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Background: Depression, a prevalent chronic mental disorder, presents
complexities and treatment challenges that drive researchers to seek new,
precise therapeutic targets. Additionally, the potential connection between
depression and cancer has garnered significant attention.

Methods: This study analyzed depression-related gene expression data from the
GEO database. Using data normalization, differential expression analysis,
WGCNA, and machine learning, we identified core genes strongly associated
with depression. These genes were validated in depression patients through
q-PCR and examined for expression patterns and potential roles across
various cancers.

Results:We identified six core genes (GRB10, TDRD9, BCL7A, GPR18, KLRG1, and
THEM4) significantly associated with depression and cancer. In depression,
GRB10 and TDRD9, involved in cell growth and stress responses, exhibited
elevated expression, while BCL7A, GPR18, KLRG1, and THEM4, linked to
immune regulation and apoptosis, showed reduced expression, suggesting
dysregulated cellular signaling and impaired immune function. In cancer,
these genes displayed altered expression patterns across tumor types,
influencing tumor progression, prognosis, and immune microenvironment
modulation. Shared molecular pathways, such as immune dysregulation and
apoptosis, highlight their potential as biomarkers and therapeutic targets for both
depression and cancer.

Conclusion: This study integrates bioinformatics and machine learning to
uncover key molecular pathways and targets for depression, introducing
innovative therapeutic prospects that may enhance precision treatment for
depression. Furthermore, by revealing shared mechanisms between
depression and cancer, we have identified six core genes with significant
functional roles in immune regulation, apoptosis, and cellular signaling. These
findings not only deepen our understanding of the molecular overlap between
these conditions but also lay the groundwork for developing dual-targeted

OPEN ACCESS

EDITED BY

Bharati Mehani,
Georgetown University, United States

REVIEWED BY

Amar Kumar,
University of Illinois Chicago, United States
Asmita Ghosh,
University of Massachusetts Medical School,
United States

*CORRESPONDENCE

Cuixia An,
acxsunny@hebmu.edu.cn

Dongyang Huang,
huangdy@hebmu.edu.cn

RECEIVED 01 November 2024
ACCEPTED 30 December 2024
PUBLISHED 10 January 2025

CITATION

Yang Y, Han W, Zhang X, Yuan H, Wang R,
Yang J, An C and Huang D (2025) Depression-
related innate immune genes and pan-cancer
gene analysis and validation.
Front. Genet. 15:1521238.
doi: 10.3389/fgene.2024.1521238

COPYRIGHT

©2025 Yang, Han, Zhang, Yuan,Wang, Yang, An
and Huang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 10 January 2025
DOI 10.3389/fgene.2024.1521238

https://www.frontiersin.org/articles/10.3389/fgene.2024.1521238/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1521238/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1521238/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1521238&domain=pdf&date_stamp=2025-01-10
mailto:acxsunny@hebmu.edu.cn
mailto:acxsunny@hebmu.edu.cn
mailto:huangdy@hebmu.edu.cn
mailto:huangdy@hebmu.edu.cn
https://doi.org/10.3389/fgene.2024.1521238
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1521238


therapeutic strategies. This study uniquely contributes to bridging mental health
and oncology research, offering new insights and hope for improving patient
outcomes in both fields.
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1 Introduction

As the pace of modern life accelerates, the rising prevalence of
depression has been rising globally. Currently, there are
approximately 3 billion people worldwide suffering from
depression, making it one of the most prevalent mental disorders
globally (World Health Organization, 2023). By 2030, depression is
projected to become a leading cause of impaired quality of life
(Ferrari et al., 2013; Whiteford et al., 2013). The primary clinical
symptoms include anxiety, insomnia, tension, melancholy, lack of
concentration, and in extreme cases, suicidal thoughts (Fried, 2017).
Presently, pharmacotherapy and psychotherapy are the main
approaches to treating depression (Farah et al., 2016). However,
current efforts to identify reliable biomarkers for depression remain
limited by challenges such as the heterogeneity of depressive
disorders, insufficient sample sizes in studies, and a lack of
integrated analysis across datasets. These limitations hinder the
development of precise diagnostic and therapeutic strategies,
underscoring the need for novel approaches to identify robust
molecular markers. Furthermore, the absence of precise
biomarkers and therapeutic targets for depression has led to
significant challenges, such as the development of drug resistance
and high relapse rates in patients undergoing long-term
antidepressant therapy (Pompili et al., 2013; Barth et al., 2016;
Cipriani et al., 2018). Additionally, prolonged use of
antidepressants is associated with metabolic disorders and an
increased risk of cardiovascular diseases (Segraves, 2007;
Bostwick, 2010; Carvalho et al., 2016). Therefore, the
identification of core genes and molecular markers closely
associated with depression is essential to advance our
understanding of its pathogenesis and improve early detection
and treatment.

Recent studies suggest that depression and cancer, though
distinct in clinical presentation, may share underlying molecular
mechanisms such as immune dysregulation, chronic inflammation,
and altered cellular signaling. These shared pathways not only
highlight biological connections between the two conditions but
also present an opportunity for integrated research approaches to
uncover novel therapeutic targets. Cancer is one of the leading
causes of mortality worldwide (Sung et al., 2021), with the most
common types being breast, lung, colon, rectal, and prostate cancers
(World Health Organization, 2020). Numerous studies have
established a significant positive correlation between cancer and
mental disorders (Aass et al., 1997; Ford et al., 1995). Specifically,
around 25% of cancer patients exhibit depressive symptoms at the
early stages of their illness, with this percentage rising dramatically
to 77% in the advanced stages, indicating a high prevalence of severe
depression (Bukberg et al., 1984). Exploring shared genes between
depression and cancer is scientifically significant, as these conditions
may involve common biological pathways such as immune

dysregulation and chronic inflammation, which could reveal new
therapeutic targets for both diseases.

In this study, we employed bioinformatics and machine learning
techniques to analyze the correlation between depression and pan-
cancer, identifying core genes shared between the two conditions.
This research provides new perspectives for future therapeutic
strategies and lays the foundation for targeted treatments based
on shared mechanisms between these diseases. Despite these
advances, current research largely focuses on either depression or
cancer independently, with limited studies investigating the genetic
and molecular intersections of these conditions. Moreover, most
studies rely heavily on gene expression data without integrating
advanced computational approaches to identify and validate core
molecular markers. Shared immune pathways, such as chronic
inflammation, immune dysregulation, and alterations in cellular
signaling, have been implicated in both depression and cancer,
highlighting overlapping molecular mechanisms that may
influence disease progression and therapeutic responses.
Understanding these pathways could provide critical insights into
how immune function contributes to the pathophysiology of both
conditions. This gap in knowledge underscores the need for
systematic research to elucidate shared mechanisms and identify
potential therapeutic targets. By employing bioinformatics and
machine learning techniques, our study provides a
comprehensive analysis of the shared genetic basis of depression
and pan-cancer, offering insights into novel pathways andmolecular
targets that may lead to more precise diagnostic and therapeutic
strategies.

2 Methods and materials

2.1 Download and processing of
depression datasets

The GSE76826 dataset, derived from blood cell samples, and the
GSE98793 dataset, derived from whole blood samples, were
downloaded from the Gene Expression Omnibus (GEO),
accessible at https://www.ncbi.nlm.nih.gov/geo. The collected
datasets are summarized in Supplementary Table S1. To analyze
changes in mRNA expression, we conducted a differential
expression analysis of depression-related genes using the “limma”
package in the R environment (version 4.3.0), with access to the
package at https://www.bioconductor.org/packages/release/bioc/
html/limma.html (accessed 13 April 2024). Data normalization
was performed using the “normalizeBetweenArrays” function
from the “limma” package, employing quantile normalization to
ensure comparability between samples. Differentially expressed
genes (DEGs) were identified based on a p-value <0.05, a false
discovery rate (FDR) <0.05, and a log2 fold change (|log2FC|) > 0.5.
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The p-value <0.05 and FDR <0.05 thresholds were chosen to ensure
statistical rigor, minimizing false positives in the identification of
significant DEGs, while the |log2FC| > 0.5 criterion captures genes
with moderate but potentially biologically significant changes in
expression. These thresholds align with widely accepted standards
in transcriptomic studies, balancing the trade-off between sensitivity
and specificity, particularly in studies with moderate sample sizes. A
volcano plot was generated to visualize these results (Ritchie et al.,
2015). Subsequently, we used the “pheatmap” package in R to create a
heatmap of the selected differentially expressed genes (DEGs) (https://
cran.r-project.org/web/packages/pheatmap/index.html, accessed
13 April 2024). The goal of this analysis was to identify key genes
associated with depression, laying the foundation for subsequent
functional and pathway analyses.

2.2 Functional enrichment analysis of DEGs

Functional enrichment analysis was performed on the identified
DEGs. A commonly used technique for assigning function to genes
is Gene Ontology (GO), which includes molecular function (MF),
biological process (BP), and cellular component (CC) categories.
KEGG enrichment analysis was conducted to identify pathways
associated with the DEGs. GO functions and KEGG pathways were
analyzed using the “GOplot” package and the “clusterProfiler”
package in R (Walter et al., 2015).

2.3 Identification of depression-related key
gene modules via WGCNA

Weighted Gene Co-expression Network Analysis (WGCNA)
was performed using the “WGCNA” package in R (version 4.3.0)
(https://cran.r-project.org/web/packages/WGCNA/index.html,
accessed 12 January 2024) (Langfelder and Horvath, 2008).
Genes were modularized through WGCNA, with non-
clustering genes filtered out, and the remaining genes used to
construct a co-expression network. This module was analyzed
using dynamic tree cutting and hierarchical clustering. Module
eigengenes and clinical traits were correlated using module
membership (MM) and gene significance (GS). Hub modules
with an absolute MM value of 0.05 were considered highly
correlated. Modules with MM > 0.8 and GS > 0.2 indicated
high connectivity and clinical relevance.

2.4 Identification of core genes via
machine learning

To identify core genes associated with depression, we employed
machine learning techniques, including Support Vector Machine-
Recursive Feature Elimination (SVM-RFE), LASSO regression, and
Random Forest (RF) analysis.

In the SVM-RFE model, features were ranked iteratively based
on their contribution to classification performance, and the subset
with the highest accuracy was selected. Parameters were tuned using
strict ten-fold cross-validation, optimizing the penalty parameter
(C) within a range of 0.01–100 to minimize classification error and

improve generalization. The final C value was determined as 1
(Huang et al., 2014).

LASSO regression, performed using the “glmnet” package in R,
was used to compute, select, and retain relevant variables. The
lambda parameter was optimized through ten-fold cross-
validation using the “1 SE” criterion, which selects the simplest
model with performance within one standard error of the minimum
deviance. Binomial distribution was applied to classify variables, and
variables with non-zero coefficients after shrinkage were selected
(Ishwaran and Kogalur, 2010).

For the Random Forest model, 500 trees were constructed, and
the number of features randomly selected at each split (mtry) was set
to the square root of the total features. The relative importance score
of each gene was calculated based on its contribution to reducing the
Gini impurity across all trees. Genes with relative importance scores
above 0.25 were identified as critical determinants.

These three machine learning approaches were used in
combination to screen for essential core genes, ensuring a robust
and comprehensive identification process.

2.5 Real-time quantitative RT-PCR

Our study involved blood samples from six patients diagnosed
with depression and eight healthy controls. The study protocol
strictly adhered to the principles outlined in the Declaration of
Helsinki to ensure the ethical handling of human tissues.
Additionally, the study was approved by the Clinical Research
Ethics Committee of the First Hospital of Hebei Medical
University (NO. 20210742). Written informed consent was
obtained from each participant after providing them with
detailed information about the study’s purpose, procedures, and
potential risks and benefits. Participants were assured that their
involvement was voluntary, and they could withdraw at any time
without repercussions.

To protect privacy and ensure confidentiality, all samples were
assigned unique anonymized codes during collection. Identifiable
personal information was securely stored and accessible only to
authorized personnel for essential purposes. Data used in the
analysis were completely de-identified, and all results were
reported in aggregate form to prevent re-identification of
individuals.

Total RNA was extracted from human blood using an RNA
isolation kit (RNAiso, Takara, San Jose, CA, United States). The
isolated RNA was dissolved in 20 μL of DEPC-treated water and
used for reverse transcription with the PrimeScript™ RT reagent Kit
with gDNA Eraser (Takara) and a thermal cycler (Eppendorf,
Hamburg, Germany). The resulting cDNA was used for
quantitative PCR (qPCR) detection, with amplification curves
generated using SYBR Premix Ex Taq II (Takara). Primers were
designed based on sequences from NCBI and optimized for
specificity and efficiency. These primers were chosen to target
conserved regions of the core genes identified in the study to
ensure accurate quantification of expression levels. Details of the
primers used are listed below. Statistical analysis of the qPCR data
was conducted using GraphPad Prism (version 9.0). Relative
expression levels of the core genes were calculated using the
2̂−ΔΔCt method, and statistical comparisons between groups
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were performed using an unpaired two-tailed t-test. A
p-value <0.05 was considered statistically significant. Such
experimental validation ensured the accuracy and reliability of
the gene expression levels identified, thereby reinforcing the
robustness of our findings. The primers used for qPCR were:

GAPDH-Home-F: GGAGCGAGATCCCTCCAAAAT.
GAPDH-Home-R: GGCTGTTGTCATACTTCTCATGG.
BCL7A-Homo-F: CAGATGCCTCCCCCATCAAA.
BCL7A-Homo-R: ACTCCTTCCAAATCCTGAGAGA.
GPR18-Homo-F: ACATCCAAAATCTTGATCAGTTA.
GPR18-Homo-R: AGGACAGACTTTCAAAATGTTT.
KLRG1-Homo-F: TTGGGCTGTTTCCTCACTGAT.
KLRG1-Homo-R: TGGAGTAGTTGGAGCCCTGG.
THEM4-Homo-F: TCCAGGTTAGATGCTGCACA.
THEM4-Homo-R: GAGTGGAGCTGGCAAATTG.
GRB10-Homo-F: CAGCTTTTGCAGGAACCCAG.
GRB10-Homo-R: CTTTATGCAGAGCCCGTGGT.
TDRD9-Homo-F: AAGACGGTGACCAATGTGGAG.
TDRD9-Homo-R: CAAAGATGGCCTTGGACCTGG.

2.6 Construction of the PPI network

The protein-protein interaction (PPI) network for the core genes
was constructed using GeneMANIA (http://www.genemania.org), a
tool that predicts gene-gene interactions based on physical
interactions, co-expression, co-localization, gene enrichment
analysis, genetic interactions, and pathway predictions.

2.7 Development of a depression recurrence
prediction model and core gene evaluation

After identifying core genes associated with depression, we
constructed a composite nomogram model using the “rms”
package in R (version 4.3.0) to predict depression recurrence.
This model visually represents how different clinical factors
contribute to the risk of recurrence. The “score” represents the
weighted value of an individual clinical factor, while the “total score”
represents the cumulative weight of all considered factors. The
model’s reliability and predictive power were rigorously assessed
using calibration curves. Decision curve analysis (DCA) and clinical
impact curves were employed to evaluate the model’s clinical utility.
Additionally, the diagnostic utility of key genes was evaluated by
generating a receiver operating characteristic (ROC) curve using the
pROC function in R, with the area under curve (AUC) serving as
the metric.

2.8 Core gene expression and prognosis in
pan-cancer

To explore the relationship between depression and cancer, we
downloaded RNA sequencing and clinical data from The Cancer
Genome Atlas (TCGA) database for 33 different cancer types. Data
on normal tissue expression was obtained from the GTEx database.
This step was crucial for verifying whether the core genes significant
in depression could influence cancer. Expression levels of key genes

were compared between case and control groups to identify any
significant differences. For prognostic analysis, a univariate Cox
regression analysis was performed using the “forestplot” R package,
and forest plots were used to display the p-values, hazard ratios, and
95% confidence intervals.

2.9 Immune infiltration analysis of core
genes in pan-cancer

The EPIC method was used to investigate the relationship between
immune infiltration and the expression of core genes across all TCGA
cancers. A p-value threshold of <0.05 was used to determine statistical
significance, providing confidence in the observed associations while
controlling for random variation. This analysis aimed to elucidate the
role of key genes in the tumor immune microenvironment, providing
insights into potential immunotherapy targets.

3 Results

3.1 Processing and screening of DEGs in the
depression dataset

We identified two datasets, GSE76826 and GSE98793, from the
GEO database. A box plot showed significant expression differences
between the two datasets before normalization (Figure 1A). After
normalization, the datasets were standardized, allowing for
consistent processing and subsequent analysis (Figure 1B). PCA
results further demonstrated that the datasets overlapped
significantly after normalization, justifying their combined analysis
(Figure 1C). Based on a threshold of P < 0.05 and |log2(FC)| > 0.5,
we identified 111 DEGs. These DEGs were visualized using volcano
plots (Figure 1D), which highlight genes with statistically significant
expression changes, aiding in the identification of key upregulated and
downregulated genes. Additionally, heatmaps (Figure 1E) displayed
expression patterns across samples, emphasizing differential expression
trends between depression and control groups, thus supporting the
reliability of our DEG selection process. Functional enrichment analysis
of these DEGs revealed that biological processes (BP) were primarily
enriched in transport, establishment of localization, and immune
system processes. Molecular functions (MF) were enriched in
catalytic activity, acting on proteins, and signal transducer activity.
Cellular components (CC) were enriched in membrane, vesicle, and
organelle membrane components (Figure 1F). KEGG analysis
highlighted pathways such as glycosaminoglycan biosynthesis, which
plays a pivotal role in extracellular matrix organization and cellular
communication. Glycosaminoglycans, such as heparan sulfate and
chondroitin sulfate, are essential for modulating signaling pathways
involved in neuroinflammation and neuronal repair. Dysregulation of
these pathways has been implicated in the pathogenesis of depression,
particularly in relation to chronic inflammation and impaired
neuroplasticity. Similarly, glycerophospholipid metabolism, which is
crucial for maintaining cellular membrane integrity and signal
transduction, was identified. Alterations in this pathway have been
linked to disrupted neuronal signaling and cognitive dysfunction in
depressive disorders. Additionally, immune-related pathways like
heparan sulfate biosynthesis further underline the inflammatory
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processes associated with depression, suggesting these molecular
mechanisms may serve as potential therapeutic targets (Figure 1G).

3.2 Identification of keymodule genes highly
correlated with depression progression
through WGCNA

To identify genes highly associated with depression, we performed
WGCNA on the GSE76826 and GSE98793 datasets. By setting
appropriate criteria, we removed samples that showed clear outliers

in the sample clustering (Figure 2A).We then set the soft threshold to 5,
with R2 > 0.87, to ensure a biologically meaningful scale-free network
(Figure 2B). After merging modules with a high clustering cut-off of
0.25, ten modules were detected (Figure 2C). These modified and
merged modules are displayed under the cluster tree. Subsequent
examination of module correlations showed no significant inter-
module correlations (Figure 2D). By analyzing the correlation
between module eigengenes (ME) and clinical traits, we further
explored the relationship between modules and clinical
characteristics. Module eigengenes (ME) represent the first principal
component of the gene expression profiles within amodule and serve as

FIGURE 1
(A) Boxplot of the unnormalized raw data. (B) Boxplot of the data after normalization. (C) PCA plot illustrating the standardized depression and
control datasets. (D) Volcano plot depicting differentially expressed genes (DEGs). (E) Heatmap of DEGs. (F) Gene Ontology (GO) analysis of DEGs. (G)
KEGG pathway analysis of DEGs.
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a summary measure of the module’s overall expression. Correlation
analysis between ME and clinical traits helps identify modules that are
significantly associated with specific phenotypes, such as depression. In
our analysis, The light green module was positively correlated with
depression (r = 0.19, p = 3.5e-3), while the midnight blue module was
negatively correlated with depression (r = −0.19, p = 5e-3; Figure 2E).
Finally, in the scatter plots of MM and GS, the light green andmidnight
blue modules showed a strong correlation with depression (Figures 2F,
G). Consequently, we further analyzed all genes within these two key
modules. These modules provide insights into gene clusters that are

functionally related to depression, potentially offering biomarkers or
therapeutic targets for early diagnosis and treatment.

3.3 Identification of overlapping DEGs and
WGCNA key module genes in depression
through cross-analysis

To obtain biomarkers associated with depression, we used a
Venn diagram to overlap DEGs obtained from the GEO database

FIGURE 2
(A)Dendrogram illustrating sample clustering corresponding to individual samples. (B) Soft threshold (β= 5) with a scale-free topology fit index (R2) =
0.87. (C) Original and merged modules displayed beneath the cluster tree. (D) Heatmap showing the co-expression of module eigengenes, with red
indicating higher correlations and blue indicating lower correlations. (E) Dendrogram of module eigengene clustering. (F) Scatter plot depicting the
relationship between module membership (MM) and gene significance (GS) in patients with depression. (G) Scatter plot showing the relationship
between MM and GS in the control group.
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with key module genes identified from WGCNA, revealing
20 overlapping genes (Figure 3A). Functional enrichment
analysis of these overlapping genes showed that, in the context
of BP, they were mainly enriched in the negative regulation of
cellular processes, regulation of signal transduction, and
regulation of cell communication. MF was enriched in
catalytic activity, transferase activity, and drug binding. CC
was enriched in organelle membrane, organelle boundary
membrane, and mitochondrial membrane (Figure 3B). KEGG
analysis identified pathways such as fatty acid elongation and
glycosphingolipid biosynthesis, which are essential for
maintaining neuronal integrity and function, suggesting that
dysregulation in these pathways might contribute to the
pathogenesis of depression (Figure 3C).

3.4 Screening of core genes in depression
using machine learning

To screen for core genes, we combined three computational
techniques to analyze the overlapping genes. LASSO regression
analysis (Figures 4A, B) and SVM-RFE (Figure 4C) were
employed to select core predictive genes from statistically
significant univariate variables. Random forest with feature
selection was used to calculate the correlation between error rate
and the number of classification trees, followed by screening of core
predictive genes (Figure 4D). Finally, we performed a cross-analysis
using a Venn diagram of these three computational methods,
identifying six core genes: GRB10, TDRD9, BCL7A, GPR18,
KLRG1, and THEM4 (Figure 4E). The integration of these
machine learning approaches ensures the robustness of gene
selection, highlighting genes that may play critical roles in the
molecular mechanisms underlying depression.

3.5 Validation of core gene expression in
depression

To ensure the accuracy of our results, we validated the
expression of the six core genes in the GSE76826 dataset. The
results showed that the expression levels of GRB10 and
TDRD9 were significantly increased in depression patients
compared to the control group, while the expression levels of
BCL7A, GPR18, KLRG1, and THEM4 were significantly
decreased, all with statistical significance (Figure 5A).
Additionally, we explored the relationships among the
upregulated and downregulated genes. GRB10 was positively
correlated with TDRD9, suggesting functional similarities
between these two genes (Figure 5B). Similarly, the positive
correlations among BCL7A, GPR18, KLRG1, and
THEM4 indicated shared functional characteristics (Figure 5C).
Finally, we experimentally validated the expression of these six
core genes in depression patients. qPCR results demonstrated
that, compared to the normal control group, the expression of
GRB10 and TDRD9 was significantly elevated in the blood of
depression patients, while the expression of BCL7A, GPR18,
KLRG1, and THEM4 was significantly reduced (Figure 5D).
These findings are consistent with our previous results,

confirming the crucial role of these six core genes in the
progression of depression.

3.6 Gene Set Enrichment Analysis (GSEA) of
core genes in depression

To gain a deeper understanding of the functions of core genes
in depression, we performed a Gene Set Enrichment Analysis
(GSEA) on these genes. First, we divided the depression tissue
samples into two groups based on the median expression levels of
core genes. The high BCL7A subgroup was enriched in pathways
related to DNA replication, mismatch repair, primary
immunodeficiency, and the low BCL7A subgroup was enriched
in pathways such as Rig-I-like receptor signaling and the renin-
angiotensin system (Supplementary Figure S1A). These findings
suggest that BCL7A may contribute to maintaining genomic
stability and immune regulation, processes that could be
disrupted in depression. The low GPR18 subgroup showed
enrichment in amino sugar and nucleotide metabolism,
fructose and mannose metabolism, alanine metabolism,
pantothenate and CoA biosynthesis, and folate biosynthesis
(Supplementary Figure S1B). The involvement of GPR18 in
metabolic pathways emphasizes its role in cellular energy
homeostasis and neurotransmitter biosynthesis, which are
critical for brain function and may be impaired in depressive
disorders. The high GRB10 subgroup was enriched in aminoacyl-
tRNA biosynthesis, DNA replication, primary
immunodeficiency, and mismatch repair, whereas the low
GRB10 subgroup was enriched in sulfur metabolism
(Supplementary Figure S1C). These pathways highlight
GRB10’s potential role in protein synthesis and stress response
mechanisms. The high KLRG1 subgroup showed enrichment in
folate biosynthesis, phenylalanine metabolism, and riboflavin
metabolism, while the low KLRG1 subgroup was enriched in
homologous recombination, primary immunodeficiency, and
steroid biosynthesis (Supplementary Figure S1D). The high
TDRD9 subgroup was significantly enriched in DNA
replication, ribosome, and RNA polymerase, whereas the low
TDRD9 subgroup was enriched in type II diabetes, folate
biosynthesis, and sulfur metabolism (Supplementary Figure
S1E). The high THEM4 subgroup was enriched in steroid
biosynthesis, while the low THEM4 subgroup was enriched in
complement and coagulation cascades, fructose and mannose
metabolism, folate biosynthesis, and pantothenate and CoA
biosynthesis (Supplementary Figure S1F). These results suggest
that core genes regulate pathways involved in immune responses,
energy metabolism, and cellular repair, all of which are closely
linked to the pathogenesis of depression.

3.7 Interaction analysis of core genes in
depression

To further explore the functions of core genes, we utilized the
GeneMania database to identify the 20 most closely related genes
to GRB10 and TDRD9, constructing a co-expression network
(Figure 6A). GO/KEGG analysis of these genes revealed that
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biological process (BP) enrichment was mainly associated with cell
surface receptor signaling pathways, cellular protein metabolic
processes, and response to stimuli regulation. Molecular
function (MF) enrichment was primarily related to enzyme
binding, anion binding, and purine ribonucleotide binding.
Cellular component (CC) enrichment was mainly associated
with the cytoplasm, extracellular space, and extracellular region
(Figure 6B). KEGG analysis identified significant pathways
including the PI3K-Akt signaling pathway, FoxO signaling
pathway, Rap1 signaling pathway, Ras signaling pathway,
longevity regulating pathway, multi-species longevity regulating
pathway, and phospholipase D signaling pathway (Figure 6C).
These pathways indicate that GRB10 and TDRD9 are involved in
critical cellular processes such as survival signaling, stress
adaptation, and metabolic regulation, which may play central
roles in the development and progression of depression. Using
the same method, we identified the 20 most closely related genes to

BCL7A, GPR18, KLRG1, and THEM4, constructing a co-
expression network (Figure 6D). Enrichment analysis showed
that BP enrichment was mainly associated with regulation of
response to stimuli, phosphorus-containing compound
metabolism, and phosphorus metabolism. MF enrichment was
primarily related to protein kinase binding, kinase binding, and
adenosine ribonucleotide binding. CC enrichment was mainly
associated with components of the plasma membrane, intrinsic
components of the plasma membrane, and the cell surface
(Figure 6E). KEGG analysis revealed pathways such as Fc
epsilon RI signaling pathway, sphingolipid signaling pathway,
mTOR signaling pathway, asthma, phospholipase D signaling
pathway, endometrial cancer, insulin resistance, fatty acid
elongation, and autophagy in animals (Figure 6F). These
pathways suggest that BCL7A, GPR18, KLRG1, and
THEM4 play roles in immune signaling and metabolic
pathways, further underscoring their relevance to depression.

FIGURE 3
(A) Venn diagram displaying the overlap between key module genes and DEGs. (B)GO analysis of the overlapping genes. (C) KEGG pathway analysis
of the overlapping genes.
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3.8 Prognostic model for depression based
on core genes

To more accurately predict and assess the progression of
depression, we constructed a nomogram model for depression
diagnosis based on the core genes (GRB10, TDRD9, BCL7A,
GPR18, KLRG1, and THEM4) using the rms package
(Figure 7A). Calibration curves demonstrated minimal differences
between actual and predicted risks, indicating that the depression
nomogram model has good predictive capability (Figure 7B).
Decision curve analysis (DCA) (Figure 7C) and ROC analysis

(AUC: 0.77) (Figure 7D) further confirmed the strong predictive
ability of this prognostic model. Finally, to determine the diagnostic
utility of BCL7A, GPR18, GRB10, KLRG1, TDRD9, and THEM4, we
performed ROC analysis on these six core genes. The results
indicated that BCL7A (AUC: 0.656), GPR18 (AUC: 0.9677),
GRB10 (AUC: 0.678), KLRG1 (AUC: 0.661), TDRD9 (AUC:
0.698), and THEM4 (AUC: 0.678) exhibit high diagnostic value
for depression (Figure 7E). This model provides a robust tool for
identifying individuals at risk of depression, with potential for
integration into clinical workflows to guide early intervention
and personalized treatment strategies.

FIGURE 4
(A) LASSO regression analysis with adjustedminimum absolute shrinkage. (B) Feature selectionwithin the LASSO regressionmodel. (C) Selection and
validation of biomarker signature gene expression using the SVM-RFE algorithm. (D) Selection and validation of biomarker signature gene expression
using the RF algorithm. (E) Venn diagram illustrating gene selection across three different algorithms.

Frontiers in Genetics frontiersin.org09

Yang et al. 10.3389/fgene.2024.1521238

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1521238


To investigate whether these depression-related findings have
broader implications, we extended our analysis to explore the
expression and functional relevance of the six identified core
genes in pan-cancer datasets. This transition builds on the
potential overlap of molecular pathways, such as immune
regulation and metabolic processes, between depression and
cancer. By analyzing core gene expression across multiple cancer
types, we aimed to uncover their broader biological roles and
potential clinical applications.

3.9 Expression of core genes in pan-cancer

To investigate the correlation between cancer and depression,
we examined the expression of BCL7A, GPR18, GRB10, KLRG1,
TDRD9, and THEM4 across various cancer types using the TCGA
database. The results showed significant differences in the
expression of these six core genes in pan-cancer compared to
normal tissues, and these differences were statistically significant
(Supplementary Figure S2A). The altered expression patterns

FIGURE 5
(A) Differential expression analysis of core genes within the dataset. (B) Correlation analysis of core genes with increased expression in depression.
(C) Correlation analysis of core genes with decreased expression in depression. (D) A quantitative analysis of the mRNA transcription levels of core genes
in the blood was conducted for both depressed patients (n = 6) and healthy controls (n = 8). Statistical analysis was performed using Student’s t-test, and
significance levels are indicated as follows: p < 0.05 (*), p < 0.01 (), p < 0.001 (*), and p < 0.0001 ().
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suggest that these genes may play distinct roles in tumorigenesis and
tumor progression, potentially acting as oncogenes or tumor
suppressors depending on the context. For example,
overexpression of GRB10 and TDRD9 may enhance cancer cell
proliferation, while downregulation of BCL7A, GPR18, KLRG1, and
THEM4 could contribute to reduced immune surveillance and
tumor evasion. To validate these findings, we combined data
from the GTEx database with TCGA data, confirming significant
and statistically meaningful differences in the expression of these six
core genes in pan-cancer (Supplementary Figure S2B). Therefore,
these six core genes exhibit potential as cancer biomarkers or

therapeutic targets, offering new perspectives and directions for
precision medicine in cancer treatment.

3.10 Prognostic value of core genes in pan-
cancer and immune infiltration analysis

To further understand the impact of core gene expression on
cancer patient prognosis, we analyzed the relationships between core
gene expression and overall survival (OS) (Supplementary Figure
S3A), disease-specific survival (DSS) (Supplementary Figure S3B),

FIGURE 6
(A) Co-expression network of upregulated genes. (B) GO analysis of upregulated genes. (C) KEGG pathway analysis of upregulated genes. (D) Co-
expression network of downregulated genes. (E) GO analysis of downregulated genes. (F) KEGG pathway analysis of downregulated genes.
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and progression-free survival (PFS) (Supplementary Figure S3C) in
pan-cancer patients. Prognostic analysis of 38 cancer types revealed
that different genes exhibit protective and risk factor states across
various cancers. For instance, BCL7A and GRB10 showed protective

roles in some cancers, possibly through mechanisms such as
enhancing immune infiltration or suppressing oncogenic
pathways, while THEM4, TDRD9, and KLRG1 acted as risk
factors in others, potentially by inhibiting tumor suppressor

FIGURE 7
(A) Prognostic model for depression diagnosis. (B) Calibration curve evaluating the predictive accuracy of the prognostic model. (C) ROC curve
assessing the clinical utility of the depression model. (D) DCA curve assessing the clinical utility of the depression model. (E) ROC curve for core genes.
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functions. This provides robust support for understanding their
roles and predictive value in cancer and informs clinical research
and treatment decisions. Subsequently, we calculated the correlation
between core gene expression and immune cell infiltration in various
cancers using the EPIC algorithm to better understand the role of
core genes in tumor immune responses. Results indicated that core
genes can influence cancer progression by regulating immune cells,
with BCL7A and GRB10 showing positive correlations with immune
cell infiltration in most cancers (Figures 8A, B). These genes may
enhance anti-tumor immunity by recruiting and activating immune
cells, such as T cells and macrophages, in the tumor
microenvironment. Conversely, KLRG1, THEM4, and

TDRD9 exhibited negative correlations with immune cell
infiltration (Figures 8D–F). Their downregulation may suppress
immune activation, allowing tumors to evade immune
surveillance. The correlation between GPR18 expression and
immune cell infiltration in cancer is more complex, showing both
positive and negative correlations depending on the cancer type
(Figure 8C). This context-dependent effect of GPR18 highlights its
multifaceted role in modulating immune responses, which may vary
depending on the tumor microenvironment. These findings suggest
that core gene expression not only correlates with patient prognosis
but also significantly affects tumor immune responses. Genes such
as BCL7A and GRB10 may exert anti-cancer effects by promoting

FIGURE 8
(A) EPIC immune scores for BCL7A. (B) EPIC immune scores for GPR18. (C) EPIC immune scores for GRB10. (D) EPIC immune scores for KLRG1. (E)
EPIC immune scores for TDRD9. (F) EPIC immune scores for THEM4.
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immune cell infiltration, whereas KLRG1, THEM4, and
TDRD9 might suppress immune cell infiltration, facilitating
tumor progression. The varied impact of GPR18 highlights the
complexity of immune modulation in cancer, suggesting its role
may differ across tumor types. These insights deepen our
understanding of the mechanisms of core genes in cancer and
could provide important molecular targets and theoretical
foundations for developing new cancer immunotherapies and
personalized treatment strategies.

Overall, these findings provide novel insights into the dual and
context-specific roles of core genes in cancer immunity and
progression. By linking immune infiltration with gene expression
patterns, our study offers a deeper understanding of shared
mechanisms between depression and cancer. This understanding
lays the groundwork for targeted immunotherapies and precision
medicine approaches that address overlapping pathways in
these diseases.

4 Discussion

Depression is currently the most prevalent chronic mental disorder
(Zeng et al., 2020). Some of the primary symptoms include depression,
anorexia, low self-esteem, pain, and sleep disturbances (Nishiguchi
et al., 2021). Patients with prolonged depression are at a higher risk of
developing suicidal thoughts and engaging in suicidal behavior (Xia
et al., 2023). Clinical data indicate that more than 300 million people
worldwide suffer from depression (Xie et al., 2020). By 2030, depression
is expected to surpass all other health-related conditions as the leading
cause of disability (Chu et al., 2019). Currently, pharmacotherapy
remains the primary treatment for depression (Farah et al., 2016).
Although various antidepressant medications are available, they are
associated with significant side effects, and to date, no drug has been
developed specifically to target depression (Bian et al., 2022). Therefore,
our current focus is on identifying precise targets for the accurate
treatment of depression.

In recent years, the rapid development of bioinformatics has played
a crucial role in the medical field. Through functional enrichment
analysis of molecules, we can systematically and comprehensively study
the onset and progression of diseases (Liang et al., 2019; Gómez-López
and Valencia, 2008). Gene screening has also increasingly incorporated
machine learning algorithms and WGCNA (Langfelder and Horvath,
2008). However, there remains a lack of literature utilizing
bioinformatics to study depression.

In light of this, we developed a comprehensive and systematic
evaluation framework for depression. By integrating WGCNA,
machine learning algorithms, and PPI analysis, our study uniquely
bridges bioinformatics with advanced computational techniques,
enabling the identification of shared genetic mechanisms between
depression and cancer. This integrative approach represents a
significant advancement in understanding the molecular
underpinnings of these complex conditions. Using this framework,
combined with WGCNA, machine learning algorithms, and PPI
analysis, we examined the core genes and molecular pathways in
patients with depression, leading to significant advancements in the
treatment of this disorder.

In this study, we identified a total of 111 DEGs. WGCNA analysis
revealed 372 core genes and 10 modules. Cross-analysis identified

20 overlapping genes, and machine learning techniques further
pinpointed six core genes. Among them, GRB10 and TDRD9 were
significantly upregulated, while BCL7A, GPR18, KLRG1, and
THEM4 were significantly downregulated in patients with
depression. These findings provide novel insights into the shared
molecular mechanisms between depression and cancer, particularly
through their roles in immune regulation and metabolic pathways. The
identified core genes may serve as dual-purpose biomarkers or
therapeutic targets, offering a foundation for precision medicine
approaches that address overlapping pathways in both diseases. We
constructed a bar graphmodel for depression diagnosis, confirming the
diagnostic value of these six core genes, indicating their considerable
significance in depression. Subsequent ROC analysis demonstrated that
all core genes are crucial in depression, suggesting their potential
diagnostic relevance in therapeutic treatment. Finally, we validated
the expression trends of these six core genes in the blood of
depressed patients using qPCR, finding that the trends were
consistent with our results compared to the control group. This
comprehensive analysis underscores the translational potential of our
findings, paving the way for future research into targeted therapies for
depression and cancer.

Interestingly, some studies have proposed a potential link
between depression and cancer (Brewer, 2008; Leis et al., 2022;
Bieliauskas and Garron, 1982). However, there is no recent research
precisely exploring the connection between these two conditions.
Therefore, we investigated the significance of depression-related
core genes in pan-cancer.

Our findings revealed that these core genes play significant roles in
cancer. However, the expression trends of these genes in depression are
not consistent across all cancers, as observed in the TCGA dataset. For
example, GRB10 and TDRD9, which are upregulated in depression,
display variable expression patterns in different cancer types, reflecting
their context-dependent roles. Similarly, BCL7A, GPR18, KLRG1, and
THEM4, which are downregulated in depression, also exhibit diverse
expression trends across cancers. This variability suggests that these
genes may serve dual roles, functioning as either protective or risk
factors depending on the specific cancer type and its associated
molecular mechanisms. For instance, BCL7A and GRB10, which
were found to be protective factors in certain cancers, are known to
regulate immune-related pathways and cellular signaling, potentially
enhancing anti-tumor immunity and suppressing oncogenic activity.
Conversely, THEM4, TDRD9, and KLRG1, which act as risk factors in
some cancers, might contribute to tumor progression through immune
evasion mechanisms or by impairing apoptosis pathways. GPR18, with
its dual and context-dependent roles, is involved in immune cell
recruitment and modulation, reflecting its complex contribution to
tumor immune microenvironments. This variability emphasizes the
importance of context and tissue specificity when investigating the
shared mechanisms between depression and cancer. Additionally,
immune infiltration results indicate that core genes may influence
the occurrence and development of cancer through immune
infiltration. These findings suggest that these genes serve as key
regulators in both diseases by modulating shared mechanisms, such
as immune dysregulation and chronic inflammation. While the
observed differential expression trends between depression and
cancers highlight the complexity of these genes’ roles, they also
present opportunities for further research to elucidate their context-
specific functions and therapeutic potential.
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In summary, this study made substantial progress by
systematically analyzing the core genes and molecular pathways
in depression patients, using a comprehensive evaluation framework
that incorporates WGCNA, machine learning algorithms, and PPI
analysis. We identified six core genes (BCL7A, GPR18, GRB10,
KLRG1, TDRD9, and THEM4), confirming their critical value in
diagnosing depression. Additionally, we preliminarily explored the
roles of these core genes in pan-cancer, discovering their significant
impact on cancer development and progression. However, this study
has some limitations. First, although we validated the expression
trends of core genes in the blood of depressed patients using qPCR,
the sample size was relatively small, necessitating further validation
with larger samples in future studies. Second, while our analysis
provides valuable insights into gene expression, it does not address
the functional roles of these genes. Functional studies, such as gene
knockdown or overexpression experiments, will be crucial to
uncover the precise molecular mechanisms underlying their roles
in depression and cancer. Third, this research primarily focused on
gene expression, leaving the complex pathological mechanisms of
depression needing further exploration. To address these gaps,
single-cell sequencing could be employed to dissect cell-type-
specific expression patterns of the six core genes in both
depression and cancer tissues, enabling the identification of
specific cell populations or microenvironments where these genes
are active. For instance, single-cell RNA sequencing of tumor tissues
from patients with co-morbid depression could help elucidate how
immune cell populations or stromal cells express these genes,
shedding light on their dual roles in both conditions. Similarly,
proteomics approaches could validate the functional relevance of
these genes at the protein level. Proteomic profiling of plasma or
cerebrospinal fluid (CSF) could reveal post-translational
modifications or interactions of these proteins, providing further
evidence of their involvement in key biological pathways. Finally,
given the observed expression variability across cancers, future
research should focus on identifying context-specific regulatory
mechanisms, such as transcription factor binding or epigenetic
modifications, that drive these differential expression patterns.
Integrative approaches combining transcriptomics, epigenomics,
and proteomics data could provide a more comprehensive
understanding of the shared and distinct roles of these genes in
depression and cancer. These studies would pave the way for tailored
therapeutic strategies targeting overlapping pathways in
both diseases.

5 Conclusion

This study conducted a comprehensive bioinformatics analysis,
identifying six core genes (BCL7A, GPR18, GRB10, KLRG1,
TDRD9, and THEM4) associated with depression and validating
their diagnostic value in the context of the disorder. Additionally, we
preliminarily investigated the roles of these core genes in pan-
cancer, revealing their impact on cancer occurrence and
progression. These findings highlight the potential clinical
relevance of the identified core genes, which could serve as both
diagnostic biomarkers and therapeutic targets. By addressing shared
mechanisms in depression and cancer, this research provides a
foundation for the development of targeted treatments and

precision medicine approaches. Such efforts are essential for
advancing effective strategies for the treatment and prevention of
depression, and for exploring novel interventions in cancer therapy.
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