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Background: A plethora of observational studies has established a significant
correlation between Obstructive Sleep Apnea (OSA) and Telomere Length (TL).
Nevertheless, a universal consensus on precise causal association and its
directionality has not yet been achieved. To shed light on this, we employed
Mendelian Randomization (MR) to investigate the bidirectional causal association
between OSA and TL.

Method: Utilizing publicly accessible Genome-Wide Association Studies (GWAS)
datasets, we procured genetic data pertinent to MR analysis. The study
incorporated samples from both the OSA (n = 217,955) and TL (n = 472,174)
cohorts. In the forwardMR analysis, OSA served as the exposure variable and TL as
the outcome. Conversely, the reverse MR analysis treated TL as the exposure and
OSA as the outcome. We employed the Inverse variance weighted (IVW) as the
primary methodology for MR analysis. To ensure the robustness of our MR
findings, multiple sensitivity analyses were performed.

Results: In the forward MR analysis, a negative correlation was indicated between
OSA and TL (IVW: odds ratio (OR) = 0.964, 95% confidence interval (CI):
0.939–0.980, P = 0.006 < 0.05). However, no significant association was
identified between TL and the risk of OSA in the reverse MR analysis (IVW:
OR = 0.965, 95% CI: 0.870–1.070, P = 0.499 > 0.05).

Conclusion: Our study indicated a potential association between OSA and the
increased risk of shorter TL, offering vital academic support for future clinical
studies on this association.
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1 Introduction

OSA is a sleep-associated respiratory disorder (Schütz et al., 2021). Its prevalence has
surged recently (Peppard et al., 2013; Ghavami et al., 2023), affecting approximately
100 million adults worldwide (Benjafield et al., 2019). OSA primarily arises from the
obstruction of the upper respiratory pathway, which restricts airflow. Those afflicted with
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OSA often experience apnea or hypoventilation during sleep,
leading to consistent intermittent hypoxia and repeated sleep
interruptions (Wallace et al., 2022). This sequence of
pathophysiological reactions can induce chronic inflammation
and oxidative stress, potentially resulting in cellular damage and
early cellular aging (Gaspar et al., 2017; Turkiewicz et al., 2021).
Persistent exposure to these conditions might compromise the
integrity of various physiological systems, and in severe instances,
pose mortal threats (Kapur et al., 2017; Bandi et al., 2021). Therefore,
comprehensive research into OSA’s implications for human health
is of paramount importance.

Telomeres, situated at the termini of eukaryotic chromosomes,
are specific structures whose length is commonly assessed in white
blood cells (O’Sullivan and Karlseder, 2010). Their fundamental role
is to maintain chromosome integrity and stability. Owing to
intrinsic constraints of cellular replication, telomeres aren’t
comprehensively replicated with each cellular division, resulting
in their consistent attrition. Upon reaching a specific diminutive
length, cells might suspend division, potentially precipitating
premature senescence or apoptosis (Blackburn et al., 2015; Wang
et al., 2018). Consequently, telomeres are recognized as pivotal
biological markers of cellular aging, often termed the aging
“timer” (Fumagalli et al., 2012). Existing research underscores the
profound correlation between telomere attrition and elevated
disease incidence and mortality (Aung et al., 2023; Wang et al.,
2023; Zhu S. et al., 2023). Thus, preserving telomere stability is
imperative for disease prevention and the deceleration of
cellular aging.

In recent years, the relationship between OSA and TL has
garnered considerable attention, particularly the contentious
debate over OSA as a potential risk factor for telomere
shortening (Turkiewicz et al., 2021). The majority of studies
highlighted a negative correlation between OSA severity and TL
(Barceló et al., 2010; Bhatt et al., 2021; Pinilla et al., 2021).
Contrarily, a few studies suggested that children diagnosed
with OSA might experience telomere elongation instead of
reduction (Kim et al., 2010). Another study proposed a
J-shaped relationship between TL and the severity of OSA,
suggesting that patients with moderate to severe OSA might
have longer telomeres (Polonis et al., 2017). Interestingly,
research indicated shorter TL in high-risk female OSA
patients, and this trend was independent of income, age,
obesity, smoking, hypertension, alcohol consumption, and
education level, but such a trend was absent in their male
OSA counterparts (Riestra et al., 2017). In contrast, another
study emphasized OSA as a significant factor leading to
telomere shortening in middle-aged men (Boyer et al., 2016).
Clarifying the exact relationship between OSA and TL is crucial
for a deeper understanding of OSA and its impact on human
health. However, given the conflicting findings on TL variations
in OSA patients and the absence of definitive evidence on
whether TL changes occur before or after OSA onset,
discerning a clear causal relationship remains elusive.

MR analysis is an analytical approach that leverages genetic
variations (single nucleotide polymorphisms, SNP) as
instrumental variables (IVs) to infer the causal relationship
between exposure and outcome (Xu et al., 2022). Given its
capacity to circumvent confounding factors and reverse

causality, the findings derived from MR are deemed more
credible. In this study, we employed a bidirectional two-
sample MR strategy to probe the potential causal association
between OSA and TL.

2 Methods

2.1 Research design

In alignment with the guidelines of the STROBE checklist for
MR studies (STROBE-MR), we undertook a bidirectional MR
analysis to assess the bidirectional association between OSA and
TL (Skrivankova et al., 2021). For the validity of this analysis, it was
essential that three core assumptions be met (Davies et al., 2018):①
IVs must be strongly associated with the exposure; ② IVs must be
independent of any confounders that could affect the outcome; ③
IVs affect the outcome only through their association with the
exposure, and not through any other pathways.

2.2 Data source

For this study, we utilized summary data from two GWAS
(https://gwas.mrcieu.ac.uk/) of European ancestry. Genetic
information for OSA was sourced from the publicly available
GWAS data in the FinnGen database, featuring 16,761 cases and
201,194 controls (Table 1). The diagnosis of OSA relied on ICD
codes (ICD-10: G47.3; ICD-9: 3472A), which were obtained from
the Finnish National Hospital Discharge Registry and the Cause
of Death Registry. This diagnosis was based on subjective
symptoms, clinical examination, and sleep registration, with a
threshold of AHI ≥5 events·h-1 or a respiratory event
index ≥5 events·h-1 serving as key indicators for confirmation
(Strausz et al., 2021). The GWAS data for TL was derived from
the United Kingdom Biobank (UKB), comprising 472,174 adults
with specific traits (Codd et al., 2021) (Table 1). This research
strictly relied on samples of European ancestry, effectively
eliminating confounding factors associated with racial
variations. As the data we employed are publicly available, no
supplementary ethical approval was required.

2.3 Selection of IVs

In accordance with the objective of identifying SNPs
significantly correlated with exposure, we adopted a genome-wide
significance threshold of P < 5 × 10−8. However, under this criterion,
many SNPs related to OSA were not identified. Thus, we adjusted
our criterion to a more lenient P < 5 × 10−7 for isolating OSA-
associated SNPs (Zhu Q. et al., 2023). Employing the PLINK
clustering technique, we excluded SNPs in linkage disequilibrium
(r2 > 0.001; aggregation window: 10,000 KB), retaining only the
SNPs with the most significant P-values. During data integration, we
discarded palindromic SNPs. To ascertain potential biases within
weak IVs, the strength of IVs was assessed using the F-statistic.
Previous research indicated that an F-statistic exceeding 10 signifies
a reduced likelihood of IV bias (Zhu Q. et al., 2023).

Frontiers in Genetics frontiersin.org02

Xie et al. 10.3389/fgene.2025.1294105

https://gwas.mrcieu.ac.uk/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1294105


2.4 Statistical analysis

In version 4.3.0 of R software, the “TwoSampleMR” package was
utilized for causality assessment. FourMRmethods were selected for
analysis: IVW, Weighted Median (WM), weighted mode, and MR-
Egger regression. IVW evaluates the variance of each SNP’s effect
estimation and assigns more weight to the SNPs considered to be
more stable and precise, enhancing the statistical robustness of the
overall effect estimation (Burgess et al., 2013). Thus, we primarily
adopted IVW for our MR analysis. However, caution is required as
associations between certain genetic variants and non-exposed
confounders may introduce bias into IVW results (Bowden et al.,
2017). To ensure the stability of our results, we also implemented
MR-Egger regression, WM, and weighted mode methodologies.
MR-Egger regression can adjust for potential confounders and is
somewhat tolerant to weaker IVs, but it generally requires a large
sample size (Burgess and Thompson, 2017). WM yields consistent
estimates even when up to 50% of the genetic variations prove
ineffective (Bowden et al., 2016). Additionally, the weighted mode
has a relatively lenient assumption regarding the efficacy of genetic
variations.

In MR analysis, when a specific SNP affects the outcome but this
influence is independent of the exposure’s causal relationship, it’s
termed horizontal pleiotropy. This phenomenon could introduce
biases in MR results. To comprehensively assess potential horizontal
pleiotropy, we employed several analytical methodologies: Firstly,
we used MR- Pleiotropy RESidual Sum and Outlier (MR-PRESSO)
to detect outliers that might violate the causal effect (Ong and
MacGregor, 2019). Subsequently, MR-Egger regression was
conducted. A substantial deviation of its intercept from zero
indicates horizontal pleiotropy. Lastly, by adopting a“leave-one-
out” study, we systematically eliminated each SNP to compare the
MR findings of the residual SNPs with the aggregate MR results.
Furthermore, given the potential varying impact of distinct SNPs on
exposure, such variations can lead to heterogeneity. Thus,
Cochrane’s Q value was utilized to gauge the
heterogeneity among SNPs.

3 Results

3.1 Forward MR analysis: causality of OSA
on TL

In our forward MR analysis, we adopted 8 SNPs linked with
OSA (P < 5.00 × 10−7) to explore their latent effects on TL. The
F-statistic for each SNP exceeded 10, with values ranging from
26.162 to 66.586. Details were provided in Supplementary Material:
Supplementary Table S1. Based on the IVW method, we found a
significant negative causal relationship between OSA and TL (OR =

0.964, 95%CI: 0.939–0.989, P = 0.006 < 0.05, Table 2). This
relationship was reinforced by results from both WM (OR =
0.954, 95%CI: 0.926–0.983, P = 0.002 < 0.05, Table 2) Weighted
Mode (OR = 0.951, 95%CI: 0.914–0.989, P = 0.032 < 0.05, Table 2).
Yet, findings from the MR-Egger regression did not confirm a
distinct causal association between OSA and TL (OR = 0.916,
95%CI: 0.802–1.050, P = 0.246 > 0.05, Table 2). We have
visualized these causal estimates in a scatter plot (Figure 1A).

To evaluate the stability of the aforementioned findings, we
conducted sensitivity analyses and heterogeneity tests. The MR-
PRESSO test revealed no outliers that could disrupt the causal
relationship (P = 0.241 > 0.05). The MR-Egger regression further
confirmed that the study results were uninfluenced by horizontal
pleiotropy (P = 0.475 > 0.05, Table 3). Using the “Leave-one-out”
technique for sensitivity analysis revealed that the stepwise exclusion
of individual SNPs exerted no substantial influence on the causal
relationship estimates (Figure 1B). Additionally, Cochran’s Q test
demonstrated no evidence of heterogeneity in either IVW (P =
0.178 > 0.05, Table 3) or MR-Egger regression (P = 0.158 >
0.05, Table 3).

3.2 Reverse MR analysis: causality of TL
on OSA

In reverse MR analysis, SNPs associated with TL were employed
as the IVs to evaluate their influence on OSA. After data
consolidation, four palindromic SNPs (rs2276182, rs2306646,
rs56178008, and rs670180) were excluded, and 130 validated
SNPs were chosen as IVs (P < 5.00 × 10−8). See Supplementary
Material for specifics: Supplementary Table S2. According to the
IVW results, there was no significant causal relationship between TL
and OSA. This finding was corroborated by other MR analyses
(Table 4). Moreover, no horizontal pleiotropy or heterogeneity was
observed (Table 5).

4 Discussion

In this study, we utilized an open-access GWAS dataset and
bidirectional two-sample MR methods to comprehensively evaluate
the relationship between OSA and TL. The results of forward MR
analysis, using IVW, WM, and weighted mode MR methodologies,
demonstrated a negative association between OSA and TL. This
suggests a close association between OSA and telomere depletion.
Although the MR-Egger findings were not statistically significant,
possibly due to the method accommodating horizontal pleiotropy,
resulting in wider confidence intervals and potential biases (Burgess
and Thompson, 2017; Rees et al., 2017). This underscores the
importance of considering methodological limitations when

TABLE 1 Summary of the GWAS.

Trait GWAS ID Sample size N SNPs Population PubMed ID

OSA finn-b-G6_SLEEPAPNO 217,955 16,380,465 European 33,243,845

TL ieu-b-4879 472,174 20,134,421 European 34,611,362

OSA, obstructive sleep apnea; TL, telomere length; N SNPs, Numbers of single nucleotide polymorphisms.
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making causal inferences. On the other hand, reverse MR analysis
substantiated the absence of a causal relationship between TL and
OSA risk, indicating that a reduction in telomere length does not
directly cause the onset of OSA. Sensitivity analyses and
heterogeneity tests further affirmed the robustness of our
findings. In summary, this study suggests that while OSA may

expedite the depletion of TL, no causal association exists between
TL and OSA risk.

Based on the literature search to date, this research is the
inaugural study employing MR techniques to scrutinize the
causal relationship between OSA and TL. Our results
substantiated a negative causal linkage between OSA and TL,

TABLE 2 Forward MR analysis of OSA on TL.

MR methods N SNPs β SE OR (95%CI) p-value

IVW 8 −0.037 0.013 0.964 (0.939–0.989) 0.006

MR Egger 8 −0.087 0.068 0.916 (0.802–1.050) 0.246

Weighted median 8 −0.047 0.015 0.954 (0.926–0.983) 0.002

Weighted mode 8 −0.050 0.019 0.951 (0.914–0.989) 0.032

OSA, obstructive sleep apnea; TL, telomere length; N SNPs, Numbers of single nucleotide polymorphisms; MR, mendelian randomization; SE, standard error; β, causal effect coefficient; OR,
odds ratio; IVW, inverse variance weighted.

FIGURE 1
MR analysis for OSA on TL. (A) The scatter plot illustrated an intuitive depiction of the relationship between OSA-related IVs and TL. (B) The “Leave-
one-out” sensitivity analysis enables the identification of bias-inducing SNPs, further elucidating their potential impact on the overall causal estimation.
OSA, Obstructive Sleep Apnea; TL, Telomere Length; instrumental variables, IVs; SNPs, single nucleotide polymorphisms.

TABLE 3 Analysis of heterogeneity and pleiotropy in forward MR.

MR methods p-value for heterogeneity egger_intercept p-value for pleiotropy

IVW 0.178

MR Egger 0.158 0.005 0.475

MR, mendelian randomization; IVW, inverse variance weighted.
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which aligns with previous research outcomes. For instance, a meta-
analysis incorporating seven case-control studies along with one
cohort study, involving a total of 2,639 participants, revealed that
individuals with OSA have significantly shorter TL compared to
their healthy counterparts (mean difference: −0.03; 95%CI:
−0.06 to −0.00; P = 0.003) (Huang et al., 2018). Subgroup
analyses based on age and sample size further reinforce this
observation. Moreover, after accounting for demographic and
lifestyle factors, cross-sectional studies demonstrated a significant
association between severe OSA symptoms and reduced TL (P =
0.007) (Carroll et al., 2019). Additionally, a pilot study revealed that
after 6 months of Continuous Positive Airway Pressure (CPAP)
treatment, significant alleviation of hypoxia symptoms was observed
in OSA patients, accompanied by an increase in TL (P = 0.03)
(Madaeva et al., 2022).

While the mechanisms underlying the association between OSA
and TL remain to be conclusively elucidated, extant research
supports the hypothesis that oxidative stress and inflammation
serve as foundational elements in establishing a negative causal
relationship between the two (Kim et al., 2016; Turkiewicz et al.,
2021). As such, this reinforces our findings that OSA serves as a risk
factor for TL shortening. Specifically, the prevalent conditions of
chronic intermittent hypoxia and sleep fragmentation in OSA
patients disrupt the oxygen equilibrium in the bloodstream, thus
precipitating oxidative stress. This sequence of events culminates in
the production of a plethora of Reactive Oxygen Species (ROS),
which inflict harm upon proteins, lipids, and DNA, thereby
accelerating the shortening of TL (Cadet and Wagner, 2013).
Moreover, heightened levels of various inflammatory indicators
like Tumor Necrosis Factor-α, Interleukin-6, and C-Reactive
Protein are frequently detected in the bloodstream of OSA
patients, possibly triggering systemic inflammation and
establishing a biological nexus between OSA and TL (Zhang
et al., 2016). Concurrently, OSA is often accompanied by
endocrine imbalances, notably fluctuations in cortisol levels,
which may further modulate telomerase activity, thus indirectly
affecting TL. Research by TempAku PF also suggested that OSAmay
affect telomerase activity by inhibiting the expression of KLOTHO

protein, thereby connecting OSA and TL (Tempaku et al., 2021). TL
serves as a key biomarker for biological aging and is connected to
various age-related diseases, whereas OSA is intimately linked with a
multitude of health challenges, including but not limited to
cardiovascular disorders (Labarca et al., 2018; Huang et al., 2020;
Ooi and Rajendran, 2023). Given that these phenomena may
interact through complex biochemical mechanisms and genetic
regulations, it becomes particularly crucial to gain a deeper
understanding of the impact of OSA on biological aging.
Consequently, our research sheds light on the potential negative
causal relationship between OSA and TL, providing new
perspectives for comprehending their interplay. This suggests that
alleviating OSA symptoms may be significant for delaying cellular
aging and maintaining telomere stability. Timely treatment of OSA
may not only emerge as a vital strategy for combating aging but also
afford novel insights for the prevention of age-related diseases.

The present study is characterized by multiple noteworthy
strengths. First, we employed a two-sample MR design based on
large-scale GWAS data, effectively minimizing the bias introduced
by unobserved confounding variables and thus more accurately
establishing the causal link between OSA and TL. Second, we
conducted a bidirectional causality analysis to comprehensively
ensure the exclusion of misleading causal effects when exploring
the relationship between OSA and TL. Lastly, to holistically evaluate
the causal effects, we used a variety of advanced statistical methods,
including IVW, WM, Weighted Mode, and MR-Egger regression.

This study is subject to several limitations. The reliance on
GWAS data from European populations limited the global
applicability of our findings. Further MR studies involving
diverse ethnic groups are warranted to corroborate these
findings. Second, there may be differential effects on TL among
OSA patients based on gender, age, and severity level. Unfortunately,
the absence of stratified GWAS data precludes a more
comprehensive analysis. Third, the IVs currently available for
causal inference were relatively limited. However, as GWAS
research evolves, we expect to identify a greater number of
genetic markers strongly associated with OSA. To summarize, the
study did shed light on the relationship between OSA and

TABLE 4 Reverse MR analysis of TL on OSA.

MR methods N SNPs β SE OR (95%CI) p-value

IVW 130 −0.036 0.053 0.965 (0.870–1.070) 0.499

MR Egger 130 −0.115 0.0891 0.890 (0.742–1.070) 0.219

Weighted median 130 −0.068 0.083 0.934 (0.797–1.095) 0.412

Weighted mode 130 −0.119 0.095 0.888 (0.743–1.061) 0.211

OSA, obstructive sleep apnea; TL, telomere length; N SNPs, Numbers of single nucleotide polymorphisms; MR, mendelian randomization; SE, standard error; β: causal effect coefficient; OR,
odds ratio; IVW, inverse variance weighted.

TABLE 5 Analysis of heterogeneity and pleiotropy in reverse MR.

MR methods p-value for heterogeneity egger_intercept p-value for pleiotropy

IVW 0.067

MR Egger 0.069 0.003 0.302

MR, mendelian randomization; IVW, inverse variance weighted.
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diminished TL. Nonetheless, the exact mechanisms contributing to
this correlation warrant further in-depth investigation.

5 Conclusion

Overall, our study definitively demonstrated that OSA
substantially hastens the deterioration of telomeres, which bears
significant implications for clinical practice, particularly given that
accelerated telomere degradation is linked to numerous ailments
and shortened lifespan. Nevertheless, we found no causal
relationship between TL and the risk of OSA onset. This insight
offers a novel direction for subsequent studies, implying that TLmay
not be a dependable indicator for assessing the risk of OSA.
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