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Editorial on the Research Topic
Genetics, evolution, and utilization of germplasm in crop improvement

Genetic diversity of different plant species is fundamental for trait development (Chung
et al., 2023). By using either advanced sequencing or mutagenesis, knowledge of genetic
diversity has been enriched in five newly published studies of Prunus tenella, Lagerstroemia
indica, Pisum sativum, Polygonati odorati and Ipomoea batatas. Each study focused on
specific genetic aspects, such as the P. tenella mitochondrial genome structure and unique
gene transfer patterns, L. indica chloroplast genome emphasizing photosynthesis gene
evolution and boundary shifts, and P. sativum SNP-based diversity highlighting population
structure in landraces and cultivars. Together, these studies reveal phylogenetic
relationships and adaptive traits, which could further support targeted breeding,
conservation, and improved resilience in agricultural contexts. These findings
collectively enrich genetic resources for many critical plant species.

Newly characterized levels and patterns of genetic diversity are critical for plant
identification and feature specifications. There are three papers from different Chinese
groups in this issue using genetic information from the cytoplasm, such as mitochondrial or
chloroplast DNA evidence to distinguish plant genomic features. For example, in-depth
analysis of the mitochondrial genome of the Chinese wild dwarf almond P. tenella, a rare
and valuable plant with medicinal and ornamental potential, complements the
chromosome level genome assembly (Qin et al., 2023). Using advanced Illumina and
Oxford Nanopore sequencing platforms, the assembled mitochondrial genome of
452,158 bp in length contains 63 unique genes, comprising 36 protein-coding genes,
24 tRNA genes, and 3 rRNA genes (Liu et al.). However, differing from some other Prunus
species, P. tenella exhibits unique repeat sequences, RNA editing sites, and intergenomic
gene transfers between mitochondria and chloroplasts. Phylogenetic analysis places P.
tenella closely with Rosaceae family members but highlights distinctions in its evolutionary
pathway compared to Prunus dulcis, indicating divergent adaptation strategies within
the genus.

By using the chloroplast genome structure of Lagerstroemia indica “Pink Velour” and
six related species, intricate mechanisms of photosynthesis gene evolution have been
revealed (He et al.). The high-resolution genome assembly contains 152,174 bp with a
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detailed annotation of 85 protein-coding genes, 37 tRNAs, and
8 rRNAs. Authors uncovered unique boundary variations in the
ycf1 gene across species, an evolutionary feature that distinguishes
species like Lagerstroemia fauriei and Lagerstroemia limii. Another
notable contribution is the use of nonsynonymous substitution rates
(Ka/Ks) in photosynthesis genes, showing variation in L. fauriei, L.
limii, and Lagerstroemia subcostata that indicate potential adaptive
responses to differing climates (He et al.). Those findings are
consistent with the previous study of divergence times of
Lagerstroemia by using chloroplast phylogenomics of 35 species,
which identified the ycf1 gene as being quite variable during
evolution (Dong et al., 2021).

For the four medicinal Polygonatum species, using codon usage
bias (CUB) to analyze the codon preferences of 204 chloroplast
protein-coding genes (PCGs) found the chloroplast genomes with
weak codon usage bias (Shi et al.). These plant chloroplast genomes
are enriched for AT bases and AT-ending codons. Natural selection
is the main factor influencing codon usage bias, and mutation
pressure also plays a role (Shi et al.). This study is of importance
to distinguish Polygonatum plants, among which more than
30 species have been globally used as traditional medicine and
functional food because of many chemical constituents with
verified biological activities (Zhao et al., 2018).

Toward improvement of agronomic traits, a population with
natural genetic variation or generated mutagenesis pools is of great
importance for breeding or pre-breeding programs (Holme et al., 2019).
This Swedish group used 265 globally sourced accessions of pea (P.
sativum), applying advanced Diversity Arrays Technology (DArT)
sequencing to identify 6,966 SNP and 8,454 in silico markers
(Brhane and Hammenhag). This highly informative genetic dataset
exhibited the highest diversity (Ne = 1.52, He = 0.31), with unique
private alleles primarily in European accessions (22 alleles), making
these groups particularly valuable for future breeding (Brhane and
Hammenhag). Notably, the reference genome of the elite vegetable pea
cultivar “Zhewan No.1” has been recently released, providing genetic
information relevant to many agronomic traits (Liu et al., 2024).

A Korean group chose to apply gamma radiation to the
sweetpotato (I. batatas) cultivar “Tongchaeru” for genetic
mutagenesis. With the aim of altered stem growth patterns,
authors combined transcriptomic changes and genetic alterations
for agronomic trait changes (Lee et al.). In summary, researchers
identified notable phenotypic changes in stem morphology, such as
longer or thinner stems in mutants compared to the wild type.
Transcriptomic analysis detected 15,832 differentially expressed
genes, with critical upregulation in the auxin-response gene

SAUR and PIF4, a key gene for cell elongation (Lee et al.). This
suggests that gamma-induced mutations can enhance auxin and
gibberellin pathways, promoting stem elongation. Due to the highly
heterozygous hexaploid genome of I. batatas, complicated genetic
studies and breeding programs have been comprehensively reviewed
for better sweetpotato improvement (Yan et al., 2022).
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