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Epigenetics is an important source of variation in complex traits that is not due to
changes in DNA sequences, and is dependent on the environment the individuals
are exposed to. Therefore, we aimed to estimate transgenerational epigenetic
heritability, percentage of resetting epigenetic marks, genetic parameters, and
predicting breeding values using genetic and epigenetic models for growth, body
composition, and reproductive traits in Landrace pigs using routinely recorded
datasets. Birth and weaning weight, backfat thickness, total number of piglets
born, and number of piglets born alive (BW, WW, BF, TNB, and NBA, respectively)
were investigated. Models including epigenetic effects had a similar or better fit
than solely genetic models. Including genomic information in epigenetic models
resulted in large changes in the variance component estimates.
Transgenerational epigenetic heritability estimates ranged between 0.042
(NBA) to 0.336 (BF). The reset coefficient estimates for epigenetic marks were
between 80% and 90%. Heritability estimates for the direct additive and maternal
genetic effects ranged between 0.040 (BW) to 0.502 (BF) and 0.034 (BF) to 0.134
(BW), respectively. Repeatability of the reproductive traits ranged between 0.098
(NBA) to 0.148 (TNB). Prediction accuracies, bias, and dispersion of breeding
values ranged between 0.199 (BW) to 0.443 (BF), −0.080 (WW) to 0.034 (NBA),
and −0.134 (WW) to 0.131 (TNB), respectively, with no substantial differences
between genetic and epigenetic models. Transgenerational epigenetic
heritability estimates are moderate for growth and body composition and low
for reproductive traits in North American Landrace pigs. Fitting epigenetic effects
in genetic models did not impact the prediction of breeding values.
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1 Introduction

Environmental perturbations, such as thermal stress and disease challenges, are major
threats to livestock production (Lacetera, 2019). In this context, breeding more resilient
animals, i.e., animals that can better cope with changing environments, has been indicated
as an alternative to improve animal welfare and productivity in challenging environments
(Brito et al., 2020). Genetic selection for more resilient animals using linear mixed model
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equations considering additive genetic effects has been in
development (Tiezzi et al., 2020; Freitas et al., 2023). However,
there are other non-genetic effects that may play a role in heritable
variation, including microbial, cultural, and epigenetic effects
(David and Ricard, 2019).

The field of epigenetics has received more attention during the
past decade due to its potential to help uncover the phenotypic
variation and inheritance of complex traits. However, the epigenetic
term is not novel, and it was first defined in 1940s by Conrad
Waddington (Waddington, 1942a; Waddington, 1942b), even
before the DNA structure was known. Waddington’s first
definition of epigenetics was associated with “phenotypic changes
without changes in genotypes” (Waddington, 1942a; Waddington,
1942b). Nowadays, epigenetics can be defined as “the inheritance of
gene expression patterns without altering the underlying DNA
sequence” (Allis and Jenuwein, 2016). The epigenome is mainly
composed by DNA methylations, histone modifications, chromatin
remodeling, and non-coding RNA (Bird, 2002; Morris and Mattick,
2014), and can dynamically change due to a variety of external
factors (exome), such as nutrition (pre- and post-natal), stress (e.g.,
heat, behavioral, disease), and exposure to chemicals (e.g.,
therapeutical drugs and toxic pollutants) or pathogens (Ibeagha-
Awemu and Yu, 2021). As reviewed by Wang and Ibeagha-Awemu
et al. (2021) and Ibeagha-Awemu and Yu (2021), epigenetic markers
can affect various economically important traits in livestock.
Therefore, it is important to investigate the amount of
phenotypic variation of complex traits that can be explained by
epigenetics and how this information could be used for management
and breeding purposes.

Epigenetic marks are created during environmental stress and can
be passed to the offspring by the germ cells and can, consequently,
affect phenotypic variation in subsequent generations (Tal et al., 2010;
Heard and Martienssen, 2014). Usually, epigenetic markers acquired
during life by an individual would be removed during meiosis and
germline reprogramming so that the embryos in the next-generation
would develop based on genetic information without influence of past
environment (Ibeagha-Awemu and Yu, 2021). Beyond environmental
factors, epigenetic markers can be affected by intrinsic factors, such as
sex and age (Wang and Ibeagha-Awemu, 2021). When the epigenic
mark reset fails, some epigeneticmarks are inherited and can affect the
next generations (Heard and Martienssen, 2014). Intergenerational
epigenetic effects can impact phenotypic variation up to two
generations on the dam side or one generation on the sire side
after exposure to the stressors, while transgenerational epigenetic
effects influence phenotypic variability in further generations even
without additional environmental stressors, when they can remain or
be lost (Heard and Martienssen, 2014).

Recent studies have aimed to model the effect of stressors (e.g.,
heat stress) on future performance and next generations in genetic
evaluations to capture epigenetic effects (Kipp et al., 2021; Weller
et al., 2021). For instance, Kipp et al. (2021) used random regression
models with Legendre orthogonal polynomials to model time-lagged
temperature humidity index (THI) experienced by dairy cattle
animals during the last week before birth (pre-natal or in uterus
heat stress) in a genetic model. Weller et al. (2021) tested the
hypothesis of transmission of transgenerational heat stress effects
by evaluating the effect of the exposure of F0 (great grandmother)
dairy cows during pregnancy over a F3 (great-granddaughter)

generation of cows. These studies used indirect approaches to
determine the effect of stressors on the phenotypic variation of
animals in an intergenerational (Kipp et al., 2021) and trans-
generational way (Weller et al., 2021), i.e., they did not formally
include an epigenetic effect in the statistical genetic models.

Previously, Varona et al. (2015) proposed an approach for
directly accounting for the transgenerational epigenetic effects in
the animal models commonly used for livestock genetic evaluations.
The authors proposed to include the transgenerational epigenetic
effect as an additional random effect in the animal models, with the
inverse of the epigenetic relationship matrix (Λ−1) used as the
covariance structure for the epigenetic effect at the individual
level. The epigenetic relationship matrix (Λ) and its inverse were
derived by Varona et al. (2015) using the theory developed by Tal
et al. (2010). The advantages of using the Varona’s et al. (2015)
method are: 1) it allows the estimation of the proportion of
phenotypic variance explained by the transgenerational epigenetic
effects, termed as transgenerational epigenetic heritability; 2) it is an
epigenetic effect associated with an overall response to environment/
stress instead of only accounting for specific stressors (e.g., heat
stress); 3) it provides epigenetic solutions for all animals included in
the pedigree file; and, 4) it is based on routinely-recorded datasets as
opposed to generating additional datasets such as whole-genome
bisulfite sequencing for assessing DNA methylation patterns.
However, the method is based on strong assumptions, such as
the independence of epigenetic, genetic, and residual effects. Few
studies have applied the Varona’s et al. (2015) method in the
literature (Varona et al., 2015; Paiva et al., 2018a; Paiva et al.,
2018b), and none to our knowledge have used pig datasets. There
are well-established reports of lifelong negative postnatal effects of
prenatal (in utero) heat stress for production and reproduction
traits in pigs (Johnson and Baumgard, 2019), but the effect of
epigenetics on phenotypic variation in complex traits in pigs is
still unknown. Therefore, the primary study objectives were to
estimate transgenerational epigenetic heritability, determine the
percentage of the reset and transmissibility rate of epigenetic
marks, as well as to estimate genetic parameters and predict
breeding values based on statistical models fitting exclusively
genetic or genetic and epigenetic effects for growth, body
composition, and reproductive traits in North American
Landrace pigs.

2 Materials and methods

No ethical and animal care approval was needed for this study
because all the data used was previously collected and provided by
commercial breeding operations.

2.1 Traits and phenotypic quality control

Datasets from five nucleus herds located in North Carolina and
Texas (USA) were provided by Smithfield Premium Genetics (SPG;
Rose Hill, NC, United States) and consisted of records from
purebred Landrace pigs. Measurements were collected between
the years 2014–2019. The five traits included in this study were
categorized as: 1) growth: birth weight (BW) and weaning weight
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(WW); 2) body composition: off-test backfat (BF); and 3)
reproduction traits: total number of piglets born (TNB) and
number of piglets born alive (NBA).

Records outside of an interval of 3.5 standard deviations (SD)
from the mean were removed from further analyses. Observations
from animals above the sixth parity or sows with less than 3 or more
than 20 piglets per litter were also removed due to lower incidence.
Animals with phenotypic observations but not present in the
pedigree file and animals whose pedigrees were not complete for
at least four generations were also removed from the analyses. This
quality control was done to keep only relevant information for the
variance component estimation analyses (Nilforooshan and
Saavedra-Jiménez, 2020), especially for estimating epigenetic
effects that require deeper knowledge of the genealogy and more
complex partition of the phenotypic variance (Tal et al., 2010). The
“optiSel” package in R (Wellmann, 2019) was used to check for
erroneous pedigree entries and pedigree completeness. After the
phenotypic data editing, the contemporary groups (CG) were
defined by the concatenation of birth year, month, and farm for
the growth and body composition traits and farrow year, month, and
farm for the reproductive traits. The CG were defined based on the
trait groups to better capture animals that would move together and
share similar management practices (i.e., contemporaries). The
number of animals and the descriptive statistics for all traits,
after quality control, as well as the number of CG are included in
Table 1. A minimum number of five animals was set for each level of
the CG effect as well as for all other fixed effects included in the
models (described later).

2.2 Pedigree and genotypes

After pedigree quality control, the pedigree consisted of
17,794 animals, spanning a maximum of 12 generations, with a
mean (SD) pedigree completeness index of 0.84 (0.33) for growth
and body composition traits, while for reproductive traits, the
pedigree comprised 8,390 animals, spanning 11 generations, with
a pedigree completeness index of 0.83 (0.29). The “optiSel” package
in R (Wellmann, 2019) was also used to calculate the pedigree
statistics shown above. The RENUMF90 package from the
BLUPF90+ family of programs (Misztal et al., 2018) was used to
renumber the pedigree and keep up to four generations back from
the animals with phenotypic and/or genomic information to reduce
the pedigree and, consequently, time to reach convergence and

memory usage during the analyses (Nilforooshan and Saavedra-
Jiménez, 2020). Previous analyses tracing up to 20 generations back
in the pedigree using RENUMF90 (Misztal et al., 2018) did not affect
the estimates (results not shown).

Genotypes were available for 12,759 individuals genotyped with a
Porcine SNP50K Bead Chip (Illumina, San Diego, CA, United States).
The quality control (QC) was performed using the PREGSF90 software
(Misztal et al., 2018) to remove samples and SNPs with call rate lower
than 0.90 and SNPs with minor allele frequency lower than 0.05, SNPs
with a difference between expected and observed heterozygous greater
than 0.15, and SNPs located in non-autosomal chromosomes or with
unknown genomic positions. After QC, 12,759 individuals and
34,524 SNPs remained for further analyses.

2.3 Transgenerational epigenetic variance
and heritability estimation

The transgenerational epigenetic component of covariance
between relatives was derived based on the method proposed by
Tal et al. (2010). The main assumption made by the authors was that
the covariances between close relatives change when epigenetic
marks are being transmitted across generations. Later, Varona
et al. (2015) used this theory to derive the Λ and Λ−1. The Λ
matrix is calculated using the auto-recursive parameter λ, in which
λ � 0.5(1 − ]), where ] is the reset coefficient, defined as the
probability that the epigenetic state of the genome changes from
one generation to the next. In brief, Tal et al. (2010) proposed a reset
coefficient (]) of the epigenetic marks and its complement (1 − λ) as
the transmissibility of the epigenetic marks, which weights the
covariance between relatives in the presence of factors that can
cause epigenetic changes. A Python function (see Additional file 1)
was implemented to calculate the lower triangular and diagonal
portion of Λ−1 directly in the long format to estimate the
transgenerational epigenetic component of variance (σ2ξ) and
heritability (h2ξ) using the BLUPF90 family programs (Misztal
et al., 2018). The Phyton function developed in this study was
based on the algorithm proposed by Varona et al. (2015), which
assumed the same epigenetic variance across generations and
between sexes. These assumptions allow the calculation of the

epigenetic heritability (or epigenetic ratio) as h2ξ �
σ̂2ξ

σ̂2y
, where σ̂2y is

the phenotypic variance, i.e., is the sum of all variance components
from the model used to evaluate each trait.

TABLE 1 Descriptive statistics for birth weight (BW), weaning weight (WW), backfat (BF), total number of piglets born (TNB), and number of piglets born alive
(NBA) in North American Landrace pigs.

Variablea Trait

BW (kg) WW (kg) BF (inch) TNB (n) NBA (n)

Individuals 10,862 10,862 10,862 5,210 5,210

Records 10,862 10,862 10,862 10,051 10,051

SD 0.34 1.73 0.14 3.45 3.26

CG 138 138 138 45 45

aNumber of phenotyped individuals (Individuals), records (Records), standard deviation (SD), and contemporary groups (CG) after the quality control.
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2.4 Statistical methods

Model building was conducted before fitting the epigenetic
models. The systematic effects (presented later) were variables
statistically significant at 5% probability in a linear model from a
set of environmental (non-genetic) variables. Once the systematic
effects were defined for each trait, the set of random effects to be
used in the genetic models were chosen under the Restricted
Maximum Likelihood (REML) (Patterson and Thompson, 1971)
approach using the Average Information algorithm (AI-REML)
(Gilmour et al., 1995) and the Akaike Information Criterion
(AIC) (Akaike, 1974). The rank for the genetic models using
different sets of random effects is presented in Supplementary
Material 2: Supplementary Table S1, and the best genetic model
(lowest AIC with meaningful estimates of the genetic parameters,
i.e., within or close to previous estimates for the parameter and trait)
for the evaluated traits were:

y � Xb + Zu + Zm + Sq + e (1)
y � Xb + Zu + Zm + e (2)
y � Xb + Zu +Wpe + e (3)

where Equations 1–3 are the genetic models for the growth (BW and
WW), back fat thickness (BF), and reproductive (TNB and NBA)
traits, respectively; y is the vector of the phenotypic records for each
trait; b is the vector of systematic effects (for BW: gender, birth
parity, and CG; WW: gender, birth parity, CG, and weaning age and
birth weight as covariates; BF: gender, birth parity, CG, and off-test
age as covariate; TNB and NBA: farrowing age as linear and
quadratic covariates, CG, and parity); u is the vector of random
direct additive genetic effects; m is the vector of random maternal
additive genetic effects; q is the vector of random common litter
environment effects; pe is the vector of random permanent
environmental effects; and e is the vector of random residuals. X,
Z, S, and W are the incidence matrices for b, u, m, q, and pe,
respectively. BW was used as a covariate in the WW to account for
the starting point of the growth trajectory in this trait. The
AIREMLF90 software (Misztal et al., 2018) was used to estimate
variance components under the following assumptions for each
genetic model:

u
m
q
e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~ N

0
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
Aσ2u Aσu,m 0 0
Aσu,m Aσ2m 0 0
0 0 Iσ2q 0
0 0 0 Iσ2e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

u
m
q
e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~ N

0
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
Aσ2u 0 0 0
0 Aσ2m 0 0
0 0 Iσ2q 0
0 0 0 Iσ2e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

u
m
e

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ~ N
0
0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, Aσ2u Aσu,m 0
Aσu,m Iσ2m 0
0 0 Iσ2e

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠ (6)

u
pe
e

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ~ N
0
0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, Aσ2
u 0 0

0 Iσ2pe 0
0 0 Iσ2e

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠ (7)

where the assumption (Equation 4) was used for BW, Equation 5 for
WW, Equation 6 for BF, and Equation 7 for TNB and NBA. The
pedigree-based relationship matrix (A) was used to model the

covariances in u and m in the genetic analysis, and the identity
(I) matrix was used for the q, pe, and e. The σ2u, σ

2
m, σ

2
q, σ

2
pe, and σ2e

are the variance components for u,m, q, pe, and e, respectively, and
σu,m is the covariance between u and m. The genetic models,
i.e., models using the A as covariance structure for the additive
genetic effects, will be called BLUP models from now on.

The Amatrix was replaced by theHmatrix in the BLUP models
when the genomic information was included in the estimation of
genomic-based variance components, i.e., single-step genomic
BLUP models (ssGBLUP) (Legarra et al., 2009; Christensen and
Lund, 2010). This H is the matrix that combines the pedigree and
genomic information, and its inverse (H−1) was computed directly
as (Aguilar et al., 2010):

H−1 � A−1 + 0 0
0 τ αG + βA22( )−1 − ωA−1

22
[ ] (8)

where A−1, A22, A−1
22 , and G are the inverse of the pedigree

relationship matrix, part of the A related to the genotyped
animals, its inverse, and the genomic relationship matrix,
respectively (Equation 8). The G was computed as in method
1 proposed by VanRaden (2008). The scaling parameters (τ and
ω) were equal to 1.00, and the blending parameters α and β were
equal to 0.95 and 0.05, respectively.

The epigenetic model for each trait was obtained by expanding
the BLUP models for each trait including the transgenerational
epigenetic effect, which will be called Epi-BLUP. In summary, the
term Zξ was included in the models (Equations 1–3), which became:

y � Xb + Zu + Zm + Sq + Zξ + e (9)
y � Xb + Zu + Zm + Zξ + e (10)
y � Xb + Zu +Wpe + Zξ + e (11)

where Equations 9–11 are the epigenetic models for growth (BW and
WW), backfat thickness (BF), and reproductive (TNB andNBA) traits,
respectively; ξ is the vector of epigenetic effects, with ξ ~ N(0,Λσ2ξ)
assumed to be uncorrelated to all the other random effects, as proposed
by Tal et al. (2010) and Varona et al. (2015); all the other effects were
previously described. To estimate the transgenerational epigenetic
heritability, the best epigenetic model, i.e., the model that presented
the best λ, was defined first because the reset and transmissibility of the
epigenetic markers are population-specific parameters. In this sense, a
grid search ranging from 0.05 to 0.45 by 0.05 (totaling nine epigenetic
models for each trait) was evaluated for λ in the creation ofΛ−1 that was
fitted directly in the epigenetic models. The H matrix (Legarra et al.,
2009) was also used to model the additive genetic relationships in the
epigenetic models to study the impact of genomic information in these
models, i.e., epigenetic models including genomic information (Epi-
ssGBLUP) and not epigenomic models (e.g., using whole-genome
DNA methylation).

2.5 Model comparison

Even though both REML-based and Bayesian inference-based
methods should converge to the same population parameters, there
are differences in the statistical properties of these methods, which
are important to consider, especially if the models are complex
(Gianola and Fernando, 1986). In this context, we have estimated

Frontiers in Genetics frontiersin.org04

Araujo et al. 10.3389/fgene.2024.1526473

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1526473


variance components based on BLUP, ssGBLUP, Epi-BLUP, and
Epi-ssGBLUP models using Bayesian inference. Bayesian inference
was used in this step because the epigenetic models have a complex
covariance structure and this method is more robust to model
complexity (Gianola and Fernando, 1986).

The best Epi-BLUP or Epi-ssGBLUP model for each trait, i.e., with
the best λ, under Bayesian inference was chosen using the Deviance
Information Criterion (DIC; lower values indicate better model fit)
(Spiegelhalter et al., 2002). Maximum likelihood estimates from the AI-
REML runs were used as starting values in the Bayesian inference to
improve the sampling process (Harms and Roebroeck, 2018) as poor
starting values tend to slow model convergence (Raftery and Lewis,
1992). The THRGIBBS1F90 software (Misztal et al., 2018) was used to
estimate variance components considering all traits as linear traits.
Initial values for size, burnin, and interval in the MCMC chain
were defined as 100,000, 10,000, and 10, respectively, for all traits
and models, and these values were increased if convergence was
not achieved based on the author’s experience and final values are
presented in the results section. Convergence was verified based on
the Geweke diagnostic (Geweke, 1992) with 5% probability, a
stationarity test (Heidelberger and Welch, 1983) criterion, and
visual inspection. The convergence tests and visual inspection of
the chains were done using the R software (R Language, 2012) with
the “boa” package (Smith, 2007).

2.6 Evaluating prediction results

After estimating the variance components, the solutions of the
mixed model equations for the best fit models were evaluated. The
purposes of these analyses were mainly to: 1) investigate the
association between the solutions of the additive, maternal, and
permanent environment effects in a genetic or genomic model
including the transgenerational epigenetic effects; 2) assess the
changes in the solutions by including the transgenerational
epigenetic effects; and 3) evaluate the prediction accuracy, bias,
and dispersion of the breeding values in young non-phenotyped
individuals when including the transgenerational epigenetic effects
in the models.

The association between the additive, maternal, and permanent
environment effects when including the transgenerational
epigenetic effects in the models was evaluated using a Pearson
correlation between the solutions considering all animals used for
variance component estimation (please see the sections Traits and
dataset edits and Pedigree and Genotypes). Changes in the solutions
when including the transgenerational epigenetic effects were
evaluated using a paired t-test with a significance level of 0.05%
for the difference between the solutions, also considering all animals
used for variance component estimation.

The prediction accuracy, bias, and dispersion were investigated
using the Linear Regression method (LR) (Legarra and Reverter,
2018). In brief, a set of animals born in 2019 (N = 571) chosen
among the ones used for the estimation of variance components had
their phenotypic records masked for BW, WW, and BF, and were
considered as the focal animals (young non-phenotyped selection
candidates). In the case of TNB and NBA, the focal animals for the
LR method were born in 2017 (N = 933), because this was the last
year with phenotyped animals for the reproductive traits. After

defining the focal animals, the whole and partial datasets for
applying the LR method were created. The whole dataset
included all animals and phenotypes used for variance
component estimation in the prediction, while in the partial
dataset the phenotypes for the focal animals were removed, so
that their estimated breeding values (EBV) were obtained based
on the relationships with the remaining animals with phenotypic
records. In the end, the prediction accuracy, bias, and dispersion of
the EBV for the focal animals were calculated as:

Accuracy �
���������������
cov EBVW,EBVI( )

1 − �F( )σ̂2u
√

(12)

Bias � ave ûEBVI( ) − ave ûEBVW( ) (13)

Dispersion � cov EBVW,EBVI( )
var EBVI( )( ) − 1 (14)

where cov(EBVW, EBVI) is the covariance between the EBV in the
whole (EBVW) and incomplete, i.e., partial, (EBVI) datasets, �F is the
average inbreeding (pedigree or genomic), ave() represent the
arithmetic average function, ûEBVW and ûEBVI are the predicted
EBV in the whole and incomplete datasets, respectively, and
var(EBVI) is the variance of the EBV in the incomplete datasets
(Equations 12–14). The other equation components were
previously described.

3 Results

3.1 Model comparison

The Epi-BLUP model presented a better fit (lower DIC)
compared to BLUP for BW, WW, and BF (Table 2). λ =
0.05 provided the lowest DIC for BW and WW in the Epi-BLUP
models (10,387.47 and 44,350.08, respectively), and λ = 0.10 was the
best for BF (−30,458.31), which were lower than the DIC of the
BLUP models for these traits (21,258.82, 52,803.60, and −17,142.00,
respectively). Epi-BLUP models with λ = 0.05 provided slightly
lower DIC for TNB and NBA (52,651.09 and 51,609.69, respectively)
compared to the BLUP model (52,651.31 and 51,610.34,
respectively), suggesting that the Epi-BLUP models would be a
better choice for these traits as well.

When including genomic information, DIC values were lower in
the best Epi-ssGBLUP models for BW, WW, BF, TNB, and
NBA (−1,208,421.73, −924,295.31, −6,259,876.37, −112,151.59, −
105,368.96, respectively) compared to the ssGBLUP models
for these traits (−453,655.16, −439,644.93, −377,412.68,
−11,668.76, −101,485.82, respectively). Similar ranks were
observed between the Epi-ssGBLUP and Epi-BLUP models
under Bayesian inference, with the best λ value of 0.05 for
BW, WW, TNB, and NBA, except for BF, with the best λ

value of 0.15.

3.2 Variance components and genetic
parameters

The results of the genetic parameter estimation for BW are
presented in Table 3. Chain size was much higher in the epigenetic
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models to obtain stable samples in the Markov-Monte Carlo chain
(MCMC). The size of the chain for the Epi-BLUP model (biggest
chain) was 1,750,000 samples with a burn-in of 1,000,000 and thin of
100, while for the BLUP model (smallest chain), these parameters
were 220,000, 10,000, and 10, respectively. Small to no differences
were observed among the variance components and genetic
parameters between BLUP, Epi-BLUP, and ssGBLUP for BW,
except for σ̂2e , which was much smaller in the Epi-BLUP model.
In this sense, σ̂2P was also similar across the BLUP, Epi-BLUP, and
ssGBLUP models, indicating that there was a partition of the
variances in the Epi-BLUP model which resulted in the σ̂2ξ being
extracted directly from the residuals. In the case of the Epi-
ssGBLUP, there was an inflation of the σ̂2u and σ̂2m compared to
the other models, which were more than two and three times larger,
respectively, in the Epi-ssGBLUP. Despite the reduction in the
proportion of the phenotypic variation explained by the common
litter effect (q2) and σ̂2ξ in the Epi-ssGBLUP model, the σ̂2P in this

model was the largest compared to all other models for BW
(0.766 vs. ~0.560). The additive direct and maternal heritability
estimates followed a similar pattern of the variance components
across models, but the q2 and σ2ξ , and consequently h2ξ , were higher
in the Epi-BLUP model (0.296, 0.186, and 0.330, respectively)
compared to the Epi-ssGBLUP model (0.204, 0.160, and 0.209,
respectively). A similar pattern of the results was observed in the
WW and BF (Tables 4, 5, respectively).

The results of the MCMC parameters, variance components,
and genetic parameters for TNB and NBA are presented in Tables 6,
7, respectively. Similar patterns were observed for the MCMC
parameters, σ̂2u, σ̂2P, h2u, and h2ξ in the TNB and NBA compared to
the growth and body composition traits. However, the source of σ̂2ξ
in the Epi-BLUP and Epi-ssGLUP models was not due to σ̂2e but due
to the σ̂2pe in the reproductive traits. There were no substantial
differences in the σ̂2e across all models for TNB and NBA. On the
other hand, σ̂2pe reduced in both Epi-BLUP and Epi-ssGLUP models

TABLE 2 Deviance Information Criteria (DIC) of genetic and epigenetic models including or not genomic information in the relationship matrix for birth
weight (BW), weaning weight (WW), backfat thickness (BF), total number of piglets born (TNB), and number of piglets born alive (NBA) in North American
Landrace pigs.

Model BW WW BF TNB NBA

BLUPa 21,258.82 52,803.60 −17,142.00 52,651.31 51,610.34

Epi-BLUPb

λ = 0.05 10,387.47e 44,350.08 −28,902.60 52,651.09 51,609.69

λ = 0.10 11,147.89 48,203.01 −30,458.31 52,651.50 51,609.86

λ = 0.15 15,545.24 50,925.51 −29,468.32 52,652.01 51,610.20

λ = 0.20 18,905.59 51,966.21 −25,555.34 52,652.34 51,610.72

λ = 0.25 20,188.07 52,362.57 −21,887.61 52,652.59 51,611.23

λ = 0.30 20,706.73 52,553.16 −19,945.25 52,652.66 51,611.52

λ = 0.35 20,963.79 52,657.89 −18,828.57 52,652.56 51,611.28

λ = 0.40 21,113.59 52,718.82 −18,185.18 52,652.18 51,610.93

λ = 0.45 21,210.20 52,757.45 −18,119.81 52,651.63 51,610.44

ssGBLUPc −453,655.16 −439,644.93 −377,412.68 −11,668.76 −101,485.82

Epi-ssGBLUPd

λ = 0.05 −1,208,421.73 −924,295.31 −1,833,307.53 −112,151.59 −105,368.96

λ = 0.10 −1,186,057.16 −795,626.58 −4,113,637.44 −112,217.45 −105,341.43

λ = 0.15 −907,078.74 −640,406.81 −6,259,876.37 −112,154.49 −105,324.45

λ = 0.20 −686,688.81 −568,217.48 −6,182,700.78 −112,088.94 −105,240.67

λ = 0.25 −586,897.04 −529,250.64 −2,836,279.30 −104,912.69 −105,098.22

λ = 0.30 −538,938.55 −507,224.16 −1,307,419.47 −112,010.57 −105,174.30

λ = 0.35 −513,806.96 −493,565.86 −796,911.59 −111,990.23 −105,060.72

λ = 0.40 −497,627.71 −484,808.98 −577,800.96 −111,986.69 −105,050.30

λ = 0.45 −487,313.12 −479,013.17 −460,657.76 −111,959.51 −105,024.00

aBest Linear Unbiased Prediction using A (pedigree) as the relationship matrix for the additive genetic effect.
bEpigenetic model obtained by including the transgenerational epigenetic effect in the BLUP model with their respective recursive parameter (λ) values.
cSingle-step genomic BLUP obtained by replacing the A by the H (combined pedigree and genomic relationship matrix) matrix in the analyses.
dEpigenetic model including genomic information obtained by expanding the ssGBLUP model by including the transgenerational epigenetic effect with their respectively λ values.
eItalics DIC values indicate the lowest (best) values, in which two values were defined per trait (using or not genomic information).

Frontiers in Genetics frontiersin.org06

Araujo et al. 10.3389/fgene.2024.1526473

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1526473


TABLE 3Chain parameters, posteriormeans, and high posterior densities of the variance components and genetic parameters estimates for the birthweight
of Landrace pigs using genetic and epigenetic models with pedigree- or single-step genomic BLUP under a Bayesian approach.

Parametera BLUPb Epi-BLUPc (λ � 0.05) ssGBLUPd Epi-ssGBLUPe (λ � 0.05)

MCMC chain parameters and DIC

Size 220,000 1,750,000 225,000 625,000

Burn-in 10,000 1,000,000 126,000 225,000

Thin 10 100 10 25

DIC 21,258.821 −453,655.16 10,387.47 −1,208,421.73

Posterior means and standard deviation for the variance components and ratios

σ2u 0.028 (0.011)f 0.022 (0.011) 0.037 (0.008) 0.077 (0.023)

σ2m 0.075 (0.013) 0.074 (0.013) 0.076 (0.011) 0.270 (0.039)

σu,m −0.007 (0.011) −0.005 (0.011) −0.009 (0.010) −0.014 (0.030)

σ2q 0.167 (0.009) 0.167 (0.009) 0.166 (0.009) 0.156 (0.009)

σ2ξ — 0.186 (0.075) — 0.160 (0.084)

σ2e 0.300 (0.009) 0.119 (0.074) 0.296 (0.008) 0.117 (0.082)

σ2P 0.563 (0.009) 0.563 (0.009) 0.567 (0.010) 0.766 (0.026)

h2u 0.050 (0.020) 0.040 (0.020) 0.065 (0.014) 0.101 (0.030)

h2m 0.132 (0.023) 0.132 (0.023) 0.134 (0.019) 0.352 (0.044)

ru,m −0.123 (0.227) −0.086 (0.299) −0.155 (0.156) −0.083 (0.210)

q2 0.296 (0.015) 0.296 (0.015) 0.294 (0.015) 0.204 (0.015)

h2ξ — 0.330 (0.134) — 0.209 (0.110)

High posterior densities for the variance components and ratios

σ2u [0.008, 0.050] [0.003, 0.044] [0.022, 0.053] [0.034, 0.120]

σ2m [0.049, 0.100] [0.049, 0.100] [0.053, 0.097] [0.196, 0.345]

σu,m [−0.029, 0.013] [−0.028, 0.016] [−0.032, 0.006] [−0.077, 0.041]

σ2q [0.149, 0.185] [0.148, 0.185] [0.148, 0.182] [0.139, 0.174]

σ2ξ — [0.051, 0.309] — [0.014, 0.280]

σ2e [0.283, 0.317] [0.001, 0.246] [0.281, 0.311] [0.000, 0.248]

σ2P [0.545, 0.581] [0.544, 0.581] [0.547, 0.586] [0.717, 0.818]

h2u [0.013, 0.088] [0.005, 0.079] [0.039, 0.094] [0.046, 0.156]

h2m [0.087, 0.175] [0.086, 0.175] [0.095, 0.168] [0.266, 0.437]

ru,m [−0.550, 0.312] [−0.629, 0.535] [−0.514, 0.102] [−0.491, 0.322]

q2 [0.267, 0.327] [0.266, 0.327] [0.264, 0.322] [0.174, 0.232]

h2ξ — [0.091, 0.552] — [0.017, 0.369]

aSize, Burn-in, and Thin are the parameters of the Markov-Monte Carlo (MCMC) chain used to derive the posterior distribution of the parameters; DIC, deviance information criteria; σ2u , σ
2
m ,

σu,m , σ2q , σ
2
ξ , σ

2
e , σ

2
P, h

2
u , h

2
m , ru,m , q

2, and h2ξ are the additive genetic, maternal genetic, covariance between additive and maternal genetic, common environment, transgenerational epigenetic,

residual, and phenotypic variances, and narrow-sense (additive genetic) heritability, maternal genetic heritability, correlation between additive and maternal genetic effects, fraction of the

phenotypic variance explained by the common environment effect, and transgenerational epigenetic heritability, respectively.
bBest Linear Unbiased Prediction using A as the relationship matrix for the additive genetic effect.
cEpigenetic model obtained when including the transgenerational epigenetic effect in the BLUP model with their respective recursive parameter (λ) values.
dSingle-step genomic BLUP obtained by replacing A for the H (combined pedigree and genomic relationship matrix) matrix.
eEpigenetic model including genomic information obtained by expanding the ssGBLUP model by including the transgenerational epigenetic effect with their respectively λ values.
fPosterior standard deviations are within parentheses.
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by the same amount of variance captured by σ̂2ξ in TNB and NBA.
Also, similar to what was observed for growth and body
composition traits, the σ̂2P was similar to the BLUP, Epi-BLUP,
and ssGBLUP estimates, suggesting that there was only
repartitioning of variances in the Epi-BLUP compared to BLUP
and ssGBLUP. The inflation in the σ̂2u, σ̂

2
P, and h2u estimates from

the Epi-ssGBLUP for the reproductive traits was also noticeable,

with 3-fold increases for σ̂2u and h2u, and 14% for σ̂2P in comparison
to the ssGBLUP estimates. The posterior means of the h2ξ for TNB
and NBA in the Epi-BLUP (0.044 and 0.042, respectively) and Epi-
ssGBLUP (0.033 and 0.032, respectively) were much lower
compared to those for BW, WW, and BF (0.330, 0.317, 0.336,
respectively, for the Epi-BLUP and 0.436, 0.229, and 0.209 for the
Epi-ssGBLUP, respectively).

TABLE 4 Chain parameters, posterior means, and high posterior densities of the variance components and genetic parameters estimates for the weaning
weight of Landrace pigs using genetic and epigenetic models with pedigree- or single-step genomic BLUP under a Bayesian approach.

Parametera BLUPb Epi-BLUPc (λ � 0.05) ssGBLUPd Epi-ssGBLUPe (λ � 0.05)

MCMC chain parameters and DIC

Size 220,000 1,750,000 776,795 1,126,100

Burnin 10,000 1,002,500 250,000 550,000

Thin 10 100 25 25

DIC 52,803.60 44,350.08 −439,644.93 −924,295.31

Posterior means and standard deviation for the variance components and ratios

σ2u 0.411 (0.137)f 0.383 (0.169) 0.399 (0.124) 1.206 (0.366)

σ2m 0.381 (0.093) 0.389 (0.100) 0.308 (0.081) 1.350 (0.303)

σ2q 2.571 (0.146) 2.562 (0.146) 2.630 (0.142) 2.540 (0.145)

σ2ξ — 2.879 (1.718) — 2.391 (1.495)

σ2e 5.736 (0.138) 2.885 (1.700) 5.745 (0.135) 2.956 (1.490)

σ2P 9.098 (0.138) 9.098 (0.138) 9.082 (0.139) 10.442 (0.293)

h2u 0.045 (0.015) 0.042 (0.018) 0.044 (0.014) 0.115 (0.034)

h2m 0.042 (0.010) 0.043 (0.011) 0.034 (0.009) 0.129 (0.026)

q2 0.283 (0.015) 0.282 (0.015) 0.290 (0.014) 0.243 (0.016)

h2ξ — 0.317 (0.189) — 0.229 (0.143)

High posterior densities for the variance components and ratios

σ2u [0.172, 0.696] [0.040, 0.677] [0.171, 0.652] [0.530, 1.935]

σ2m [0.209, 0.556] [0.203, 0.600] [0.155, 0.465] [0.740, 1.921]

σ2q [2.285, 2.854] [2.266, 2.843] [2.359, 2.912] [2.264, 2.832]

σ2ξ — [0.369, 5.787] — [0.083, 5.056]

σ2e [5.459, 5.999] [0.001, 5.325] [5.477, 6.007] [0.198, 5.165]

σ2P [8.834, 9.377] [8.829, 9.366] [8.804,9.347] [9.880, 11.020]

h2u [0.020, 0.077] [0.004, 0.074] [0.020, 0.073] [0.052, 0.183]

h2m [0.024, 0.062] [0.023, 0.066] [0.018, 0.051] [0.076, 0.180]

q2 [0.254, 0.312] [0.253, 0.310] [0.263, 0.317] [0.211, 0.273]

h2ξ — [0.035, 0.631] — [0.008, 0.485]

aSize, Burn-in, and Thin are the parameters of the Markov-Monte Carlo (MCMC) chain used to derive the posterior distribution of the parameters; DIC, deviance information criteria; σ2u , σ
2
m ,

σ2q , σ
2
ξ , σ

2
e , σ

2
P, h

2
u , h

2
m , q

2, and h2ξ are the additive genetic, maternal genetic, common environment, transgenerational epigenetic, residual, and phenotypic variances, and narrow-sense (additive

genetic) heritability, maternal genetic heritability, fraction of the phenotypic variance explained by the common environment effect, and transgenerational epigenetic heritability, respectively.
bBest Linear Unbiased Prediction using A as the relationship matrix for the additive genetic effect.
cEpigenetic model obtained by including the transgenerational epigenetic effect in the BLUP model with their respective recursive parameter (λ) values.
dSingle-step genomic BLUP obtained by replacing A for the H (combined pedigree and genomic relationship matrix) matrix.
eEpigenetic model including genomic information obtained by expanding the ssGBLUP model by including the transgenerational epigenetic effect with their respectively λ values.
fPosterior standard deviations are within parentheses.
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3.3 Association between variance
components and genetic parameters

Despite the assumptions of independence among the random
effects in all models, we observed that the posterior samples are
correlated in most cases (Figure 1). The magnitude of the
correlations among the variance components tended to be

smaller in the Epi-BLUP and Epi-ssGBLUP in comparison to the
estimates from the BLUP and ssGBLUP models for all traits,
respectively, except for σ2ξ , which was not fitted in these later
models. Similar correlations were observed between the variance
components in the BLUP and ssGBLUP models. The σ2ξ was highly
negatively correlated to σ2e in the BW and WW for both Epi-BLUP
and Epi-ssGBLUP models (r ≤ −0.99), while only a low negative

TABLE 5 Chain parameters, posterior means, and high posterior densities of the variance components and genetic parameters estimates for the backfat of
Landrace pigs using genetic and epigenetic models with pedigree- or single-step genomic BLUP under a Bayesian approach.

Parametera BLUPb Epi-BLUPc (λ � 0.10) ssGBLUPd Epi-ssGBLUPe (λ � 0.15)

MCMC chain parameters and DIC

Size 220,000 4,000,000 509,760 699,485

Burnin 10,000 3,000,000 250,000 350,000

Thin 10 100 25 25

DIC −17,141.998 −30,458.31 −377,412.6797 −6,259,876.37

Posterior means and standard deviation for the variance components and ratios

σ2u 0.008 (0.001)f 0.007 (0.001) 0.008 (0.001) 0.008 (0.001)

σ2m 0.001 (0.000) 0.001 (0.000) 0.001 (0.000) 0.002 (0.001)

σu,m −0.001 (0.000) −0.001 (0.000) −0.001 (0.000) 0.000 (0.001)

σ2ξ — 0.005 (0.002) — 0.008 (0.001)

σ2e 0.008 (0.000) 0.003 (0.002) 0.008 (0.000) 0.000 (0.001)

σ2P 0.015 (0.000) 0.015 (0.000) 0.015 (0.000) 0.019 (0.000)

h2u 0.497 (0.041) 0.471 (0.042) 0.502 (0.037) 0.430 (0.036)

h2m 0.057 (0.019) 0.053 (0.017) 0.043 (0.014) 0.088 (0.031)

ru,m −0.494 (0.086) −0.481 (0.089) −0.534 (0.090) 0.126 (0.186)

h2ξ — 0.336 (0.154) — 0.436 (0.039)

High posterior densities for the variance components and ratios

σ2u [0.006, 0.009] [0.006, 0.009] [0.006, 0.009] [0.007, 0.010]

σ2m [0.000, 0.001] [0.000, 0.001] [0.000, 0.001] [0.001, 0.003]

σu,m [−0.002, −0.001] [−0.002, 0.000] [−0.002, −0.001] [−0.001, 0.001]

σ2ξ — [0.000, 0.008] — [0.007, 0.009]

σ2e [0.007, 0.009] [0.000, 0.007] [0.007, 0.009] [0.000, 0.001]

σ2P [0.015, 0.016] [0.015, 0.016] [0.015, 0.016] [0.018, 0.020]

h2u [0.418, 0.578] [0.390, 0.554] [0.428, 0.574] [0.367, 0.506]

h2m [0.023, 0.095] [0.022, 0.089] [0.019, 0.070] [0.038, 0.151]

ru,m [−0.653, −0.318] [−0.650, −0.299] [−0.698, −0.351] [−0.203, 0.462]

h2ξ — [0.010, 0.555] — [0.359, 0.506]

aSize, Burn-in, and Thin are the parameters of the Markov-Monte Carlo (MCMC) chain used to derive the posterior distribution of the parameters; DIC, deviance information criteria; σ2u , σ
2
m ,

σu,m , σ2ξ , σ
2
e , σ

2
P, h

2
u , h

2
m , ru,m , and h2ξ are the additive genetic, maternal genetic, covariance between additive and maternal genetic, residual, and phenotypic variances, and additive genetic

heritability, maternal genetic heritability, correlation between additive and maternal genetic effects, and transgenerational epigenetic heritability, respectively.
bBest Linear Unbiased Prediction using the A as the relationship matrix for the additive genetic effect.
cEpigenetic model obtained by including the transgenerational epigenetic effect in the BLUP model with their respectively recursive parameter (λ) values below.
dSingle-step genomic BLUP obtained by only replacing A for H (combined pedigree and genomic relationship matrix).
eEpigenetic model including genomic information obtained by expanding the ssGBLUP model by including the transgenerational epigenetic effect with their respectively λ values.
fPosterior standard deviations are within parentheses.
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correlation was observed between σ2ξ and σ
2
u for these traits (−0.23 ≤

r ≤ −0.07). For BF, σ2ξ was also highly negatively correlated to σ
2
e with

Epi-BLUP (r = −0.98), while a high negative correlation was
observed for Epi-ssGBLUP (r = −0.80), and a negative moderate
correlation was observed between σ2ξ and σ2u in the Epi-BLUP and
Epi-ssGBLUP models (−0.34 and −0.55, respectively). A low
negative correlation was observed between σ2ξ and σ2e for TNB
and NBA in both Epi-BLUP and Epi-ssGBLUP models (−0.15 ≤
r ≤ −0.10), while a moderate to high negative correlation was
observed between σ2ξ and σ2pe (−0.87 ≤ r ≤ −0.70), and a low to
moderate negative correlation was observed for σ2ξ and σ2u
(−0.32 ≤ r ≤ −0.18).

3.4 Prediction results

The correlations between solutions for u,m, and ξ for BW,WW,
and BF, and u, pe, and ξ for TNB and NBA in the BLUP and Epi-
BLUP models are presented in Figure 2. Only the correlations
among solutions in the genetic and epigenetic models with the
best λ, not including genomic information, are presented here. High
correlations were observed between the direct additive genetic
solutions in BLUP and Epi-BLUP models for all traits, in which
the lowest correlation of 0.85 was observed for BF and all others were
above 0.96. The correlation for the maternal genetic solutions
between BLUP and Epi-BLUP models was low for BF (−0.22)

TABLE 6 Chain parameters, posterior means, and high posterior densities of the variance components and genetic parameters estimates for the total
number born of Landrace pigs using genetic and epigenetic models with pedigree- or single-step genomic BLUP under a Bayesian approach.

Parametera BLUPb Epi-BLUPc (λ � 0.05) ssGBLUPd Epi-ssGBLUPe (λ � 0.05)

MCMC chain parameters and DIC

Size 100,000 7,000,000 100,000 799,225

Burn-in 10,000 1,000,000 10,000 300,000

Thin 10 100 10 25

DIC 52,651.306 52,651.091 −11,668.760 −112,151.590

Posterior means and standard deviation for the variance components and ratios

σ2u 0.554 (0.127)f 0.541 (0.132) 0.74 (0.143) 2.549 (0.493)

σ2pe 1.072 (0.162) 0.590 (0.334) 0.965 (0.164) 0.442 (0.243)

σ2ξ — 0.507 (0.337) — 0.437 (0.258)

σ2e 9.808 (0.184) 9.802 (0.183) 9.778 (0.183) 9.771 (0.184)

σ2P 11.434 (0.167) 11.440 (0.166) 11.480 (0.174) 13.199 (0.412)

h2u 0.048 (0.011) 0.049 (0.012) 0.064 (0.012) 0.192 (0.032)

pe2 0.142 (0.013) 0.103 (0.029) 0.148 (0.013) 0.226 (0.034)

h2ξ — 0.044 (0.029) — 0.033 (0.020)

High posterior densities for the variance components and ratios

σ2u [0.302, 0.798] [0.290, 0.804] [0.488, 1.016] [1.611, 3.529]

σ2pe [0.753, 1.374] [0.009, 1.134] [0.659, 1.297] [0.038, 0.865]

σ2ξ — [0.000, 1.095] — [0.022, 0.889]

σ2e [9.449, 10.170] [9.438, 10.150] [9.414, 10.130] [9.404, 10.120]

σ2P [11.130, 11.780] [11.130, 11.780] [11.130, 11.810] [12.390, 14.000]

h2u [0.028, 0.070] [0.028, 0.073] [0.042, 0.087] [0.130, 0.254]

pe2 [0.118, 0.167] [0.048, 0.153] [0.122, 0.176] [0.159, 0.290]

h2ξ — [0.000, 0.096] — [0.002, 0.069]

aSize, Burn-in, and Thin are the parameters of the Markov-Monte Carlo (MCMC) chain used to derive the posterior distribution of the parameters; DIC, deviance information criteria; σ2u , σ
2
pe ,

σ2ξ , σ
2
e , σ

2
P, h

2
u , pe

2, and h2ξ are the additive genetic, permanent environment, transgenerational epigenetic, residual, and phenotypic variances, and additive genetic heritability, fraction of the

phenotypic variance explained by the permanent environment effect, and transgenerational epigenetic heritability, respectively.
bBest Linear Unbiased Prediction using the A as the relationship matrix for the additive genetic effect.
cEpigenetic model obtained by including the transgenerational epigenetic effect in the BLUP model with their respectively recursive parameter (λ) values below.
dSingle-step genomic BLUP, obtained by only replacing A for H (combined pedigree and genomic relationship matrix).
eEpigenetic model including genomic information obtained by expanding the ssGBLUP model by including the transgenerational epigenetic effect with their respectively λ values.
fPosterior standard deviations are within parentheses.
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and high for BW and WW (0.99 and 0.97, respectively). In the case
of TNB and NBA, the permanent environment solutions were highly
correlated (0.98) between BLUP and Epi-BLUP models.

A paired t-test at 5% significance level was applied to evaluate
the mean difference among the solutions from the BLUP and Epi-
BLUP models for the effects mentioned above and are presented in
Figure 3. The mean difference between the direct additive and
maternal genetic solutions between the BLUP and Epi-BLUP
models for all traits were statistically significant. No statistical
significance was observed for the mean difference between the
permanent environmental solutions comparing the results from
the BLUP and Epi-BLUP models.

Only the genetic and best epigenetic models were used for
comparing the prediction results using the LR method. Prediction
accuracies ranged between 0.199 and 0.443 for the Epi-BLUP with λ =
0.05 in the BW and Epi-BLUP with λ = 0.10 in the BF, respectively
(Figure 4). Prediction bias ranged between −0.080 and 0.034 for the
BLUP model on WW and NBA, respectively. The dispersion ranged
between −0.134 and 0.131 for theWWBLUP and TNB Epi-BLUP with
λ = 0.05, respectively. No substantial differences were observed between
the BLUP and Epi-BLUP models for the traits evaluated based on all
predictivity measures (accuracy, bias, and dispersion), indicating that
the inclusion of transgenerational epigenetic effects did not affect the
prediction of the breeding values in the focal animals.

TABLE 7 Chain parameters, posterior means, and high posterior densities of the variance components and genetic parameters estimates for the number of
piglets born alive of Landrace pigs using genetic and epigenetic models with pedigree- or single-step genomic BLUP under a Bayesian approach.

Parametera BLUPb Epi-BLUPc (λ � 0.05) ssGBLUPd Epi-ssGBLUPe (λ � 0.05)

MCMC chain parameters and DIC

Size 100,000 7,000,000 300,000 944,125

Burn-in 10,000 1,000,000 10,000 350,000

Thin 10 100 10 25

DIC 51,610.338 51,609.693 −101,485.824 −105,368.962

Posterior means and standard deviation for the variance components and ratios

σ2u 0.558 (0.128)f 0.543 (0.131) 0.639 (0.111) 2.340 (0.455)

σ2pe 0.878 (0.151) 0.471 (0.279) 0.803 (0.143) 0.364 (0.205)

σ2ξ — 0.435 (0.284) — 0.380 (0.218)

σ2e 8.871 (0.167) 8.863 (0.166) 8.87 (0.166) 8.836 (0.166)

σ2P 10.307 (0.151) 10.311 (0.150) 10.311 (0.152) 11.920 (0.379)

h2u 0.054, (0.012) 0.053 (0.012) 0.062 (0.010) 0.195 (0.032)

pe2 0.139 (0.013) 0.098 (0.029) 0.140 (0.013) 0.226 (0.034)

h2ξ — 0.042 (0.028) — 0.032 (0.019)

High posterior densities for the variance components and ratios

σ2u [0.311, 0.806] [0.296, 0.803] [0.418, 0.864] [1.465, 3.227]

σ2pe [0.585, 1.162] [0.002, 0.935] [0.511, 1.073] [0.025, 0.729]

σ2ξ — [0.000, 0.928] — [0.026, 0.778]

σ2e [8.537, 9.195] [8.534, 9.184] [8.550, 9.197] [8.512, 9.163]

σ2P [10.000, 10.590] [10.020, 10.600] [10.024, 10.614] [11.204, 12.673]

h2u [0.031, 0.078] [0.029, 0.078] [0.041, 0.083] [0.132, 0.258]

pe2 [0.115, 0.164] [0.045, 0.148] [0.114, 0.164] [0.162, 0.292]

h2ξ — [0.000, 0.090] — [0.002, 0.066]

aSize, Burn-in, and Thin are the parameters of the Markov-Monte Carlo (MCMC) chain used to derive the posterior distribution of the parameters; DIC, deviance information criteria; σ2u , σ
2
pe ,

σ2ξ , σ
2
e , σ

2
P, h

2
u , pe

2, and h2ξ are the additive genetic, permanent environment, transgenerational epigenetic, residual, and phenotypic variances, and additive genetic heritability, fraction of the

phenotypic variance explained by the permanent environment effect, and transgenerational epigenetic heritability, respectively.
bBest Linear Unbiased Prediction using the A as the relationship matrix for the additive genetic effect.
cEpigenetic model obtained by including the transgenerational epigenetic effect in the BLUP model with their respectively recursive parameter (λ) values below.
dSingle-step genomic BLUP obtained by only replacing A for H (combined pedigree and genomic relationship matrix).
eEpigenetic model including genomic information obtained by expanding the ssGBLUP model by including the transgenerational epigenetic effect with their respective λ values.
fPosterior standard deviations are within parentheses.
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FIGURE 1
Correlation among posterior samples of the parameters used in the genetic, epigenetic, genomic, and epigenetic models including genomic
information (Epi_genomic) for birth weight (BW), weaning weight (WW), backfat (BF), total number of piglets born (TNB), and number of piglets born alive
(NBA) in Landrace pigs. v_add, v_mat, v_c, v_pe, v_epi, v_res, p2, cov_add_mat = additive genetic, maternal genetic, common environment, permanent

(Continued )
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4 Discussion

Epigenetics is an important source of phenotypic variation in
complex traits, which can also substantially contribute to evolution
in livestock (David and Ricard, 2019). Epigenetic changes can be
environmentally induced, and then inherited and cause changes in
phenotypic expression (Tal et al., 2010). There is limited knowledge
about the proportion of the phenotypic variation explained by
epigenetic marks in livestock. In this study, we present estimates
of transgenerational epigenetic variance and heritability for complex
traits in pigs based on routinely recorded datasets and quantitative
methods. We also discuss the challenges of conducting such analyses
and directions for future studies.

4.1 Model comparison

Epigenetic models are quite complex. Even though there is the
assumption that there is independence among genetic, epigenetic,
and residuals (Tal et al., 2010; Varona et al., 2015), non-negligible
linear association between those components exists, as shown in
Figure 1. Varona et al. (2015) also reported a posterior association
between the transgenerational epigenetic and the additive genetic
and residual variance components. Even though there were previous
studies that used REML-based methods to estimate
transgenerational epigenetic variances (Paiva et al., 2018a; Paiva
et al., 2018b), Bayesian inference was preferred to conduct the
analysis in this study. Among the main properties of Bayesian

FIGURE 1 (Continued)

environment, transgenerational epigenetic, residual, and phenotypic variances, and covariance between additive genetic and maternal genetic
effects, respectively. The heritability and ratios had the same pattern of their respective variance components and were omitted for simplicity. Blank
squares mean non-significant correlation coefficient at 5% of probability.

FIGURE 2
Correlation among solutions frommixedmodel equations using a genetic and epigenetic model for the birth weight, weaning weight, backfat, total
number of piglets born, and number of piglets born alive in Landrace pigs. gen_add_bw, gen_mat_bw, epi_add_bw, epi_mat_bw, epi_epi_bw =
solutions for the direct additive genetic effect from genetic model, solutions for the maternal genetic effect from genetic model, solutions for the direct
additive genetic effect from epigenetic model, solutions for the maternal genetic effect from epigenetic model in the birth weight, respectively;
same pattern was employed for the other traits changing the trait suffix for ww, bf, tnb, and nba, for weaning weight, back fat, total number born, and
number born alive, respectively, the only exception was for total number born and number born alive, that did not have maternal genetic effects and
presented permanent environment effect, called as gen_pe_tnb, epi_pe_tnb for the solutions for the permanent environment effects for genetic and
epigenetic models for total number born, respectively, same pattern was applied for number born alive.
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FIGURE 3
Distribution of the solutions and difference among solutions between the genetic and epigenetic models for the random effects used to analyze
birth weight (BW), weaning weight (WW), backfat (BF), total number of piglets born (TNB), and number of piglets born alive (NBA) in Landrace pigs. Add,
Mat, PE, Gen, Epi, Diff, ***, NS = direct additive genetic solution, maternal genetic solution, permanent environment solution, genetic model, epigenetic
model, difference between genetic and epigenetic solutions, significant at 0.1% by a paired t-test, and not significant (P > 0.05), respectively.

FIGURE 4
Prediction accuracy, bias, and dispersion of the estimated breeding values of focal animals for birth weight (birth_weight), weaning weight
(weaning_weight), backfat (back_fat), total number of piglets born (total_number_born), and number of piglets born alive (number_born_alive) in
Landrace pigs. Epi, Gen, = epigenetic model and genetic model, respectively.
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inference, it can be highlighted the fact that the variance
components are never out of parameter space (Box and Tiao,
1973), and inferences are exact for any sample size (Gianola and
Fernando, 1986). We also tried to fit AI-REML-based epigenetic
models, but the results were not stable. The number or iterations to
converge was very large for some models/traits using AI-REML and
many epigenetic models failed to converge (Supplementary Material
S3), which is expected as REML estimation is sensitive to complex
models (Gianola and Fernando, 1986; Misztal, 2008). The
advantages of Bayesian- over REML-based methods make the
former more robust for complicated models than the latter. In
this sense, only Bayesian inference results were kept in the main text.

All epigenetic models, including or not genomic information, using
Bayesian inference converged (Table 2) given the criteria used and led
to similar best λ values across traits (0.05 for all traits, except BF, which
was 0.10). Epigenetic reprogramming can be produced in laboratory in
many ways (Cantone and Fisher, 2013; Basu and Tiwari, 2021), but
naturally happens twice during mammalian life (gametogenesis and
preimplantation development) (Lacal and Ventura, 2018). In the
context of this study, we expect that epigenetic reprogramming is
less likely to be influenced by traits such as litter size or backfat depth in
sows; rather, it is more likely to influence these traits. Among the factors
that affect epigenetic reprograming, there are reports of sex (Lacal and
Ventura, 2018), age (Caulton et al., 2022), and environmental factors/
stress (Tal et al., 2010).

Even though the Epi-ssGBLUP provided lower DIC, the Epi-BLUP
models were chosen as the best because of the clear inflation in the
additive genetic, hence phenotypic, variances in the epigenetic models
including genomic information. Large changes in variance components
previously estimated by introducing new random effects indicate non-
orthogonality of the effects in the model (Vitezica et al., 2017), which is
related to not accounting for significant interaction between random
effects, i.e., their covariance matrices (Zhou et al., 2020). This was not
observed in the pedigree-based epigenetic models for all traits (Tables
3–7), i.e., no substantial changes were observed in the variance
components when adding the transgenerational epigenetic effect to
the genetic model (moving from the BLUP to the Epi-BLUP model).
Orthogonality is a very important and useful property because it
directly affects the partition of the genetic effects (Vitezica et al.,
2017), disqualifying epigenetic models including genomic
information (Epi-ssGBLUP) for variance component estimation.
Given the current derivation of the epigenetic relationship matrix
(Tal et al., 2010; Varona et al., 2015) and the analysis framework
employed, i.e., independence of genetic and epigenetic effects, the Epi-
BLUP models are more reliable than Epi-ssGBLUP. As the variance
components and genetic parameters using a genetic or genomic model
(BLUP and ssGBLUP, respectively) were not substantially different, the
BLUP model was used as the benchmark for comparisons with Epi-
BLUP models because they use the same additive genetic relationship
matrix. Similarities between the variance components and genetic
parameters estimated using pedigree and genomic models were also
reported in the literature by Aldridge et al. (2020), which recommended
the use of the pedigree relationship matrix for variance component
estimation due to easier implementation.

Modeling the covariance between epigenetic and other random
effects in the model could be beneficial, especially for the Epi-ssGBLUP,
where the non-orthogonality was evident. To model the interaction
between additive genetic effects based on genomics and transcriptomic

data, Perez et al. (2022) used Hadamard products between the
covariance matrices of these effects and, as an alternative, developed
a model where these effects were independent. The independence
between the correlated genomic and transcriptomic information was
achieved by decorrelating these effects using a “smoother matrix,”
which relied on the assumption that the transcriptomic was
conditioned to the genomic information, which was called the
GTCBLUP model (Perez et al., 2022). Using an interaction effect in
the model resulted in non-stable estimates of the variance components,
while the GTCBLUPmodel resulted in a stable partition of the variance
components (Perez et al., 2022). Since epigenetic variance originates
from epigenetic marks themselves, applying a model similar to that of
Perez et al. (2022) would require incorporating epigenomic information
(e.g., DNA methylation) into the animal model and conducting the
appropriate statistical analysis. Unfortunately, no epigenomic
information was present for the animals included in the study. Zhou
et al. (2020) proposed a model that considers correlations between
random effects in genetic models and showed the importance of
modeling the covariance between these effects when non-negligible
associations exist (not always linear associations). The core of the work
of Zhou et al. (2020) was in providing a framework for multiomics data
analyses, but it can be applied in the future for fitting epigenetic models
including genomic information. This is because, in the end, the problem
of fitting these models is the same: similarity or dissimilarity between
the covariancematrices associatedwith the random effects in themodel.
However, more theoretical work to understand the association between
transgenerational epigenetic and genomic information is required to
make assumptions about how to model these effects and their
interactions, which were beyond the scope of the present work.

Epigenetics affects the phenotypic variation through changes in
gene expression (Heard and Martienssen, 2014), which means that
even though the epigenome is not expected to change the DNA
sequence, it is modulating or interacting with it during phenotypic
expression. In the same way, as epigenetic changes can be stress- or
environmentally induced (Ibeagha-Awemu and Yu, 2013), non-
negligible associations between epigenetic and residual effects
could be produced. Just assuming independence between
epigenetic and other effects affecting the phenotypic variation
resulted in simpler mathematical work in deriving the covariance
between relatives from a quantitative genetics perspective. Even
though not optimal from a biological point of view, the assumptions
originally made can be considered robust enough in epigenetic
models not including genomic information as these models met
desired expectations, e.g., orthogonality of the effects. The problems
related to non-orthogonality between the additive genetic and
epigenetic effects in the genomic analysis (between H and Λ
instead of between A and Λ) may be related to the fact that the
epigenetic relationships were derived based on the pedigree-based
average relationships. Genomic information provides realized
genomic relationships at the QTL level, which changes the
additive genetic relationship matrix by adjusting the average
relationships to observed values and propagating this information
to non-genotyped related to genotyped individuals (Legarra et al.,
2009). Changes in the average relationships in closely related
individuals plus adding relationship coefficients to animals
without pedigree links in the H matrix may have broken
important assumptions to hold non-orthogonality when genomic
information was added to the epigenic models.
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Assuming 0.05 to 0.10 and the best λ values (range of best λ
across traits – Table 2), 10%–20% of the epigenetic markers are
being inherited in the studied population, i.e., 80%–90% of the
epigenetic marks are being reset. No previous reports for the λ, reset,
or percentage of epigenetic marks inherited in pigs were found in the
literature. The expectation is that the percentage of epigenetic marks
being inherited should not be high because it results from an error in
resetting the epigenetic marks from one generation to the next (Tal
et al., 2010; Basu and Tiwari, 2021), which agrees with our results.
Nevertheless, new studies including epigenetic marks (DNA
methylations, chromatin remodeling, miRNA, among others) at
the individual level could provide insights into the estimation of
the reset and inheritance of epigenetic marks.

4.2 Variance components and genetic
parameters

The variance components and genetic parameters from the BLUP
and ssGBLUP models were consistent with the values observed in the
literature for all traits evaluated. Alves et al. (2018) reported
heritability estimates of 0.05 and 0.07 for the direct additive
genetic effects in BW of Canadian Landrace pigs with two
datasets. The maternal genetic heritability for the BW presented by
Alves et al. (2018), 0.27, was higher than the one observed in this study
(~0.13 for the BLUP, ssGBLUP, and Epi-BLUP models – Table 3),
while the proportion of the phenotypic variation explained by the
common litter effect was lower (0.17, compared to ~0.30 from the
BLUP, ssGBLUP, and Epi-BLUP models). Even though the base
genetic models were the same (fixed effects plus direct and
maternal genetic additive and common litter effects), the
population and data structure were different (e.g., different
numbers of individuals with phenotypes and the pedigree, sires,
and dams, between others), which can explain differences in some
of the genetic parameters. In general, according to Zaalberg et al.
(2023) based on a range of literature reports (Roehe, 1999; Kaufmann
et al., 2000; Grandinson et al., 2002), the range of values for the direct
andmaternal genetic heritability for BW in conventional maternal pig
breeds (Landrace and Yorkshire) is between 0.04 to 0.15 and 0.14 to
0.28, respectively. The negative correlation between the direct additive
and maternal genetic effects observed was also reported in previous
studies (Zhang et al., 2000; Grandinson et al., 2002; Arango et al.,
2006; Muns et al., 2013; Alves et al., 2018). This can be explained by
the fact that the data structure might not be optimal to properly
estimate the correlation between the direct additive and maternal
genetic effects or because non-negligible cross-fostering exists (Alves
et al., 2018). Cross-fostering information was not known in this study.

Birth weight is an important trait in the swine industry because it
is related to piglet survival, behavior, and weight gain (Ayuso et al.,
2020; Knol et al., 2022). Low BW is associated with poor
gastrointestinal development, which impacts nutrient digestion,
absorption, and transportation, implying future health, welfare,
and market problems in pigs (Ayuso et al., 2020). Considering
the proportion of phenotypic variance explained by the epigenetic
effect in the piglet’s BW (0.33 – Table 3), attention should be given to
the sow environment during pregnancy, such as weather, sanitary
management, and nutrition, as these components can induce
epigenetic changes in the progeny (Ibeagha-Awemu and Yu, 2021).

The heritability estimates for the direct genetic effect of theWW in
pigs range from 0.01 to 0.22 (Tomiyama et al., 2010; Muns et al., 2013;
Dufrasne et al., 2014; Jiao et al., 2014; Alves et al., 2018; Zaalberg et al.,
2023) and for the maternal genetic effect from 0.06 to 0.24
(Grandinson et al., 2002; Tomiyama et al., 2010; Jiao et al., 2014;
Alves et al., 2018). Similar to previous studies listed above, the
heritability of the maternal genetic component reduced from birth
to weaning, which reflects the decrease in contribution of the sow effect
to the individual body weight of her offspring. The individual’s own
genetics is expected to be more important as the pigs age (Alves et al.,
2018; Muns et al., 2013). Differences in the heritability estimates for
WW among studies, beyond the previous causes mentioned before
(i.e., data structure and population), could also be due to the model
used. The correlation between the direct additive and maternal genetic
effects was not significant in this study for WW (Table 4), as reported
in other studies (Alves et al., 2018; Kaufmann et al., 2000; Grandinson
et al., 2002). Data structure and cross-fostering can also be reasons for
the lack of significance in the correlation between the direct additive
and maternal genetic effects for WW.

The weaning process is a stressful situation for both piglets and
dams, marked by the time when the piglet leaves the maternal to a
different environment and changes the diet, characterizing social
and dietary stress (Corbett et al., 2013; Ibeagha-Awemu and Yu,
2021). The WW can be used to assess the success of the lactation
phase, and it is the start of the period when the pigs will express their
genetic potential without their mother’s direct contributions. Heavy
pigs at weaning tend to also be heavy at birth and slaughter age and
have faster growth rates, achieving the age to slaughter earlier than
lighter pigs (Wolter and Ellis, 2001). Transgenerational epigenetic
heritability for WW in Landrace pigs explained more than 30% of
the phenotypic variation, andmore research is needed to understand
the impact of epigenetics due to production management practices.
This way, strategies to minimize stress at weaning are important for
reducing the potential negative impacts on the pig’s performance.

Beyond growth, desirable body composition characteristics are
important breeding goals in the pig industry. The genetic
parameters for BF in this study are within the range reported in the
literature for body composition traits (0.33–0.65), which are known to
have moderate to high direct narrow-sense heritability (Bryner et al.,
1992; Singh et al., 2001; Kim et al., 2004; Akanno et al., 2013; Khanal
et al., 2019;Willson et al., 2020). Maternal genetic heritability was also a
significant variance component in a genetic model for BF in pigs in a
previous study (Bryner et al., 1992), with the estimate higher than the
one observed in this study (0.11). Bryner et al. (1992) studied Yorkshire
pigs and found a negative genetic correlation between direct and
maternal genetic components for BF, which was stronger than the
estimate observed in this study (−0.51). Negative correlations between
direct and maternal genetic effects for BF can happen due to negative
genetic association between these effects or data structure andmodeling
(Bryner et al. ,1992). These results suggest that BF can have a high
response to direct selection and that maternal effects should be
considered in the genetic models of the studied population.

Beyond the high narrow-sense heritability, BF can be an
indicator of the overall body fat and be easily measured through
ultrasound, being an important criterion to select pigs for lean
carcass (Gozalo-Marcilla et al., 2021). The reduction in carcass
fatness can imply higher growth efficiency and lean meat content
(Lonergan et al., 2001). In addition, BF is important for the
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reproductive performance of sows (Roongsitthichai and Tummaruk,
2014). Roongsitthichai and Tummaruk (2014) reviewed the
importance of BF for reproductive traits in pigs and reported
that gilts with higher BF attained puberty earlier, delivered one
more pig, produced heavier piglets with higher growth rates, and
had shorter weaning to service intervals. Interestingly, the
transgenerational epigenetic heritability for BF also explained
more than 30% of the phenotypic variation, similar to BW and
WW. Considering the importance of BF for the pig industry and the
percentage of phenotypic variance explained by the
transgenerational epigenetic effects, more research on this topic
is needed.

The variance components and genetic parameters for TNB and
NBA were similar in this research and, therefore, they were
discussed together. This similarity in the genetic parameters for
TNB and NBA was reported before (Akanno et al., 2013; Putz et al.,
2015; Ogawa et al., 2019; Paixao et al., 2019; Yang et al., 2023) with
both traits being highly genetically correlated (Alves et al., 2018).
Reproductive traits usually present low heritability and the range of
heritability estimates for TNB and NBA is from 0.01 up to 0.20
(Akanno et al., 2013; Putz et al., 2015; Alves et al., 2018; Ogawa et al.,
2019; Paixao et al., 2019; Yang et al., 2023), with most of the
estimates varying from 0.06 to 0.12. The repeatability of the TNB
and NBA estimates in the literature range from 0.03 to 0.24 (Alves
et al., 2018; Ogawa et al., 2019; Paixao et al., 2019; Yang et al., 2023).
The heritability and repeatability estimates for TNB and NBA in this
study are close to the estimates from previous studies. As previously
discussed, the population and data structure are the main reasons for
the differences observed in the literature, as the models for these
traits tend to be similar.

As expected, and different from what was observed for growth
and body composition traits, the transgenerational epigenetic
variance and heritability were low for TNB and NBA. We
expected that traits measured late in life would be less impacted
by epigenetic effects because: 1) the direct genetic effects tend to
increase in importance as the animals age; and 2) temporary
environmental effects (environmental effects not fully captured
by data structure or model) could be the main source of
environmental variation. At this point, it is important to
remember that transgenerational epigenetic effects are due to
epigenetic markers inherited, and they should affect the animal’s
life permanently (Heard and Martienssen, 2014). In this context, the
source of transgenerational epigenetic variance in the repeatability
models should also be considered. Different from single-
measurement models in this study, as for BW, WW, and BF, the
transgenerational epigenetic variance in the repeatability models for
the TNB and NBA were all extracted from the permanent
environment effect. The permanent environment accounts for
non-additive genetic effects (i.e., dominance, epistasis), as shown
by Vitezica et al. (2018), and any other effect with a long-lasting
impact on the animal’s life. With this result, it is possible to conclude
that the transgenerational epigenetic effect could be treated as a non-
additive genetic effect in repeatability models and being accounted
for in the genetic models through multiple measurements. This way,
it becomes easy to see that including the transgenerational epigenetic
effects in the genetic models is more important for traits that can be
measured only once in the animal’s life, e.g., BW, WW, and age at
first farrowing.

Beyond the repeatability models, another alternative to fit
permanent environment effects in a genetic model is by using
random regression models (RRM), which also allows for
modeling the phenotype (and its components) trajectory through
covariance functions (Schaeffer, 2004). In this context, we also
expect that RRM can account for the transgenerational epigenetic
effects in the permanent environment effects, but no precedents
were found in the literature.We recommend such studies with better
data structures (e.g., multiple measurements for growth traits early
in life) to test this hypothesis in the future. However, the
confounding between the transgenerational epigenetic and
permanent environment effects and the impacts of this in
convergence should be considered, especially for complex
models like RRM.

Several differentially methylated regions (DMRs) were reported
in the literature for BW (Ayuso et al., 2020), WW (Corbett et al.,
2013), BF (Li et al., 2012; Zhang et al., 2016; Wang K. et al., 2022),
and TNB and NBA (Hwang et al., 2017; An et al., 2019) in pigs. The
DMRs are the most studied epigenetic marks and affect gene
expression (Ayuso et al., 2020; Corbett et al., 2013; Li et al., 2012;
Zhang et al., 2016; Wang K. et al., 2022; Hwang et al., 2017; An et al.,
2019), consequently, can affect the phenotypic variation and be the
cause of the epigenetic heritability estimated for the traits
investigated in this study. In previous reports, the
transgenerational epigenetic heritability was 0.04 for BW in the
Pirenaica beef cattle (Varona et al., 2015), and 0.00 to 0.10 for body
weight traits in meat quails (Paiva et al., 2018b), and 0.00 to 0.07 in
egg traits in meat quails (Paiva et al., 2018a). No previous reports on
pigs were found. The species, models, and production systems,
among other factors previously mentioned, may be the cause of
the difference between the transgenerational epigenetic heritability
estimates in the literature and in this study. A reason for different
epigenetic heritability across traits could be because epigenetic
marks can be linked to QTL with different patterns of linkage
disequilibrium (LD) with the traits evaluated. In other words, the
epigenetic marks can overlap with or be nearby QTL that are inmore
LD with a specific trait than others. Therefore, epigenetic heritability
is expected to be higher for traits that have more QTL affected by
epigenetic marks. One way to find insights into this subject would be
by crossing DNA methylation maps with QTL maps for traits with
known epigenetic heritability, which was not possible in this study
because no whole-genome DNA methylation data was available for
the animals used. Future work on this topic is recommended.
Following Animal QTLdb, which is a public QTL information
repository for several farm species, including pigs (Hu et al.,
2022), the development of public DNA methylation maps in pigs
would also help to integrate information and understand the causes
of the transgenerational epigenetic variance and heritability found in
this and future studies. DNA methylation maps in pigs are still
scarce (Wang and Kadarmideen, 2019).

4.3 Prediction results

One of the main objectives of this study was to compare the
prediction results from the best epigenetic model against the genetic
or genomic model. As there was no stability in the variance
components of the Epi-ssGBLUP, shown by the absence of
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orthogonality in the models, no decorrelations of the relationships
were performed, and no predictions were made for Epi-ssGBLUP.
The Epi-ssGBLUP may have been affected by an un-modeled
covariance among the epigenetic effects and that of the genetic
and residual effects, resulting in drastic changes in the variance
components. There were no substantial differences between the
variance components from the BLUP and ssGBLUP, suggesting that
the variance components from the BLUP model are consistent even
though the population evaluated is being genomically selected.
Using variance components from Epi-BLUP models, which were
stable and more reliable, predictions with the Epi-ssGBLUP model
were not performed because making predictions in a model using a
relationship matrix different from the one used to estimate the
variance components is not recommended (Nilforooshan and Ruíz-
Flores, 2022). In the end, the BLUPmodels were used to compare the
predictions against the Epi-BLUP models for similar reasons
explained in the Variance Component Estimation section.

By using all animals present in the variance components
estimation analysis, no differences are expected in the genetic
evaluation, as the correlation between the EBVs estimated in
genetic and epigenetic models was high (>0.85; Figure 2). The
same could be interpreted for the other random effects in the
models, except for the maternal solutions in the BF (−0.22). It is
important to highlight that the correlations presented in Figure 2
should not be interpreted as prediction accuracy. The solutions
used to compute the Pearson correlations included all phenotypes
available, and all solutions were used only to understand the
association between the solutions. A formal comparison of EBV
prediction, e.g., prediction accuracies, for selection candidates is
provided by the results of the LR method (discussed later). Even
though the association between solutions was high, the changes in
the means of the solutions were significant, showing a different
aggregate response for the solutions, except for the permanent
environment. Observing that the epigenetic models had a better
fit than the genetic models (please see the Model comparison
section in the results and discussion), the averages of the
solutions for the additive effects of the BW, WW, and BF
from the genetic models were underestimated, and the
solutions are more dispersed. For the case of the additive
solutions for the TNB and NBA and maternal genetic
solutions for BW, WW, and BF, the averages from the genetic
models are overestimated and more dispersed compared to the
epigenetic models. In this case, including the transgenerational
epigenetic effects in the genetic models could help properly
estimate the average and distribution of the solutions of the
mixed model equations, provided that the epigenetic models
are better than the genetic models.

The prediction (population) accuracy in pigs usually ranges
between 0.05 and 0.82 (reproductive and body composition traits,
respectively) (Forni et al., 2011; Hidalgo et al., 2015a; Hidalgo et al.,
2015b; Hidalgo et al., 2016; Badke et al., 2014; Fangmann et al., 2017;
Oh et al., 2017; Tan et al., 2017; Lee et al., 2020; Zhao et al., 2019;
Ardestani et al., 2021; Kjetså et al., 2022; Wang X. et al., 2022;
Zhuang et al., 2023). Several factors can affect the prediction
accuracies, such as heritability, LD (Meuwissen et al., 2001),
population structure, effective population size (Daetwyler et al.,
2012), and size of the reference population (Daetwyler et al.,
2010). Beyond these factors, the genetic model, accuracy formula

used, validation strategy, breed, and the use of commercial
crossbreed data also differ between studies and can be a source
variation for the prediction accuracy in the pig literature. Using
genomic data, Jiao et al. (2014) reported prediction accuracies
of 0.194 for BW in Duroc pigs using the BayesA model. Also,
using genomic data, Lee et al. (2020) reported prediction
accuracies for BW in Yorkshire pigs with the BayesB and
BayesC models using panels of different platforms ranging
from 0.150 to 0.261. Even though we used only phenotypes
and pedigree, the prediction accuracies obtained for the BW
were within this range.

A low prediction accuracy (0.098) was reported for WW in
Duroc pigs (Jiao et al., 2014), lower than the estimate obtained in this
study (~0.22). The previous authors used the formula from Legarra
et al. (2008) to calculate the prediction accuracy and an imputed 60K
from a low-density marker panel to perform the genomic
predictions. The accuracy formula from Legarra et al. (2008)
depends on the correlation between the observed and expected
performance divided by the square root of the heritability of the
trait, which can be reasonable if there is no selection, and the fixed
effects and variance components are properly estimated (Legarra
and Reverter, 2018). If there is selection, the accuracy measured by
the method proposed by Legarra et al. (2008) underestimates the
prediction accuracy, and problems may also arise if the fixed effects
and/or variance components are not well estimated (Legarra and
Reverter, 2018). In addition, prediction accuracy when using
imputed data is also a function of the imputation accuracy, with
higher accuracies expected if the imputation accuracy is high
(Bolormaa et al., 2015).

Prediction accuracies ranging from 0.285 to 0.527 were observed
for BF in Canadian Landrace by using parent average (PA) and
several genomic models (Ardestani et al., 2021), in which the lowest
prediction accuracy was obtained by PA and the highest by the
ssGBLUP model. Ardestani et al. (2021) measured the prediction
accuracy as the correlation between (G)EBV and deregressed EBVs.
Despite the differences in the accuracy formula and models between
our study and Ardestani et al. (2021), the ranges of prediction
accuracies were similar. The prediction accuracy for the EBVs of BF
in our study was lower than the ones obtained by the genomic
models used by Ardestani et al. (2021), but higher than the PA. Jiao
et al. (2014) reported a prediction accuracy lower than the one
obtained in our study (0.365) using genomic models.

Most studies investigating prediction accuracy in pigs were
found in reproductive traits, especially TNB. For NBA,
Fangmann et al. (2017) found prediction accuracies ranging from
0.08 to 0.52 using different validation scenarios and accuracy
measures in Landrace pigs. In Chinese Yorkshire pigs, Song et al.
(2019) reported accuracies ranging from −0.008 to 0.668 for NBA
using different SNP panels and validation scenarios. Wang X. et al.
(2022) observed prediction accuracies ranging between 0.207 and
0.328 for NBA also in Chinese Yorkshire but based on several
machine learning models and genomic BLUP and ssGBLUP.
However, it should be noted that the machine learning models
may not result in only the predictions of breeding values. The range
of accuracy estimates for TNB reported in the literature range
from −0.001 to 0.790 (Forni et al., 2011; Hidalgo et al., 2015a;
Hidalgo et al., 2015b; Hidalgo et al., 2016; Oh et al., 2017; Song et al.,
2019; Kjetså et al., 2022; Wang X. et al., 2022), based on different
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models, validation strategies, breeds, and other factors as
previously mentioned.

In general, prediction accuracy results in pig literature are
reported mainly for genomic models, with some studies
presenting pedigree-based prediction accuracies and formal
comparisons (Forni et al., 2011; Christensen et al., 2012; Tusell
et al., 2013; Hidalgo et al., 2015b; Oh et al., 2017; Ardestani et al.,
2021). Including genomics in the prediction models tends to
increase prediction accuracies because it allows to capture more
information to be used to differentiate animals and correct expected
relationships (Mendelian sampling) (Georges et al., 2019). Similar or
higher prediction accuracies were observed by some authors using
only pedigree when compared to genomic relationships (Hidalgo
et al., 2015b; Araujo et al., 2023). This may happen when the
heritability of the trait is high, pedigree is relatively deep and
accurate, there are rare variants with big effects or insufficient
genomic information.

Prediction bias calculated as the difference between the (G)EBV
estimated in the whole and partial data (Legarra and Reverter, 2018)
are scarce in the pig literature. Jang et al. (2023) observed the
prediction bias ranging from −0.003 to 0.31 for BF in three terminal
pig lines based on different scenarios using preselected variants from
whole genome sequence data. The lowest value observed in the BF
prediction bias by these authors was the same as the one observed in
this study for both BLUP and Epi-BLUP models. Even though only
pedigree and phenotypes were used to investigate prediction results
in this study, the prediction bias obtained can be considered low, as
it ranged between −0.011 and 0.08 (BLUP models for BW andWW,
respectively). In the case of the prediction dispersion, which
sometimes is called bias, it has been reported as the slope of the
regression coefficient of the adjusted phenotype/EBV on the
predicted EBV, different from this research that used a deviation
from 1. The prediction dispersion (measured as the slope of the
regression) in the pig literature ranges between −1.14 and 5.00
(Fangmann et al., 2017; Hidalgo et al., 2015b; Hidalgo et al., 2016;
Wang X. et al., 2022), in which the factors that justify the changes in
the literature results are similar to those previously stated for the
prediction accuracy. The expected/desired value for the dispersion is
1 if measured as the slope of the regression coefficient of the adjusted
phenotype/EBV on the predicted EBV or 0 if measured as the
deviation from 1 (as performed in this research). Based in the
literature cited above, TNB is the trait that presents worse results
for dispersion, and it was the trait with the second worse results for
dispersion in our study.

To the best of our knowledge, no prediction results for the
measures investigated in this research (accuracy, bias, and
dispersion of EBV) in genetic models incorporating epigenetic
effects have been reported in the literature. This study provides
such results for the first time. The similarity between the prediction
accuracies, bias, and dispersion in the BLUP and Epi-BLUP models
is expected as the transgenerational epigenetic in the Epi-BLUP
model is fitted independent of the other random effects, and the
orthogonality was present. This shows that including the epigenetic
effects in the genetic model does not change the breeding value
prediction of focal animals, which suggests that including epigenetic
effects in the model is not required from a practical point of view in
the current framework (e.g., not including genomic or epigenomic
information, not accounting potential interactions). However, it

should be noted that the prediction results in this research were
not meant to perform model comparison/selection, as this was the
purpose of the Model Comparison section, in which the DIC was
used as a criterion and showed that epigenetic models have the best
fit for all traits. Prediction results were included to show potential
advantages in breeding values predicted by epigenetic models over
regular animal models, which was not the case probably because of
the reasons explained above. Nevertheless, more research is needed
on this topic. In addition, using epigenetic genetic effects may still be
important for performance/phenotype prediction as it contributes to
phenotypic variation.

There is significant transgenerational epigenetic variance for growth,
body composition, and reproductive traits in Landrace pigs. Theoretical
and analytical work should be done to propose methods for deriving a
covariance between epigenetic and additive and residual effects,
especially for genomic models where there was non-orthogonality of
the effects included. The estimated percentage of epigenetic marks being
inherited in Landrace pigs ranged from 10% to 20%, while the reset
coefficient was between 0.80 and 0.90, considering the traits evaluated.
Transgenerational epigenetic heritability (fraction of the phenotypic
variance explained by the transgenerational epigenetic effects) is high for
growth and body composition traits (>0.30) and low for reproductive
traits (~0.04) in Landrace pigs. The permanent environment effect can
capture the transgenerational epigenetic variances, classifying the
epigenetic effect as another non-additive genetic effect affecting
phenotypic variation and indicating that it is more important to fit
epigenetic effects in single-record traits. EBVs from genetic and
epigenetic models are highly correlated at the population level, while
statistical differences between themean values exist. Including epigenetic
effects in genetic models does not impact the prediction accuracy, bias,
and dispersion of the EBVs of focal individuals (young non-phenotyped
selection candidates). This work provides a comprehensive investigation
of the impact of epigenetic effects on genetic and genomicmodels from a
quantitative point of view, providing a solid base for future studies
in this area.
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