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Introduction: Recent evidence suggests that lipids play a crucial role in intestinal
metabolic balance and are closely linked to ulcerative colitis (UC). However, the
mechanisms underlying their effects remain unclear. This study employed
Mendelian randomization (MR) to investigate the relationships among lipids,
inflammatory factors, and UC.

Methods: We analyzed data on 179 lipids from the GeneRISK cohort (7,174
individuals), 91 inflammation-related proteins from the EBI GWAS Catalog
(14,824 participants), and UC GWAS summary statistics from the FinnGen
Biobank (411,317 samples). Associations were assessed using inverse variance
weighted (IVW) and Bayesian-weighted MR (BWMR) methods. A mediation
analysis was conducted to explore the potential role of inflammatory factors
in mediating lipid effects on UC.

Results: MR analysis revealed a significant negative association between sterol
ester (27:1/20:4) levels and UC (SNPs = 31; IVW: OR = 0.900 [95% CI:
0.851–0.952], p < 0.001; BWMR: OR = 0.906 [95% CI: 0.849–0.967], p =
0.003). Furthermore, sterol ester (27:1/20:4) was negatively correlated with
PD-L1 (SNPs = 30; IVW: OR = 0.961 [95% CI: 0.934–0.990], p = 0.008), and
PD-L1 was found to be inversely associated with UC (SNPs = 24; IVW: OR = 0.850
[95% CI: 0.724–0.999], p = 0.048). Mediation analysis suggested that sterol esters
(27:1/20:4) may indirectly increase UC risk by downregulating PD-L1 expression.
However, the MR analysis results suggest that sterol esters (27:1/20:4) act as a
protective factor against UC, which contradicts the mediation analysis. This
discrepancy highlights the dual role of PD-L1 in UC pathogenesis.

Discussion: PD-L1 may serve as a key mediator in the regulation of UC
pathogenesis by sterol esters, but the underlying complex mechanisms
require further investigation.
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1 Introduction

Ulcerative colitis (UC) is a chronic inflammatory disease
characterized by persistent inflammation of the mucosa and
submucosa of the colon and rectum (Ungaro et al., 2017). Its
global prevalence and incidence are increasing annually, posing a
serious health risk and economic burden (Mak et al., 2020). In
addition, UC significantly increases the risk of colorectal cancer
(Bopanna et al., 2017). Although various factors have been
implicated, including genetic defects, epithelial barrier disruption,
autoimmune responses, and environmental pollution, the exact
pathogenesis of UC remains unclear (Engel and Neurath, 2010).
Lipid metabolism is crucial for cellular processes such as signal
transduction, development, differentiation, and apoptosis.
Dysregulated lipid metabolism has been implicated in several
diseases, including diabetes, hyperlipidemia, NAFLD, and cancer
(Suvitaival et al., 2018; Wang et al., 2019; Gorden et al., 2015; Białek
et al., 2020). In UC, the high turnover of mucosal cells requires
increased lipid synthesis to maintain epithelial membrane integrity,
highlighting the role of lipid metabolism in its pathogenesis (Lei
et al., 2021). Unsaturated fatty acids in phospholipid membranes are
highly susceptible to reactive oxygen species, producing lipid
peroxidation products such as malondialdehyde and 4-
hydroxynonenoic acid. These products disrupt cell membrane
structure and impair cellular functions (Ayala et al., 2014;
Maiorino et al., 2018). Phosphatidylcholine, a vital component of
mammalian cell membranes, plays a key role in maintaining
intestinal metabolic homeostasis (Howe and McMaster, 2001;
Kennelly et al., 2018). Lipidomic studies have revealed significant
alterations in lipid profiles in UC, with changes in
phosphatidylcholine levels strongly associated with disease
progression (Yu et al., 2023). Notably, phosphatidylcholine 34:
1 supplementation increased fumarate level in the mouse colon,
suggesting its therapeutic potential in UC. Despite these findings,
the precise role of the lipid in UC pathogenesis remains unclear.

Recent studies reveal a strong connection between inflammatory
bowel disease (IBD) and metabolic disorders, with the Western diet
playing a pivotal role. Excessive nutrient intake in such diets
activates the innate immune system and disrupts the intestinal
microbiota, establishing a metabolic basis for IBD. These insights
suggest that dietary interventions and therapies targeting metabolic
pathways could significantly enhance patient outcomes (Adolph
et al., 2022). The gut microbiota also directly impacts lipid
metabolism by synthesizing and transforming lipids to regulate
immune signaling and modifying host cell membrane lipid
composition to influence signaling pathways. These findings
illuminate the intricate relationships among gut microbiota, lipid
metabolism, and IBD (Brown et al., 2023). Chronic inflammation in
UC is characterized by an imbalance between pro-inflammatory and
anti-inflammatory molecules (Das, 2016). Certain lipids, including
sphingolipids and phospholipids, regulate cellular processes such as
proliferation, migration, apoptosis, differentiation, and cytokine
release, influencing inflammatory pathways (Bryan et al., 2016;
Sewell et al., 2012). In UC, phosphatidylcholine is metabolized by
phospholipase A2 to release esterified polyunsaturated fatty acids
(PUFAs), which form active pro-inflammatory and anti-
inflammatory mediators. Lipidomic studies have identified
significant changes in lipid profiles in UC patients compared to

healthy controls, with alterations in phosphatidylethanolamine (PE)
levels correlating with mucosal inflammation (Diab et al., 2019a;
Diab et al., 2019b). Given its role in apoptosis, PE has been proposed
as a marker for TNF-induced inflammation and a target for cell
death imaging (Delvaeye et al., 2018). These findings suggest that
lipids may influence UC pathogenesis by modulating inflammatory
factor levels. Programmed cell death ligand 1 (PD-L1), a member of
the B7 superfamily, is a key regulator of immune responses in UC.
PD-L1 interacts with programmed cell death-1 (PD-1) to transmit
inhibitory signals, suppressing CD4+ and CD8+ T cell proliferation
and mediating immune tolerance, which can facilitate immune
evasion (Pinchuk et al., 2008; Wang and Wu, 2020). Recent
studies highlight the upregulation of PD-1/PD-L1 in the mucosal
lamina propria and inflammatory cells in UC, particularly on
mononuclear cells, correlating with inflammation severity
(Roosenboom et al., 2021; Cassol et al., 2020). This suggests a
protective feedback mechanism by immune cells during
inflammation. PD-L1 plays a critical role in innate and adaptive
immune responses and intestinal homeostasis (Chulkina et al.,
2020). However, its exact contribution to UC development and
progression remains unclear. Further studies on PD-L1 signaling in
UC are urgently needed to elucidate its role and
therapeutic potential.

Assessing causal effects in observational studies is often
hindered by environmental confounding and reverse causation.
Genome-wide association studies (GWAS) in large cohorts have
advanced our understanding of complex genetic factors in disease.
Mendelian randomization (MR) addresses some limitations by
using genetic variants associated with the exposure of interest as
instrumental variables (IVs) to infer causal relationships (Davey
Smith and Ebrahim, 2003). Since genetic variants are randomly
assigned at conception, they are less affected by environmental
confounders. Recent MR approaches have been applied to
mediated pathways (Burgess et al., 2017), leveraging genetic
variants as proxies for lifetime exposure to reduce biases from
measurement errors common in observational studies. Mediation
analysis complements this by elucidating etiological mechanisms
and identifying intermediate variables as potential intervention
targets, especially when direct exposure modification is
challenging (Carter et al., 2021). This study utilized the MR
framework to evaluate the causal effects of lipids and
inflammatory factors on UC risk. Where evidence of a causal
effect of inflammatory factors on UC risk was found, MR
mediation analysis was further employed to explore how
inflammatory factors mediate the effects of lipids.

2 Materials and methods

2.1 Study design

To evaluate the mediating role of inflammatory factors between
lipids andUC, we employed stepwise two-sampleMR analysis, using
genetic variants as IVs for risk variation. The analysis adhered to
three key MR assumptions: (1) a strong association between genetic
variation and exposure, (2) no association between genetic variation
and confounders, and (3) genetic variation affects the outcome only
through the exposure. The stepwise two-sample MR analysis
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involved three key estimates: (1) the total effect (β_all) of lipids on
UC, (2) the direct effect (β1) of lipids on inflammatory factors, and
(3) the direct effect (β2) of inflammatory factors on UC. To address
potential reverse causality, reverse MR analysis was conducted,
treating UC as the exposure to assess its effects on lipids. The
calculation of the mediating and direct effects is detailed
in Figure 1.

2.2 Data sources

The data sources for this study include GWAS datasets on
179 lipids, 91 inflammation-associated proteins, and UC. Data for
the 179 lipids were obtained from the GeneRISK cohort, which
comprises 7,174 Finnish participants (Ottensmann et al., 2023). This
cohort includes blood samples along with ethnographic, health,
genotype, and lipidomic data, all managed by the THL Biobank.
Summary statistics for 13 lipid classes are publicly available in the
GWAS catalog (codes: GCST90277238–GCST90277416). The GWAS
data for 91 inflammation-associated proteins were collected from
14,824 individuals, protein quantitative trait locus analyses were
conducted for these plasma proteins, measured using the Olink
Target platform, to identify genetic influences on inflammatory
proteins (Zhao et al., 2023), full summary statistics are publicly
available through the Cambridge Epidemiology Unit and the EBI
GWAS catalog (codes: GCST90274758–GCST90274848). These
91 proteins were derived from a meta-analysis of 11 cohorts

encompassing diverse populations, including individuals with coronary
heart disease, neurodegenerative diseases, rheumatoid arthritis, atrial
fibrillation, bipolar disorder, as well as blood donors and healthy
controls. UC GWAS data were sourced from the FinnGen project,
which integrates genetic and health data from 500,000 participants in
the Finnish Biobank. The UC cohort included 41,969 European
individuals (18,869 females, 22,911 males) with a median age of
onset of 37.32 years (females: 36.03 years, males: 38.27 years). The
study analyzed 411,317 samples (Ncase = 5,931; Ncontrol = 405,386),
encompassing over 520,210 phenotype-related data points. Ethical
approval was not required for this study, as it utilized publicly
available GWAS summary statistics that had been pre-approved by
the relevant ethical review boards. Additional details of the data are
presented in Table 1.

2.3 Instrumental variables selection

IVs for lipids, inflammatory factors, and UC were screened
separately for MR analyses. Exposure-related IVs were identified
using a significance threshold of 5 × 10−8 and a stringent linkage
disequilibrium (LD) criterion (r2 = 0.001), excluding SNPs within a
10,000-kb range that did not meet these thresholds (Lawlor et al.,
2008; Burgess et al., 2011). To reduce bias from weak instruments,
only SNPs with an F-statistic greater than 10 were retained.
Palindromic SNPs with mismatched alleles between exposure and
outcome were excluded (Cai et al., 2022).

FIGURE 1
β1: Total effect of 179 lipid species on 91 inflammation-related proteins; β2: Total effect of 91 inflammation-related proteins on UC; β_all; Total
effect of 179 lipid species on UC; Reverse MR: MR of UC to 179 lipid species; β_dir: Direct effect of 179 lipid species on UC (β_dir = β_all - β_med); β_med:
Mediating effect of 179 lipid species on UC (β_med = β1 × β2).

TABLE 1 Basic information of datasets used in this study.

Trait Consortium Ethnicity Sample size

179 lipid species Terveyden ja hyvinvoinnin laitos biobank European 7,174 cases

91 inflammation related proteins Cardiovascular Epidemiology Unit European 14,824 cases

Ulcerative colitis FinnGen European 411,317 samples (Ncase = 5,931; Ncontrol = 405,386)
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2.4 Statistical analyses

Data analysis was conducted using R version 4.3.1 with the
‘Mendelian-Randomization’ package (version 0.4.3). IVW and
BWMR were the primary methods used. IVW provided causal
estimates while accounting for horizontal pleiotropy, and BWMR
validated these results, addressing polygenic effects and pleiotropy
with high efficiency and stability. Additional methods, including MR
Egger, Weighted Median, Simple Mode, and Weighted Mode, were
applied to ensure robustness. Significance thresholds were set at p <
0.05, with Bonferroni adjustments for multiple testing. Heterogeneity
was assessed using Cochran’s Q test and funnel plots, while horizontal
pleiotropy was evaluated with MR Egger regression (p >
0.05 indicating absence) (Hemani et al., 2018). Sensitivity analysis,
including leave-one-out analysis, further validated the robustness of
the results. Mediation analysis decomposed total effects into direct
and indirect components. The mediation effect was calculated as β1 ×
β2, with confidence intervals determined via the delta method. The
proportion mediated was derived by dividing the indirect effect by the
total effect. A p value below 0.05 suggested a statistical significance.

3 Results

3.1 MR analysis of lipid-causal links to UC

We performed MR analyses to examine the causal relationships
between genetically predicted lipid levels and UC, utilizing 554 SNPs
strongly associated with lipids as IVs (Supplementary Table S1). The

IVW method with multiplicative random effects was chosen as the
primary analytical approach due to the presence of heterogeneity
observed in some of the lipid associations. Four lipids met both the
Bonferroni-corrected (P < 0.00028) and FDR-corrected (P < 0.05)
significance thresholds: Phosphatidylcholine (20:4_0:0) (OR = 0.884,
95% CI = [0.838, 0.932], P = 6.14 × 10−6), Phosphatidylcholine (16:0_
20:4) (OR = 0.899, 95% CI = [0.855, 0.946], P = 4.31 × 10−5),
Phosphatidylcholine (18:0_20:4) (OR = 0.901, 95% CI = [0.854,
0.950], P = 1.12 × 10−4), and Sterol ester (27:1/20:4) (OR = 0.900,
95% CI = [0.851, 0.952], P = 2.46 × 10−4) (Figure 2; Supplementary
Table S2).The MR-Egger intercept terms indicated no significant
directional pleiotropy for all lipids. However, Cochran’s Q test
revealed significant heterogeneity in the association for Sterol ester
(27:1/20:4) (Q = 46.41, P = 0.021) (Supplementary Table S3;
Supplementary Figure S1), suggesting potential variability in the
underlying causal effect. Given the observed heterogeneity in the
data, we prioritized the IVW method with multiplicative random
effects, which accounts for such variability in the analysis. A Bayesian-
weighted validation analysis (OR = 0.906, [95% CI: 0.849–0.967], p =
0.003) yielded similar results to the primary IVW analysis, further
confirming the robustness and stability of these causal inferences
(Supplementary Table S4).

3.2 Assessing potential causal relationships
between inflammatory factors and UC

We conducted MR analyses to assess potential causal
relationships between 91 inflammatory factors and UC,

FIGURE 2
Forest plot showing the effect of four key lipids on the risk of UC. Estimates are shown as ORs and 95% CIs from five methods of MR analysis,
including IVW, MR Egger, weighted median, simple model and weighted model.
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identifying two key mediators, FIt3L and PD-L1. IVs for these
analyses were selected from 309 SNPs that were strongly
associated with inflammatory factors (Supplementary Table S5).
TheMR-Egger intercept for FIt3L revealed no significant evidence of
directional pleiotropy (intercept = −0.015, P = 0.104); however,
Cochran’s Q test indicated heterogeneity (Q = 65.66, P = 0.015).
Similarly, the MR-Egger intercept for PD-L1 also showed no
significant pleiotropy (intercept = 0.009, P = 0.591), but
Cochran’s Q test identified heterogeneity (Q = 42.78, P = 0.005)
(Supplementary Table S6; Supplementary Figure S2). Given the
detected heterogeneity, we used the IVW method under a
multiplicative random effects model as the primary analytical
approach. The IVW results indicated a potential causal
relationship between FIt3L, PD-L1, and UC, with OR of 0.850
(95% CI = [0.724, 0.999], P = 0.048) for FIt3L and 0.898 (95%
CI = [0.814, 0.992], P = 0.034) for PD-L1 (Figure 3;
Supplementary Table S7).

3.3 Causal relationships between lipids and
inflammatory factors: insights into sterol
ester (27:1/20:4) and PD-L1

We conducted MR analyses to investigate the potential causal
relationships between four lipid species and 91 inflammatory factors,
using the IVW method with multiplicative random effects as the
primary analytical approach, with results adjusted by FDR correction.
The analysis revealed that Sterol ester (27:1/20:4) levels were
potentially causally associated with 17 inflammatory factors,
including TRAIL, IL-18, CCL23, CXCL11, IL-7, ADA, CXCL5,
SCF, VEGF-A, CXCL1, IL-17C, CXCL6, CXCL9, DNER, LAP
TGF-beta-1, PD-L1, and TNFSF14 (P < 0.05). Similarly,
Phosphatidylcholine (18:0_20:4) levels were associated with six
inflammatory factors (TRAIL, CXCL11, CXCL9, TNFSF14, Beta-
NGF, and IL-18; P < 0.05), Phosphatidylcholine (16:0_20:4) levels
with four inflammatory factors (TRAIL, CXCL11, CXCL9, and

DNER; P < 0.05), and Phosphatidylcholine (20:4_0:0) levels with
two inflammatory factors (TRAIL and SCF; P < 0.05) (Figure 4;
Supplementary Tables S8, S9). Having established that PD-L1 was
causally associated withUC,we hypothesized that PD-L1maymediate
the effect of the sterol ester (27:1/20:4) on UC. Based on these findings,
we selected Sterol ester (27:1/20:4) as the key lipid and PD-L1 as the
sole mediator. The MR analysis confirmed a significant causal
relationship between Sterol ester (27:1/20:4) levels and PD-L1
(OR = 0.961, 95% CI = [0.934, 0.990], P = 0.008). Moreover, the
MR-Egger intercept indicated no significant directional pleiotropy
(intercept = 0.001, P = 0.882), and Cochran’s Q test demonstrated no
heterogeneity (Q = 24.782, P = 0.640) (Supplementary Table S10).
These findings suggest that Sterol ester (27:1/20:4) levelsmay influence
inflammatory factors, particularly PD-L1, which could play a critical
role in inflammatory regulation. The robustness of these results is
supported by the absence of pleiotropy and heterogeneity.

3.4 Analysis of reverse causality in UC and
sterol ester relationships

To exclude the possibility of reverse causality between UC and
sterol ester levels (27:1/20:4), we conducted an inverse MR analysis.
First, the MR-Egger intercept term was examined to assess
directional pleiotropy. The results showed no significant evidence
of directional pleiotropy (intercept = 0.009, P = 0.348). However,
heterogeneity among IVs was detected through Cochran’s Q test
(Q = 30, P = 0.02) (Supplementary Table S11). Given the observed
heterogeneity, the IVW method under a multiplicative random
effects model was selected as the primary analytical approach.
The IVW analysis demonstrated no evidence supporting a causal
relationship between UC and sterol ester (27:1/20:4) levels, with an
OR of 0.977 (95% CI = [0.941, 1.015], P = 0.231) (Figure 5;
Supplementary Table S12). These findings indicate that UC does
not have a causal impact on sterol ester (27:1/20:4) levels, effectively
ruling out the possibility of reverse causality in this association.

FIGURE 3
Forest plot showing the causal effect of inflammatory factors on UC risk. The figure shows the OR and 95% CI of the estimates derived from 5 MR
analysis methods, including IVW, MR Egger, weighted median, simple model and weighted model.
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3.5 Mediating role of PD-L1 in the
relationship between sterol ester (27:1/20:4)
and UC

This study investigated the potential mediating role of PD-L1, an
inflammation-related factor, in the relationship between Sterol ester
(27:1/20:4) and UC. The analysis revealed that Sterol ester had a
significant negative total effect on UC (β_all = −0.105, 95% CI =
[0.851, 0.952]), with a prominent direct inhibitory effect (β_
dir = −0.112, 95% CI = [-0.020, 0.033], P = 0.034). The direct
effect of Sterol ester on PD-L1 (β1 = −0.039, 95% CI = [0.934, 0.990])
and the direct effect of PD-L1 on UC (β2 = −0.163, 95% CI = [0.934,
0.990]) were both negative, indicating that Sterol ester modulates
PD-L1 expression and that PD-L1 negatively influences UC
development. In addition, the mediation effect by PD-L1 was

positive but relatively small (β_med = 0.006), indicating that PD-
L1 slightly attenuated the direct inhibitory effect of sterol ester on
UC. This suggests that PD-L1 plays a potential modulatory role in
the pathway, likely influencing UC development through its
involvement in inflammatory signaling. Although the mediation
effect was modest, its biological significance merits further
investigation to better understand the complex interactions
between sterol ester, PD-L1, and UC, as well as the role of PD-
L1 in inflammation-mediated disease processes.

4 Discussion

This study employed MR analysis to explore the causal
relationship between lipid levels and UC risk. The analysis

FIGURE 4
Forest plot showing the effect of Sterol ester (27:1/20:4) on inflammatory factors, with ORs and 95% Cis from the IVW method in the MR analysis.

FIGURE 5
Forest plot showing reverse causality of UC on lipid risk. The figure shows the OR and 95% CI of the estimates derived from 5 MR analysis methods,
including IVW, MR Egger, weighted median, simple model and weighted model.
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identified a significant association between elevated levels of sterol
esters (27:1/20:4) and a reduced risk of UC. Further mediator MR
analysis suggested that PD-L1 may serve as a critical mediator in this
relationship. Genetically predicted PD-L1 levels were inversely
associated with UC risk, implying that higher levels of sterol esters
(27:1/20:4) might suppress PD-L1 expression, thereby increasing
susceptibility to UC. These findings underscore the potential role
of PD-L1 as a key regulatory element in the UC pathway modulated
by sterol esters (27:1/20:4). However, the MR analysis revealed
discrepancies between the total effect of sterol esters (27:1/20:4) on
UC risk and the mediating effect of PD-L1, suggesting a dual role for
PD-L1 in UC pathogenesis. While sterol esters (27:1/20:4) primarily
exhibit a protective effect, their interaction with PD-L1 highlights a
complex modulatory pathway that warrants further investigation.

Sterol esters (27:1/20:4) are lipid components of plant and
animal cell membranes. Plant-derived sterol esters are well-
documented for their ability to reduce intestinal cholesterol
absorption and lower serum low-density lipoprotein cholesterol
levels. Beyond their cholesterol-lowering effects, emerging
evidence suggests that sterol esters also play a significant role in
modulating immune function. Cellular studies have demonstrated
that plant sterol esters reduce the production of pro-inflammatory
cytokines and prostaglandins (Awad et al., 2004; Desai et al., 2009).
In parallel, animal studies have reported anti-inflammatory effects of
phytosterol esters (Navarro et al., 2001; Oliveira et al., 2004), and
human intervention trials have shown reductions in inflammatory
responses across diverse patient populations (Brüll and Mensink,
2009; Bouic, 2002). These findings collectively underscore the
protective role of phytosterol esters, aligning with the results of
total effect analyses in MR studies. However, contradictory findings
have been reported regarding sterol esters (27:1/20:4) and their
potential role in inflammatory pathways relevant to UC. Some
studies suggest that sterol esters may indirectly influence
inflammatory mediators implicated in UC, such as cytokines,
interleukins, nitric oxide, free radicals, Toll-like receptor (TLR)
activation, oxyphospholipids, and gut microbiota dysbiosis. These
factors, in turn, may elevate UC risk (Das, 2016). This observation is
consistent with our mediator MR analyses, which hypothesized that
lipids, including sterol esters (27:1/20:4), could contribute to UC
pathogenesis by modulating inflammatory mediators such as PD-
L1. Our MR analyses revealed a negative correlation between sterol
esters (27:1/20:4) and 17 inflammatory factors, reinforcing the
hypothesis that sterol esters exert an anti-inflammatory effect.
Among these factors, PD-L1 appears to be a key mediator.
Notably, increased PD-L1 expression, both at the mRNA and
protein levels, has been reported in patients with UC (Mezache
et al., 2017; Rajabian et al., 2019; Beswick et al., 2018). Furthermore,
clinical observations indicate that 2%–5% of patients treated with
anti-PD-1/PD-L1 therapies develop gastrointestinal adverse effects,
including structural changes, ulceration, and UC-like lesions (Han
et al., 2020; Dougan et al., 2021). Experimental studies in mice have
demonstrated that disruption of the PD-1/PD-L1 signaling pathway
compromises intestinal mucosal tolerance to autoantigens, resulting
in severe autoimmune enteritis (Chulkina et al., 2020). These
findings highlight the complex and potentially dual role of PD-
L1 in UC pathogenesis. While PD-L1 may act as a mediator of the
protective effects of sterol esters, its dysregulation could contribute
to disease progression. The mechanisms driving PD-L1

dysregulation in UC remain poorly understood, underscoring the
need for further research to elucidate the immunological pathways
involved and to identify novel therapeutic targets for UC.

Direct studies investigating the impact of sterol ester (27:1/20:4)
on PD-L1 expression are currently lacking. However, findings from
our MR analysis suggest that supplementation with sterol ester (27:1/
20:4) may result in PD-L1 downregulation. Pro-inflammatory
mediators, such as IFN-γ, TNF-α, and IL-17A, are closely
associated with PD-L1 expression levels (Kryczek et al., 2008;
Karakhanova et al., 2010; Ou et al., 2012), and supplementation
with plant-derived sterol esters has been shown to significantly
reduce TNF-α and IL-1β levels, indicative of decreased
inflammation (Desai et al., 2009; Brüll et al., 2016). Although the
anti-inflammatory effects of plant sterol esters have been variably
reported, their influence on T cell-specific activity is well-documented.
Evidence demonstrates that sterol esters shift immune responses
toward a Th1-dominant phenotype in both murine models (Calpe-
Berdiel et al., 2007; Lee et al., 2007) and humans, particularly in
individuals with atopic diseases (Bouic, 2001) and HIV (Breytenbach
et al., 2001). In vitro studies further reveal that plant sterol esters
induce Th1 responses in peripheral blood mononuclear cells from
asthma patients (Brüll et al., 2012), likely through TLR2 activation,
enhanced IL-2 production, and improved regulatory T cell (Treg)
numbers and function (Brüll et al., 2010). Despite limited exploration
of the effects of plant sterol esters on intestinal inflammation, existing
studies suggest they mitigate T-cell-dependent intestinal
inflammation by reducing CD3+ T cells and increasing Tregs (Te
et al., 2015). Given the central role of T cells in UC pathogenesis (De
Souza and Fiocchi, 2016), these findings hold potential significance.
Naïve CD4+ T cells differentiate into effector subsets, including Th1,
Th2, Th17, Th9, Th22, and Tregs, in response to antigen-presenting
cell signaling and cytokine cues (Neurath, 2017). Furthermore, B
lymphocytes with high PD-L1 expression can transition from plasma
to memory cells, modulating Th1/Th17 activity (Khan et al., 2015).
Aguirre et al. (2020) demonstrated that normal fibroblasts inhibit
Th1/Th17 activity through the PD-1/PD-L1 pathway. Notably, PD-1
expression on T helper cells positively correlates with disease activity
in active UC patients (Long et al., 2021). Dysregulated inflammatory
responses, coupled with inadequate regulatory control, are thought to
drive chronic enteritis (Ahluwalia et al., 2018), and aberrant PD-1/
PD-L1 signaling may underlie the dysregulation of T cell responses in
UC. Based on these observations, we hypothesize that sterol ester (27:
1/20:4) may modulate immune responses through effects on PD-1/
PD-L1 signaling in both mucosal and systemic immune cells. Further
research is essential to elucidate themechanisms by which sterol esters
influence PD-L1-mediated pathways and to explore their therapeutic
potential in UC management.

This study has several notable strengths. By leveraging summary
statistics for exposures and outcomes from the largest and most recent
GWAS, we ensured robust and reliable findings while avoiding sample
overlap. To enhance statistical power and reduce bias, rigorous IV
selection criteria were applied, complemented by the exclusion of SNPs
associated with potential confounders. Genetic variations analyzed were
distributed across multiple chromosomes, which may help minimize
the influence of gene-gene interactions. Furthermore, the use of BWMR
preserved data integrity while addressing bias, and corrections such as
Bonferroni and FDR were employed to enhance the robustness of the
two-sample MR analysis. However, there are also limitations to our
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study. The GWAS data included only individuals of European ancestry,
limiting the generalizability of our findings and necessitating further
research to assess mediating effects in non-European populations.
Moreover, some heterogeneity was observed due to reliance on
GWAS data, restricting our ability to investigate nonlinear
associations and stratification effects by factors such as age, health
status, or sex. This highlights the need for studies with broader
perspectives and larger sample sizes to validate the causal
relationships. Finally, we analyzed a limited subset of lipids and
inflammatory factors, underscoring the importance of future
research to identify additional mediators and elucidate the
mechanisms underlying these associations.

5 Conclusion

This study highlights a protective association between sterol
esters (27:1/20:4) and reduced UC risk, with PD-L1 acting as a dual
mediator. While PD-L1 may mediate the protective effects of sterol
esters, its dysregulation could contribute to disease progression.
These findings emphasize the complex role of PD-L1 in UC and the
need for further research to better understand its mechanisms and
therapeutic potential.
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