression level of LEF1 extended37g infibroblasts. (E)UMAPplot showing the expression level of FOXQ1_166g in fibroblasts. (F)UMAP
plot displaying the expression level of FOXQ1 extended 754 g in fibroblasts. (H) Heatmap of cancer-associated metaprogram scores in fibroblast
subpopulations. (I) Enriched metabolic pathways in key upregulated subpopulations based on SCmetabolism analysis (Kruskal–Wallis, p < 0.001).
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cutoff value was determined to be −1.44. Based on this, patients were
divided into high and low-risk groups. Further analysis using the
“survfit” function in the R package “survival” revealed significant
prognostic differences the groups using the log-rank test (p = 1.3e-)
(Figure 8B). Based on these results we constructed a nomogram to
predict the prognosis of GC patients. The nomogram included
multiple predictive variables such as age, TMN staging,

pathological stage, and key gene sets, and demonstrated good
predictive performance (Figure 8C). ROC results showed that the
classifier model on the key gene set exhibited good performance in
distinguishing between and negative samples, areas under the curve
of 0.72, 0.78, and 0.76 for predicting one, and 5-year survival rates,
respectively (Figure 8D). To further verify the robustness of the
model we constructed, we used the GSE62254 gastric cancer

FIGURE 8
Survival analysis and mutation detection of key genes in GC transcriptome sequencing data. (A) Forest plot of 13 risk genes obtained from multi-
factor Cox analysis based on TCGA-STAD transcriptome sequencing data and follow-up results (P < 0.05). (B) KM survival curve based on the risk genes
using TCGA-STAD transcriptome sequencing data and follow-up results. (C) Nomogram generated based on the risk genes, TCGA-STAD transcriptome
sequencing data, and follow-up results. (D) ROC curve evaluating the predictive ability of the nomogram. (E) Waterfall plot depicting the mutation
status of risk genes in TCGA-STAD WES sequencing data.
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database for further external validation. We included the previous
factors in the same way, with the additional factor of gender to
calculate the accuracy of their predictions. We found that the model
had good predictive power, and the predicted survival of the high-
risk group was significantly lower than that of the low-risk group
(P < 0.05,HR = 4.17, Supplementary Figure S5). At the same time, we
drew the ROC curve to verify the prediction efficiency of the model,
and found that the ROC values at the 1-year, 3-year, and 5-year
nodes were 0.81, 0.78, and 0.75, respectively, indicating better
prediction ability and proving the reliability of predicting the
survival of gastric cancer patients based on the previous risk
genes (Supplementary Figure S6). Additionally, we validated the
mutation status of the key set using exome sequencing data from the
TCGA-STAD cohort (Figure 8E). A total of 332 samples were
evaluated for mutations, and the plotted samples included 64
(19.3%). We used chi-square test to assess the differences in
mutation frequency for each gene between sample groups.
Among all genes, FBN had the highest mutation frequency,
reaching 49.2%, with predominantly missense mutations.
Furthermore, we observed a significantly higher mutation rate of
PLAT in the high-risk group compared to the low-risk group.

Discussion

In this study, we conducted a two-sample Mendelian
Randomization analysis to thoroughly evaluate whether AF has a
causal effect on GC incidence. Our results supported the causal effect
of AF genetic predisposition on the risk of GC, showing an inverse
correlation between them. Subsequently, by analyzing the causal
relationship between AF and GC risk factors, we found that the
association between AF and GC is not influenced by these specific
GC risk factors, further supporting the validity of previous research
findings. We then constructed an AF-GC-related gene set and
performed various analyses using GC bulk and single-cell
sequencing data. The analysis results showed that this gene set is
mainly associated with fibroblasts and that there are specific
fibroblast subpopulations in GC with higher AF-GC-related gene
set scores, suggesting their potential widespread impact on GC.
Subsequently, using GC transcriptome sequencing data, we
confirmed the correlation of this gene set with poor prognosis in
GC patients and developed a predictive model that demonstrated
good performance. Our study revealed the causal relationship
between AF and GC incidence, as well as the potential
mechanisms by which AF-related genes influence GC progression.

In a study involving 25, 964, 447 participants, it was found that
61.44% of cancer patients had complications of AF (Chen et al.,
2023). Additionally, other studies have shown that AF is associated
with an average 1.4-fold increase in cancer incidence (Joseph et al.,
2020). Subsequent research has suggested that long-term chronic
inflammation-induced immune activation may be a potential cause
of AF and angina related to gastrointestinal diseases (Chan et al.,
2014; Shi et al., 2020). These findings suggest the need to explore the
potential causal relationship between GC and AF. Furthermore,
contemporary studies also indicate that cardiovascular diseases may
interact with gastrointestinal diseases through mechanisms such as
inflammation, metabolism, immunity, and circulation (Budzyński
et al., 2014), although the specific pathways are not yet clear, and the

potential impact mechanisms of AF-related genes on GC remain to
be elucidated. To understand the potential impact of AF on GC, we
first evaluated the functional relevance of shared genes between AF
and GC, and found enrichment of the TGF pathway and Relaxin
signaling pathway. The TGF pathway is a classical cancer-related
signaling pathway (Massagué, 2012), and its activation has been
reported to contribute to the killing of some precancerous cells,
while promoting cancer invasion and metastasis. The activation of
the TGF pathway may be a key pathway through which AF-related
genes influence GC. The Relaxin signaling pathway mainly includes
anti-fibrosis, vasodilation, angiogenesis, anti-inflammatory, anti-
apoptotic, and organ protective effects, and is considered a
potential therapeutic target for GC (Sheng et al., 2018; Wang
et al., 2023). We then located the relevant gene action through
single-cell data, which indicated that it mainly acts on fibroblasts.
Fibroblasts can secrete specific cytokines and extracellular matrix
components, affecting the malignant biological behavior of tumor
cells such as proliferation, metastasis, and drug resistance (Chen
et al., 2021). Therefore, we further investigated fibroblasts. We
identified specific subpopulations enriched with TNF signaling
pathway, cell development, inflammation-mediated processes,
which are consistent with our previous findings. We evaluated
the stemness of fibroblast subpopulations based on single-cell
data and identified differentiation trajectories of fibroblasts. We
found that subpopulations with high AUCell scores (AREG + Fio,
HSPA1A + Fio, MMP3+Fio) exhibited distinct differentiation
trajectories compared to other cells. BMP4 and CXCL14 were
identified as key genes in the differentiation process, showing
upregulation in the high AUCell score subpopulations. It has
been reported that high expression of BMP4 in fibroblasts is
closely related to GC formation and gastric intestinalization
(Tsubosaka et al., 2023). CXCL14 is a homeostatic chemokine
and its role in tumors is bidirectional. It is associated with
overall survival in colorectal cancer, breast cancer, endometrial
cancer, epithelial cancer, and head and neck cancer (Giacobbi
et al., 2024). It can inhibit tumor growth but has a tumor-
promoting effect in glioblastoma, non-small cell lung cancer, and
microsatellite-stable colorectal tumors. However, its role in GC
remains to be studied. We further identified upregulated
transcription factors in these specific fibroblast subpopulations
through transcription factor analysis, such as FOXF1 (a tumor
suppressor transcription factor) (Bian et al., 2024) and FOXQ1 (a
tumor-promoting transcription factor) (Wu et al., 2023). These
changes may ultimately affect the proliferation and metastasis of
GC. FOXF1 and CXCL14 may be the reasons for the negative
correlation between AF and GC risk. Based on the expression of
cancer-associated metaprograms, the expression of Secreted l was
significantly upregulated in specific subpopulations, and it is
associated with blood circulation and tumor immunity. We
further assessed the metabolic pathways of fibroblast
subpopulations using the SCmetabolism method and found that
the angiotensin and lipid metabolism processes were significantly
upregulated in the AREG + Fio subpopulation, indicating that the
key gene set may affect GC by regulating the differentiation of
fibroblasts (Din et al., 2024). Finally, we used sequencing data and
survival information from TCGA to evaluate the genes associated
with GC risk in the gene set, and identified 13 risk genes: FBN1,
NOS3, HMGCR, MMP2, ALB, MIR199A1, MTHFR, MME, DCN,
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FLNA, PLAT, MIR378A, and PTPN11. Based on these genes, we
performed K-M survival curve analysis, nomogram construction,
ROC curve analysis, and mutation analysis, and found that they had
good predictive ability for GC prognosis, further confirming the
impact of this gene set on GC.

Although we have made some important findings, we also need
to acknowledge the limitations of this study. Firstly, most of the
GWAS datasets are derived from European populations, so it is still
important to validate the study findings across different racial and
ethnic groups. Secondly, future research can consider expanding the
study to different subtypes of GC to gain a more comprehensive
understanding of the association between AF and different types of
GC. Finally, this study mainly focuses on reporting the potential
association and molecular mechanism between atrial fibrillation and
gastric cancer. Further in vitro and in vivo studies and clinical
sample collection are needed in the follow-up study to further
explore the relationship between the two. Moreover,
comprehensive longitudinal examination through real-world
studies to assess the impact of AF diagnosis and treatment on
subsequent gastric cancer risk is also necessary.

Conclusion

Overall, the results of our study supplied genetic evidence
suggesting that the genetic liability to AF reduces the risk of GC,
and identify potential pathways by which some AF related genes
may influence gastric cancer. This study offers important references
and insights for future research and clinical practice. We look
forward to further exploring the role of AF-related genes in the
pathogenesis of GC, to promote a deeper understanding of the
association between these two diseases and future directions
for treatment.
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