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Objective: Previous research has demonstrated thatmetabolites play a significant
role in modulating disease phenotypes; nevertheless, the causal association
between metabolites and malignant malignancies of bones and joint cartilage
(MNBAC)has not been fully elucidated.

Methods: This study used two-sample Mendelian randomization (MR) to explore
the causal correlation between 1,400 metabolites and MNBAC. Data from recent
genome-wide association studies (GWAS) involving 8,299 individuals were
summarized. The GWAS summary data for metabolites were acquired from
the IEU Open GWAS database, while those for MNBAC were contributed by
the Finnish Consortium. We employed eight distinct MR methodologies: simple
mode, maximum likelihood estimator, MR robust adjusted profile score, MR-
Egger, weighted mode, weighted median, MR-PRESSO and inverse variance
weighted to scrutinize the causal association between metabolites
engendered by each gene and MNBAC. Consequently, we evaluated outliers,
horizontal pleiotropy, heterogeneity, the impact of single nucleotide
polymorphisms (SNPs), and adherence to the normal distribution assumption
in the MR analysis.

Results: Our findings suggested a plausible causative relationship between
N-Formylmethionine (FMet) levels, lignoceroylcarnitine (C24) levels, and
MNBAC. We observed a nearly significant causal association between FMet
levels and MNBAC within the cohort of 1,400 metabolites (P = 0.024, odds
ratio (OR) = 3.22; 95% CI [1.16–8.92]). Moreover, we ascertained a significant
causal link between levels of C24 and MNBAC (P = 0.0009; OR = 0.420; 95%CI
[0.25–0.70]). These results indicate a potential causative relationship between
FMet, C24 level and MNBAC.

Conclusion: The occurrence of MNBAC may be causally related to metabolites.
This might unveil new possibilities for investigating early detection and treatment
of MNBAC.
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1 Introduction

Malignant malignancies of bones and joint cartilage (MNBAC)
is a rare but severe type of tumor. The phrase “bone tumors” refers to
all cancers, including primary, secondary, and metastatic tumors,
originating from skeletal or other bone tissue components (Yang
et al., 2023). Primary MNBAC include osteosarcoma,
chondrosarcoma,malignant, lymphoma,osteofibrosarcoma,
myeloma,Ewing’ssarcoma,and chordoma (Choi and Ro, 2021).
MNBAC predominantly occurs in the mobile segments of the
long bones, referred to as metaphysis, encompassing the
proximal tibia, proximal humerus, and distal femur (Chou et al.,
2014). The major clinical symptoms of MNBAC are pain, swelling,
and functional impairment (Xia et al., 2018). Osteosarcoma is the
most common primary MNBAC, accounting for approximately 1%
of all malignancies in the United States (Suehara et al., 2019).
Osteosarcoma frequently exhibits aggressive growth and
metastasizes to adjacent tissues and other locations. Ewing
sarcoma (ES), the second most frequent bone tumor in teenagers,
flourishes in a mechanically active microenvironment (Marturano-
Kruik et al., 2018), It typically occurs in children and adolescents and
originates in the bone marrow or soft tissues. Conventional methods
for treating bone tumors include surgical resection, radiotherapy,
and chemotherapy (Beane et al., 2017). Reconstruction of the
affected area post-resection is a crucial phase that significantly
impacts the overall outcome and patient wellbeing (Hu et al.,
2023a; Hu et al., 2023b; Hu et al., 2022). Radiotherapy may be
used to reduce tumor size preoperatively, prevent recurrence after
surgery, and control metastases (Jones et al., 2018). Chemotherapy is
often combined with surgery and radiation therapy to eliminate
potential micrometastatic lesions (Wang et al., 2019). Although
malignant bone tumors are relatively rare, they pose a significant
threat to the patient’s life and physical function. Therefore,
exploring new targets for screening, prevention, and treatment of
MNBAC is essential.

Metabolites are tiny compounds that act as intermediates and
products of metabolic reactions. Multiple factors affect the levels of
these metabolites, including genetics, dietary patterns, lifestyle
choices, gut microbiota composition and pathological conditions
(Noronha et al., 2019). Metabolites could influence the risk of
maladies and be the focus of therapeutic intervention (Noronha
et al., 2019). A better understanding of the causative function of
metabolites in disease etiology can lead to more controllable
therapeutic targets. Common genetic metabolites serve as
discriminating agents in the pathogenesis of various complicated
illnesses. These metabolites interact with environmental variables
such as lifestyle choices, potentially influencing an individual’s
susceptibility to specific disease phenotypes (Li et al., 2019). To
date, GWAS has identified several metabolite-related loci in
human urine and blood specimens (Cai et al., 2021). Moreover,
these loci correlated with the progression and prognosis of
respiratory disorders (Chang et al., 2023), gastrointestinal maladies
(Kim et al., 2019), cardiovascular conditions (Mihuta et al., 2023),
endocrine dysregulation (Tan et al., 2023), as well as tumor diseases
(Gubser andKallies, 2020). However, limited studies have investigated
the association between 1,400 metabolites and MNBAC.

Using GWAS, we can scrutinize genetic variations within
extensive populations and juxtapose them with diverse metabolite

concentrations, disease ramifications, and other pertinent attributes
to elucidate the involvement of metabolites in disease consequences
(Tang et al., 2019). Numerous metabolite levels have shown high
heritability, providing the opportunity to perform Mendelian
randomization (MR) (Civelek and Lusis, 2014). MR is an
instrumental variable analysis approach utilizing genetic
variations as tools to evaluate causal connections between
potentially modifiable exposures, such as single nucleotide
polymorphisms (SNPs), and clinically significant outcomes; it has
been extensively employed to investigate causal inference in
epidemiological studies (Liu et al., 2023a; Liu et al., 2023b; Xiang
et al., 2021).

This study explored the causal relationship between
1,400 metabolites and MNBAC employing MR analysis coupled with
metabolomics using GWAS data of MNBAC as the outcome file and
GWAS data of 1,400 metabolites as the exposure file. Furthermore, this
study identified relevant metabolites, providing novel insights into early
detection and therapeutic strategies for MNBAC.

2 Methods

2.1 The flowchart and assumption of MR

The causal links between 1,400 metabolites and MNBAC were
examined using a two-sample MR analysis. Summary-level GWASs
data were used for the metabolites and MNBAC. The flowchart of
this study is displayed in Figure 1. Furthermore, to ensure the
accuracy of the findings, the MR analysis must adhere to three
fundamental hypotheses: (1) The instrumental variables (IVs)
employed exhibited a robust association with metabolites. (2)
The selected IVs and confounding factors that influenced both
the metabolites and MNBAC were mutually independent. (3)
The absence of horizontal pleiotropy was ensured: IVs solely
influenced MNBAC through metabolites (Davey Smith and
Hemani, 2014) (Figure 1). Moreover, the results obtained were
reported following the MR-STROBE protocol (Choi et al., 2022).

2.2 Exposure sources of 1,400 metabolites

Metabolic data were derived from the extensive GWAS analysis
conducted by Chen et al. in the esteemed journal “Nature Genetics”
(Chen et al., 2023). This investigation amalgamated 309 metabolite
ratios and 1,091 individual metabolites from a cohort of
8,299 participants within the esteemed Canadian Longitudinal
Study of Aging (CLSA). The CLSA cohort comprised nearly
2.1 million SNPs and 452 blood metabolites. Comprehensive
GWAS summary statistics are accessible for direct retrieval from
the European GWAS (GWAS ID: met-a) under the accession
number GCST90199621-902010209, encompassing data for
1,400 metabolites.

2.3 Outcome sources of MNBAC

The GWAS summary data for MNBAC were obtained from the
FinnGen studies, which are available through their website (https://
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r9.finngen.fi/) and included individuals of European ancestry, both
men and women. SAIGE (https://github.com/weizhouUMICH/
SAIGE) was utilized to conduct the GWAS analysis,
incorporating 20175454 variable SNPs across a cohort of
377,277 participants. After adjustments for factors such as age,
gender, high genotypic individual deletions (>5%), excessive
heterozygosity (4SD), and non-Finnish lineage, a subset of
206 MNBAC cases and 287,137 controls were selected for
scrutiny. MNBAC was defined using the ICD-10 code M13.
Further information on the data can be found on the
FinnGen website.

2.4 Statistical analysis

Statistical analysis was executed utilizing R software (version
4.3.1). The “TwoSampleMR” software was employed to performMR
analysis of the causal relationship between metabolites and
MNBAC. P < 0.05 ordinarily signifies the statistically significance
of the findings, thus indicating that such a correlation may be
regarded as evidence of causality (Xiang et al., 2021).

2.4.1 IVs selection
Meticulous selection of the approved IVs was imperative for

enhancing the robustness of MR analysis. Initially, we pursued
stringent criteria characterized by formidable values of 1 × 10−5

and 5 × 10−8. The SNPs used in the MR test adhered to the principles
of Mendelian inheritance: parental alleles were randomly allocated
to offspring, impervious to acquired traits. Therefore, these alleles
exhibited a high degree of independence and were potentially
unrelated to confounding factors. The universal standards for
SNP screening encompassed two thresholds: P < 1 × 10−5 and
P < 5 × 10−8, signifying their statistically significant inclusion in the
research. Lastly, we used Steiger filtration to eliminate any IVs that
may lead to causal inversion.

2.4.2 Statistical analyses for MR
We examined the two cohorts using 1,400 metabolites as the

exposure and MNBAC as the outcome in this study. MR analyses
were executed using the “Two Sample MR” software package, with
IVW analysis employed to synthesize the effects of multiple loci and
evaluate numerous SNPs (Yan et al., 2023). Without horizontal
pleiotropy, the IVW test was used as the principal method for
assessing causal effects to obtain unbiased estimates (Du et al., 2023).
The presence or absence of heterogeneity determined the existence
of fixed or random effects. The effect estimates were presented as
odds ratios (ORs) and 95% confidence intervals (CI).

In addition to MR analysis, the maximum likelihood estimator
(MLE), MR robust adjusted profile score (MR-RAPS), MR-Egger
test (Bowden et al., 2015) and the weighted median (WM) approach
(Bowden et al., 2016) were employed. WM data were utilized to
determine substantial causation. The absence of horizontal
pleiotropy was established if P > 0.05. The basic model and MR-
PRESSO analyses were used as part of the sensitivity analyses (Liu K.
et al., 2022). The F statistic was calculated using aggregated data
levels to ascertain IV exposure correlations. If F > 10, the
correlations were considered sufficiently robust to mitigate the
weak IVs bias. Within the IVW framework, the Cochrane Q
statistic was utilized to evaluate heterogeneity among SNP
estimates. Additionally,we validated the robustness of the data
using the simple mode and the leave-one-out method (Liu K.
et al., 2022).

3 Result

3.1 The study design of MR

The causal links between MNBAC and 1,400 metabolites were
unveiled through a two-sample MR analysis. The categorization of
metabolites and MNBAC conformed to the aggregated data

FIGURE 1
MR analyses process and major assumptions.
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acquired from the GWASs. Figure 1 depicts the flowchart outlining
the MR investigation involving the metabolites and MNBAC.

3.2 Selection of IVs related to MNBAC

We meticulously selected IVs linked to MNBAC from a pool of
2.1 million SNPs associated with 1,400 metabolites. Subsequent to a
quality control procedure integrating the Linkage Disequilibrium
(LD) effect and retrogression method, we utilized a P < 1 × 10−5 for
the calculations, resulting in the identification of 30,276 SNPs,
2295 SNP-metabolites, and IVs for MNBAC (threshold 1 × 10−5).
Each SNP demonstrated adequate validity (F-values ranging from
19.51 to 2,298.39, all F > 10) (Table 1). The most significant
information of the IVs is presented in Supplementary Table S1
(P < 1 × 10−5). Additionally, to establish the robustness of the results,
we adopted a more stringent threshold of 5 × 10−8 for the analysis,
which identified 2295 SNP metabolites and IVs for MNBAC
(F-values ranging between 29.71 and 2,298.39, all F > 10).

Significant data regarding IVs were provided within the specifics.
Supplementary Table S2 outlines the primary information of the IVs
(P < 5 × 10−8).

3.3 MR analyses results (P < 1 × 10−5)

We evaluated the influence of 1,400 metabolites on bone tumor
risk at a threshold of 1 × 10−5, and found suggestive evidence of
causality (P < 0.05) for five metabolites. These included
N-formylmethionine (FMet) levels (P = 0.001; OR = 3.789; 95%
CI [1.670–8.593]),isoursodeoxycholate levels (P = 0.010; OR = 0.183;
95% CI [0.058–0.576]), methionine sulfone levels (P = 0.032; OR =
1.749; 95%CI [1.048–2.921]), methyl glucopyranoside (alpha + beta)
levels (P = 0.044; OR = 1.451; 95% CI [1.009–2.085]), and
lignoceroylcarnitine (C24) levels (P = 0.006, OR = 0.268; 95% CI
[0.115–0.625]). Table 1 and Figure 2 presented these findings.
Notably, three of these metabolites, namely, methyl
glucopyranoside (alpha + beta) levels, fMet levels, and

TABLE 1 Causal results of MR analysis between metabolites and MNBAC with threshold of P < 1 ⅹ 10–5.

Exposure method nsnp pval Or (95%CI)

N-formylmethionine levels MR Egger 20 13.46 × 10−2 3.19 (0.74, 13.60)

N-formylmethionine levels Weighted median 20 0.14 × 10−2 3.79 (1.67, 8.59)

N-formylmethionine levels Inverse variance weighted 20 2.36 × 10−2 2.04 (1.10, 3.78)

N-formylmethionine levels Simple mode 20 63.71 × 10−2 0.66 (0.11, 3.64)

N-formylmethionine levels Weighted mode 20 1.60 × 10−2 3.65 (1.39, 9.53)

Isoursodeoxycholate levels MR Egger 17 1.09 × 10−2 0.18 (0.05, 0.57)

Isoursodeoxycholate levels Weighted median 17 6.90 × 10−2 0.31 (0.13, 0.72)

Isoursodeoxycholate levels Inverse variance weighted 17 4.43 × 10−2 0.49 (0.24, 0.98)

Isoursodeoxycholate levels Simple mode 17 15.02 × 10−2 0.27 (0.04, 1.47)

Isoursodeoxycholate levels Weighted mode 17 3.67 × 10−2 0.22 (0.06, 0.81)

Methionine sulfone levels MR Egger 29 4.69 × 10−2 1.97 (1.04, 3.73)

Methionine sulfone levels Weighted median 29 3.24 × 10−2 1.74 (1.04, 2.92)

Methionine sulfone levels Inverse variance weighted 29 4.80 × 10−2 1.42 (1.00, 2.03)

Methionine sulfone levels Simple mode 29 30.17 × 10−2 1.75 (0.62, 5.01)

Methionine sulfone levels Weighted mode 29 3.92 × 10−2 1.78 (1.05, 3.02)

Methyl glucopyranoside (alpha + beta) levels MR Egger 22 5.72 × 10−2 1.41 (1.01, 1.96)

Methyl glucopyranoside (alpha + beta) levels Weighted median 22 4.41 × 10−2 1.45 (1.01, 2.09)

Methyl glucopyranoside (alpha + beta) levels Inverse variance weighted 22 0.30 × 10−2 1.49 (1.14, 1.93)

Methyl glucopyranoside (alpha + beta) levels Simple mode 22 8.12 × 10−2 2.15 (0.94, 4.89)

Methyl glucopyranoside (alpha + beta) levels Weighted mode 22 2.71 × 10−2 1.40 (1.06, 1.86)

Lignoceroylcarnitine (C24) levels MR Egger 21 0.66 × 10−2 0.27 (0.12, 0.63)

Lignoceroylcarnitine (C24) levels Weighted median 21 0.77 × 10−2 0.48 (0.28, 0.82)

Lignoceroylcarnitine (C24) levels Inverse variance weighted 21 0.06 × 10−2 0.50 (0.34, 0.74)

Lignoceroylcarnitine (C24) levels Simple mode 21 93.49 × 10−2 0.96 (0.37, 2.47)

Lignoceroylcarnitine (C24) levels Weighted mode 21 3.26 × 10−2 0.52 (0.29, 0.90)
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methionine sulfone levels, were particularly associated with high-
risk factors for bone and joint cancer. Additionally,
isoursodeoxycholate concentrations and C24 levels, might be
linked to low-risk bone tumor. These findings were validated
using five different methods (Supplementary Table S3).

3.4 Heterogeneity analysis (P < 1 × 10−5)

Supplementary Table S5 lists the results of multiplicity and
heterogeneity assessments for all metabolites. Through sensitivity
analyses,we verified the effect of accurate MR results on metabolites
of MNBAC. Notably, FMet levels (P = 0.51), Isoursodeoxycholate
levels (P = 0.06), Methionine sulfone levels (P = 0.24), Methyl
glucopyranoside (alpha + beta) levels (P = 0.58), and C24 levels
showed no evidence of horizontal pleiotropy in relation to bone

tumors (P = 0.11) (Table 2). Meanwhile, no heterogeneity was
observed in FMet levels (MR-Egger: P = 0.26; IVW: P = 0.29),
Isoursodeoxycholate levels (MR-Egger: P = 0.15; IVW: P = 0.05),
Methionine sulfone levels (MR-Egger: P = 0.55; IVW: P = 0.53), and
Methyl glucopyranoside (alpha + beta) levels (MR-Egger: P = 0.12;
IVW: P = 0.13) (Table 2). Furthermore, the leave-one-out analysis
showed no meaningful difference. in casual estimation of FMet
levels. Methionine sulfone levels Isoursodeoxycholate levels. Methyl
glucopyranoside (alpha + beta) levels and C24 levels on
MNBAC (Figure 3).

To validate the accuracy of MR Egger regression, we further
validated the significant MR results using MLE, MR-PRESSO, MR-
RAPS. We found no evidence of heterogeneity in FMet levels (P =
0.295), isoursodeoxycholate levels (P = 0.074), methionine sulfone
levels (P = 0.622), methyl glucopyranoside (alpha + beta) levels (P =
0.238), and C24 levels (P = 0.519), indicating the lack of horizontal

FIGURE 2
Causal analysis 562 results of 1,400 metabolites and MNBAC (locus-wide significance, P < 1 × 10−5). The color corresponding to the P value is based
on the RGB color (P = 0, #66CCCC; P = 0.5, #CCFF66; P = 1, #FF99CC). The color corresponding to the OR value is based on the RGB color (OR = 0,
white; OR = 1, red; OR = 2, blue; OR = 3, green).
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pleiotropy (Table 2). Moreover, data robustness was reinforced
through sample-by-sample exclusion analysis, which
demonstrated consistent IVW results for lack of heterogeneity
and pleiotropy. Based on these findings, there appeared to be a
suggestive causal correlation between FMet levels,
isoursodeoxycholate levels, methionine sulfone levels, methyl
glucopyranoside (alpha + beta) levels, and C24 levels with MNBAC.

3.5 Results of MR analysis (P < 5 × 10-8)

Supplementary Table S4 presents the results pertaining FMet
levels and MNBAC, illustrating a notable causal significance for
FMet levels in MR analyses (IVW: OR = 3.12, 95%CI [1.16–8.92],
P = 0.05; WM: OR = 3.22, 95%CI [1.16–8.92], P = 0.02; MR Egger:
OR = 55.32, 95%CI [1.74–1750.53], P = 0.26). Furthermore, there
was a significant causal relationship between the metabolite levels of
C24 and MNBAC (IVW: OR = 0.42; 95%CI [0.25–0.70]; P = 0.0009;

WM: OR = 0.47; 95% CI [0.26–0.85]; P = 0.01; MR Egger: OR = 0.42;
95%CI [0.26–0.85]; P = 0.01) (Table 3; Figure 4).

3.6 Heterogeneity analysis (P < 5 × 10−8)

Supplementary Table S6 displays the pleiotropy and
heterogeneity test results for metabolisms. Heterogeneity analysis
results of C24 levels (MR Egger: P = 0.24; IVW: P = 0.41) and
multiplicity analysis (MR Egger: P = 0.34; MR-PRESSO: P = 0.31)
verified reliability of the results. Likewise, the scrutiny of
heterogeneity in FMet levels (MR Egger: P = 0.62; IVW: P =
0.21) and the multiplicity analysis (MR-PRESSO: NA; MR Egger:
P = 0.34) verified the accuracy of the data (Table 4). Concurrently,
the findings of sample-by-sample exclusion further validated the
robustness of the data (Figure 4). Unfortunately, due to the overly
stringent 5 × 10−8 threshold, only FMet levels and C24 levels were
obtained with fewer instrumental variables. Notably, C24 levels

TABLE 2 MR results of sensitivity analysis with threshold of P < 1 ⅹ 10–5.

Exposure Method Q Q-
pval

Method Q Q_pval egger_intercept pval MR-
PRESSO

N-formylmethionine levels IVW 21.85 0.29 MR Egger 21.32 0.26 −0.06 0.51 0.29

Isoursodeoxycholate levels IVW 25.92 0.05 MR Egger 20.34 0.16 0.143 0.06 0.07

Methionine sulfone levels IVW 26.70 0.53 MR Egger 25.29 0.55 −0.05 0.24 0.62

Methyl glucopyranoside (alpha + beta)
levels

IVW 28.05 0.13 MR Egger 27.63 0.11 0.02 0.58 0.23

LC (C24) levels IVW 18.32 0.56 MR Egger 15.61 0.68 0.11 0.11 0.51

FIGURE 3
The leave-one-out results of 1,400 metabolites and MNBAC (locus-wide significance, P < 1 × 10−5). (A) N-formylmethionine levels (B).
Isoursodeoxycholate levels (C). Methionine sulfone levels (D). Methyl glucopyranoside (alpha + beta) levels (E). Lignoceroylcarnitine (C24) levels.
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exhibited a significant correlation with MNBAC, while FMet levels
approached significance in terms of causal inference. In addition,the
leave-one-out analysis showed some difference. in casual estimation
of FMet levels and C24 levels on MNBAC (Figure 5; Supplementary
Figure S2). Furthermore, due to an insufficiency of IVs, the
multiplicity assessment for FMet levels was unattainable via
MR-PRESSO.

3.7 Further validation of the MR results

To further ascertain the causal relationship between metabolites
and MNBAC, we employed additional methods to validate the
results. Under the threshold of P < 1 × 10−5, the outcomes of
MR-PRESSO, MR-RAPS, and MLE provided additional
substantiation of the causal nexus between FMet levels,
Methionine sulfone levels, Isoursodeoxycholate levels, C24 levels,
and Methyl glucopyranoside (alpha + beta) levels with bone tumors
(Table 5). The results from MR-RAPS and MLE confirmed the
causal relationship between FMet levels and MNBAC, albeit not
verified by MR-PRESSO. Meanwhile, C24 levels were further
validated by MR-PRESSO, MR-RAPS, and MLE at a threshold of
P < 5 × 10−8 (Table 6).

3.8 Ethics statement

This summary-level data utilized in this study are de-identified
public data and are accessible to download. Each GWAS in this
study received ethical approval from their respective universities.

4 Discussion

This research conducted an MR analysis to investigate the
potential causal relationship between 1,400 metabolites and
MNBAC. By investigating the association from a host genetic
perspective, we aimed to validate the role of these metabolites in
altering susceptibility to MNBAC. Five MRmethods were employed
for the analysis. Although some of the results from various analytical
approaches were inconsistent, these differences did not significantly
influence our findings. The random effects IVW technique exhibited
superior statistical power compared to the other approaches, hence
it was selected as the major analytical approach in this work. While
there was a potential causal relationship, and multiple corrections
are too strict, they were also close to being corrected. The results of
this study suggested that the two metabolites may be linked to a
lower risk of MNBAC, while the three metabolites are related to a
higher risk of MNBAC. Our findings open up possibilities for
identifying novel biomarkers that can be utilized in future
MNBAC studies. Moreover, our results indicated potential
avenues for MNBAC prevention and treatment, including the
targeted manipulation of specific metabolite levels. Notably,the
cross-sectional aspect of this study made it difficult to find a
definitive connection between metabolites and MNBAC.
However, using MR analysis, we provided valuable insights into
the potential causative association and highlight the significance of
these metabolites in influencing susceptibility to MNBAC.

As the most prevalent type of MNBAC, osteosarcoma generates
severe symptoms and poses a threat to individuals of all ages due to
malignant neoplasia (Quintero Escobar et al., 2020). Several studies
on osteosarcoma have examined aberrant metabolisms. The

TABLE 3 Causal Results of MR analysis between metabolites and MNBAC with threshold of P < 5 ⅹ 10–8.

Exposure Method nsnp pval Or (95%CI)

N-formylmethionine levels levels MR Egger 3 26.34 × 10−2 55.32 (1.74, 1750.53)

N-formylmethionine levels levels Weighted median 3 2.40 × 10−2 3.22 (1.16, 8.92)

N-formylmethionine levels levels IVW 3 5.18 × 10−2 3.12 (0.99, 9.87)

N-formylmethionine levels levels Simple mode 3 17.29 × 10−2 5.55 (1.10, 27.95)

N-formylmethionine levels levels Weighted mode 3 16.06 × 10−2 3.90 (1.14, 13.27)

Lignoceroylcarnitine (C24) levels MR Egger 4 42.81 × 10−2 0.42 (0.07, 2.31)

Lignoceroylcarnitine (C24) levels Weighted median 4 13.57 × 10−2 0.47 (0.26, 0.85)

Lignoceroylcarnitine (C24) levels IVW 4 0.09 × 10−2 0.42 (0.25, 0.70)

Lignoceroylcarnitine (C24) levels Simple mode 4 19.35 × 10−2 0.49 (0.22, 1.12)

Lignoceroylcarnitine (C24) levels Weighted mode 4 10.33 × 10−2 0.47 (0.25, 0.89)

TABLE 4 MR results of sensitivity analysis, with threshold of P < 5 ⅹ 10–8.

Exposure Method Q Q_pval Method Q Q_pval Egger intercept pval MR-presso

N-fet levels IVW 3.09 0.21 MR Egger 0.23 0.62 −0.46 0.33 NA

LC (C24) levels IVW 2.82 0.41 MR Egger 2.82 0.24 −0.004 0.98 0.30
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development and progression of osteosarcoma is closely related to
cellular metabolites (Velayutham et al., 2023). A promising natural
metabolite, stylolite, has been discovered to activate vascular
endothelial growth factor receptor 2 (VEGFR2)and trigger its
downstream signaling pathways. This activation promotes
endothelial cell proliferation and angiogenesis while hindering
the growth and invasion of osteosarcoma cells, simultaneously
enhancing the sensitivity to chemotherapy drugs. Moreover,
particular metabolites such as zoledronic acid induce iron-
induced death in osteosarcoma cells by reducing coenzyme Q
levels and stimulating heme oxygenase 1(HMOX1)expression
(Ren et al., 2022). In vitro experiments involving osteosarcoma
stem cells have revealed comparable declines in metabolites
associated with the tricarboxylic acid (TCA) cycle (Zhong et al.,
2019). These reductions stem from impaired mitochondrial function
and are accompanied by diminished glutamine, aspartate, and

glutathione levels (Ren et al., 2020; Zhong et al., 2019).
Metabolite-based biomarkers for osteosarcoma exhibit potential
for diagnosis and monitoring disease progression (Fan et al.,
2021). These substances have been linked to developing and
regulating glucose metabolism and cellular regulatory
mechanisms in osteosarcoma. In conclusion, metabolites play a
vital role in MNBAC research. Here, we evaluated the effects of
1,400 metabolites on MNBAC risk and identified five metabolites
that showed suggestive causal relationships with MNBAC, which
were validated using more than five methods. These metabolites
included the FMet levels, methionine sulfone levels, methyl
glucopyranoside (alpha + beta) levels, isoursodeoxycholic acid
levels, and C24 levels. Among them, our finding of significant
causality between C24 levels and MNBAC is novel. The FMet
levels showed near-significant results. This study is the first to
discover the correlation between 1,400 metabolites and MNBAC.

FIGURE 4
MR analysis 566 results of 1,400metabolites andMNBAC (genome-wide statistical significance, P < 5 × 10−8). The color corresponding to the P value
is based on the RGB color (P = 0, #66CCCC; P = 0.5, #CCFF66; P = 1, #FF99CC). The color corresponding to the OR value is based on the RGB color
(OR = 0, #CCCC00; OR = 1, #088247; OR = 2, #11AA4D; OR = 3, #58CDD9; OR = 10, #FF6666).
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FIGURE 5
The leave-one-out results of 1,400 metabolites and MNBAC (P < 5 × 10−8); (A) N-formylmethionine levels (B). Lignoceroylcarnitine (C24) levels.

TABLE 5 MR Results of sensitivity analysis with threshold of P < 1 ⅹ 10–5.

Exposure Method Or (95%CI) p-val

N-formylmethionine levels MR-PRESSO 1.93 (1.43, 2.63) 4.31 × 10−2

N-formylmethionine levels MR-RAPs 1.98 (1.47, 2.67) 2.19 × 10−2

N-formylmethionine levels MLE 1.97 (1.47, 2.65) 2.07 × 10−2

Methionine sulfone levels MR-PRESSO 1.46 (1.24, 1.72) 2.87 × 10−2

Methionine sulfone levels MR-RAPs 1.47 (1.23, 1.76) 3.08 × 10−2

Methionine sulfone levels MLE 1.47 (1.23, 1.75) 2.89 × 10−2

Isoursodeoxycholate levels MR-PRESSO 0.51 (0.36, 0.71) 5.93 × 10−2

Isoursodeoxycholate levels MR-RAPs 0.49 (0.37, 0.65) 1.08 × 10−2

Isoursodeoxycholate levels MLE 0.52 (0.39, 0.68) 1.84 × 10−2

Lignoceroylcarnitine (C24) levels MR-PRESSO 0.52 (0.43, 0.62) 1.03 × 10−3

Lignoceroylcarnitine (C24) levels MR-RAPs 0.51 (0.42, 0.61) 2.81 × 10−4

Lignoceroylcarnitine (C24) levels MLE 0.52 (0.43, 0.62) 3.16 × 10−4

Methyl glucopyranoside (alpha + beta) levels MR-PRESSO 1.48 (1.30, 1.69) 6.31 × 10−3

Methyl glucopyranoside (alpha + beta) levels MR-RAPs 1.49 (1.31, 1.70) 1.93 × 10−3

Methyl glucopyranoside (alpha + beta) levels MLE 1.50 (1.32, 1.70) 1.33 × 10−3

TABLE 6 MR results of sensitivity analysis with threshold of P < 5 ⅹ 10–8.

Exposure Method Or (95%CI) P-val

N-formylmethionine levels MR-PRESSO Not enough intrumental variables NA

N-formylmethionine levels MR-RAPs 3.19 (1.96, 5.19) 1.69 × 10−2

N-formylmethionine levels MLE 3.19 (1.97, 5.19) 1.66 × 10−2

Lignoceroylcarnitine (C24) levels MR-PRESSO 0.48 (0.35, 0.66) 8.26 × 10−2

Lignoceroylcarnitine (C24) levels MR-RAPs 0.48 (0.37, 0.62) 3.70 × 10−3

Lignoceroylcarnitine (C24) levels MLE 0.48 (0.37, 0.62) 3.70 × 10−3
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C24 is a long-chain fatty acid derivative that participates in the
metabolism of fatty acids, particularly in the beta-oxidation process
within the mitochondria (Abd-Allah et al., 2009). Abnormal fatty
acid metabolism may be associated with tumor growth and survival,
thus, changes in C24 levels may reflect alterations in tumor
metabolic status in osteosarcoma cells, Researchers have found a
link between the concentration of C24 in serum and the risk of
MNBAC development, with higher concentrations associated with
lower risks (Liu T. et al., 2022), Similarly, a study on the testing dose
of C24 reported that it can reverse fatigue symptoms in MNBAC
patients with C24 deficiency (Farahzadi et al., 2023). Our research
has identified a noteworthy inverse relationship between C24 levels
and MNBAC, indicating a possible function of C24 in inhibiting
tumor growth. Assessing C24 levels could potentially assist in
identifying patients at high risk of MNBAC and serve as a
biomarker for tracking disease progression and evaluating
treatment efficacy.

FMet, an amino acid that typically corresponds to the start
codon, signifies the initiation of polypeptide chain synthesis. The
role of FMet in protein degradation processes is also significant,
particularly in the activity of peptidyl deformalize (PDF) (Silver,
2011). In osteosarcoma cells, PDF activity may be upregulated,
thereby affecting protein stability and intracellular signal
transduction (Lee et al., 2004; Pietzke et al., 2020). In our study,
the significant positive correlation between the FMet levels and
MNBAC indicated a potential role of FMet in promoting tumor
growth. Similarly, in another 11,966 individuals, FMet levels may
resulted in all-cause mortality and the risk of human cancer.
including MNBAC. suggesting a substantial connection between
FMet and the risk of MNBAC (Cai et al., 2021), In another cancer
study, FMet was utilized as a drug precursor, converted into formic
acid through the activity of PDF enzyme (Yu et al., 2015).

This study had several limitations. First, like other MR
researches on metabolites, although our study satisfies the MR
assumptions (IVs is closely related to the metabolite), there may
be other mechanisms or factors in some cases that result in a
correlation between IVs and the target variable, rather than a
causal relationship. Second, our study’s sample sizes was modest,
which may alter the dependability of our results. Given that GWAS
only included European ancestry participants, our findings may not
be applicable to other racial populations. Third, the multiple
statistical correction employed was overly strict and conservative,
potentially overlooking the metabolites that may have a causal
relationship with MNBAC. While there is potential for a causal
relationship, and the multiple corrections were overly strict, they
approach correction. Therefore, we considered biological
plausibility and did not rely solely on the results of the multiple-
hypothesis testing. Finally, due to the insufficient availability of an
ample number of IVs in this study, the implementation of reverse
MR analysis and multivariable Mendelian randomization analyses
(MVMR) was precluded. In future research, we plan to undertake
GWAS investigations specifically targeting FMet levels and
C24 levels to secure a robust set of IVs. This will facilitate a
more thorough validation of the causal relationship between
metabolites and MNBAC through the application of reverse MR
analysis and MVMR.

Concludingly, this study confirmed the causal link between
metabolites and MNBAC species, including and FMet levels.
These metabolites have the potential to serve as new biomarkers
or treatment targets for MNBAC and novel strategies for its
treatment and prevention.
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