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Introduction: Due to its favorable traits-such as lower lignin content, higher oil
concentration, and increased protein levels-the genetic improvement of yellow-
seeded rapeseed has attracted more attention than other rapeseed color
variations. Traditionally, yellow-seeded rapeseed has been identified visually,
but the complex variability in the seed coat color of Brassica napus has made
manual identification challenging and often inaccurate. Another method, using
the RGB color system, is frequently employed but is sensitive to photographic
conditions, including lighting and camera settings.

Methods:Wepresent four data-drivenmodels to identify yellow-seeded B. napus
using hyperspectral features combined with simple yet intelligent techniques.
Onemodel employs partial least squares regression (PLSR) to predict the R, G, and
B color channels, effectively distinguishing yellow-seeded varieties from others
according to globally accepted yellow-seed classification protocols. Another
model uses logistic regression (Logit-R) to produce a probability-based
assessment of yellow-seeded status. Additionally, we implement two
intelligent models, random forest and support vector classifier to evaluate
features selected through lasso-penalized logistic regression.

Results and Discussion: Our findings indicate significant recognition accuracies
of 96.55% and 98% for the PLSR and Logit-Rmodels, respectively, aligning closely
with the accuracy of previous methods. This approach represents a meaningful
advancement in identifying yellow-seeded rapeseed, with high recognition
accuracy demonstrating the practical applicability of these models.
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1 Introduction

The quality of life and wellbeing of individuals are deeply influenced by the quality of
rapeseed. The global adoption of cultivating “double high and double low” rapeseed-
characterized by high oleic acid and oil content, along with low erucic acid and sulfur
glycosides-underscores its vital significance.
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During development, rapeseed contains chlorophyll, giving it a
green hue. As the seeds mature, they exhibit colors ranging from
black and reddish-brown to yellow. The seed coats of black and
reddish-brown seeds accumulate pigments, while the transparent
seed coats of yellow-seeded varieties reveal the embryo’s color.
Studies indicate that yellow-seeded rapeseed has a shorter
dormancy period, simpler germination, and higher oil content
than black-seeded varieties, highlighting the breeding of yellow-
seeded rapeseed as a valuable method to enhance oil content (Yang
et al., 2021). Identifying yellow-seeded varieties of Brassica juncea
and Brassica campestris is relatively straightforward, as the pure
yellow phenotype is genetically stable (Li et al., 2012; Chen et al.,
2015). However, stable, pure-yellow progeny have yet to be achieved
in Brassica napus due to the complexity of seed coat color variations,
including hetero-yellow patterns, such as yellow with black spots,
patches, or brown rings. Additionally, the seed coat color of
segregated progeny shows continuous variation (Liu, 1992; Auger
et al., 2010; Qu et al., 2013). Consequently, accurately and efficiently
determining the seed coat color of B. napus remains a critical and
challenging task. Numerous studies address the identification of
rapeseed color (Li et al., 2001; Somers et al., 2001; Zhang et al., 2006;
Baetzel et al., 2003; Tańska et al., 2005; Li et al., 2012; Liu et al., 2005;
Ye et al., 2018). For example, Li et al. (2001) estimated the yellow-
seeded degree of B. napus through visual observation, a
straightforward method but heavily reliant on the observer,
leading to potentially inaccurate recognition. Somers et al. (2001)
utilized light reflection to assess yellow-seeded color grade by
measuring reflectance values and calculating the grain color
index or light reflection values. While this method is more
objective, it captures only single-dimensional color data, such as
brightness, omitting rich information in the original material. To
address this limitation, many scholars have focused on digital image
analysis through the RGB color system (Zhang et al., 2006; Baetzel
et al., 2003; Tańska et al., 2005; Li et al., 2012; Liu et al., 2005; Ye
et al., 2018). However, the complex and similar coloration of the
rapeseed epidermis makes precise color identification challenging,
and the available techniques lack reliability and standardization.
Accurate and efficient color measurement of yellow-seeded B. napus
thus remains essential.

Recent advancements in chemometrics and computer
technology have led to the development of near-infrared
spectroscopy (NIRS), a technique combining both image and
spectral data of the object. NIRS, known for its speed, non-
destructive nature, and high efficiency, is widely used for the
rapid, non-destructive analysis of agricultural products. Several
studies have demonstrated its utility (Guo et al., 2019; Bu et al.,
2023; Liang et al., 2023; Liu et al., 2021; Petisco et al., 2010; Sen et al.,
2018; Liu et al., 2022; Zhang et al., 2020;Wei et al., 2020; Zhang et al.,
2018; Jiang et al., 2017; Li et al., 2022; Jiang et al., 2018; He et al.,
2022). For instance, Guo et al. (2019) used an NIRS imaging system
(380–1,000 nm) to accurately quantify adulterated rice, while Bu
et al. (2023) combined hyperspectral imaging with convolutional
neural networks to create an intelligent model for sorghum variety
recognition, surpassing existing models in accuracy. This technology
has also been applied in rapeseed growth diagnostics. For example,
Liu et al. (2021) developed a hyperspectral technique-based
detection algorithm to predict the oleic acid content in B. napus.
Petisco et al. (2010) examined visible and near-infrared spectra of B.

napus and B. juncea with different oil levels, and Liu et al. (2022)
developed an intelligent model that identified eleven B. napus
varieties by integrating hyperspectral and spectral data, achieving
a recognition accuracy of 93.71%. In another study, Wei et al. (2020)
achieved 99.2% accuracy in classifying 15 soybean varieties through
hyperspectral imaging, while Li et al. (2022) improved oleic acid
content inversion in B. napus seeds by reducing hyperspectral
redundancy.

As noted, identifying yellow-seeded B. napus is challenging due
to the small seed size and complex seed coat color. Inconsistent RGB
standards and labor-intensive calibration further complicate the
task. The successful integration of hyperspectral technology in
agriculture has paved the way for advancements in digital
farming, inspiring us to apply it for yellow-seed identification.
Furthermore, combining hyperspectral features with machine
learning enhances remote sensing applications in smart
agriculture, with hyperspectral analysis proving effective for
modeling rapeseed aliphatic acid content. Hyperspectral sensing,
a form of near-Earth remote sensing, provides a foundation for
satellite- or drone-based agricultural monitoring. This technology
facilitates tasks such as classification and inversion of land object
parameters, which are challenging for traditional vision-based
systems. Thus, our early-stage near-Earth remote sensing
experiments are pivotal for advancing agricultural monitoring
techniques.

In this study, we propose a novel approach to identifying yellow-
seeded B. napus using hyperspectral imaging technology. We
combine trilateral parameters derived from hyperspectral
rapeseed imaging with spectral indices, applying partial least
squares regression, logistic regression, random forest, and
support vector classifiers. Importantly, the simplicity of spectral
data collection addresses RGB calibration limitations. These
intelligent models exhibit a commendable level of recognition
accuracy. This study represents an initial exploration into
rapeseed color classification through hyperspectral technology
and machine learning, underscoring the significant potential of
hyperspectral technology in tasks traditionally reliant on human
vision systems.

2 Methods and materials

2.1 Materials

For this study, we used two high oleic acid rapeseed varieties,
namely, Xiangyou 708 and Xiangyou 710 (B. napus. L). These
varieties were cultivated in the paddy fields of Yunyuan
Experimental Base (28°23′N, 112°93′E, as illustrated in Figures
1A, B) located in Changsha City, Hunan Province, China. The
region is situated in a subtropical monsoon climate, characterized by
warm winters, hot summers, abundant rainfall primarily
concentrated in the summer months, and distinct four seasons
with relatively balanced seasonal distribution. In Changsha, the
seasonal pattern features longer summers and winters, while
spring and autumn are relatively shorter. And the average annual
temperature is 17.2°C, the accumulated annual temperature is
approximately 5,457°C, and the average yearly precipitation is
1361.6 mm. The crop rotation scheme involved black loam soil
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with rice as the preceding crop. Planting occurred in September
2020, with harvesting in April 2021.

Remark 1: This study represents a preliminary exploration into
color classification of rapeseed seeds through integrating
hyperspectral technology and machine learning methods.
Recognizing the attributes of yellow-seeded varieties-such as high
oil content, elevated polyphenol levels, enhanced nutritional value,
and precise harvest time determination-we aim to employ the
proposed model for identifying yellow-seeded rapeseed.
Accordingly, we focus on the established varieties Xiangyou
708 and Xiangyou 710, which have been widely cultivated and
promoted in Hunan Province, China.

2.2 Data collection

We utilized the SOC710 portable hyperspectral imager (wavelength
range: 380–1,091 nm; resolution: 4.9458 nm) along with its darkroom
system, manufactured by Surface Optics Corporation, United States, to
collect spectral data. The optical obscura, as shown in Figure 1C, was
maintained in dark conditions. Measuring 50 × 60 × 120 cm3, the
obscura featured a movable base, a cooling device, and diffusely
reflective coating inside. Equipped with a large and small task silo, a
lifting table, and four groups of 70W halogen light sources adjustable in
position, the spectrometer was mounted at the top small silo with a
vertical lens at a distance of 370 mm from the rapeseed samples. A total
of 300 rapeseed samples were selected (see Figure 1D), and each seed’s
spectral reflectance wasmeasured five times randomly, with the average
taken as the sample reflectance. Additionally, the RGB color
information of each sample was recorded.

2.3 Methods and indicators

Feature selection and modeling method are the key components
of our seed identification model. First, the spectral index is

commonly used as a reliable indicator in crop remote sensing for
seed quality assessment. It enhances crop spectral information while
effectively reducing noise and environmental interference by
combining two or more spectral reflectances. Spectral indices
provide rich data on rapeseed (Zhang et al., 2017; Hong et al.,
2019; Bai et al., 2022). In this study, we employ three indices-ratio
spectral index (RSI), difference spectral index (DSI), and normalized
spectral index (NDSI), calculated for wavelengths 400–1,000 nm:

RSI λ1 ,λ2( ) � Rλ1

Rλ2

, (1)
DSI λ1 ,λ2( ) � Rλ1 − Rλ2, (2)

and

NDSI λ1 ,λ2( ) � Rλ1 − Rλ2

Rλ1 + Rλ2

. (3)

We also consider trilateral parameters-covering blue
(490–530 nm), yellow (560–640 nm), and red (680–760 nm)
edges-as additional hyperspectral features containing vital
rapeseed information. Our study includes 23 representative
parameters (see Table 1) encompassing characteristics such as
location, amplitude, area, normalization, ratios, and numerical
attributes (Peng et al., 2020; Sibanda et al., 2019).

These spectral indicators provide crucial information for
characterizing seed color and are thus used in feature
combinations for modeling.

To enable effective yellow-seeded rapeseed identification, we
employ two well-established mathematical models. First, partial least
squares regression (PLSR) (Meacham-Hensold et al., 2019) combines
advantages of multiple linear regression, principal component analysis,
and conventional correlation analysis and is commonly applied in
spectral research. PLSR creates a linear regression model by projecting
independent and response variables into a new space. Here, we use
PLSR to predict the values of the three color channels [red (R), green
(G), and blue (B)] for differentiating yellow-seeded from non-yellow-
seeded rapeseeds.

FIGURE 1
Location of the study area and hyperspectral collection environment. (A) Study area location in Changsha City, China; (B) Satellite map of Yunyuan
Experimental Base (highlighted in red); (C) Hyperspectral data acquisition setup; (D) Region of Interest (ROI) for rapeseed sample.
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Additionally, since generalized linear regression is suited for
dichotomous classification, we apply logistic regression (Logit-R) to
distinguish yellow from non-yellow-seeded rapeseed. The Logit-R
model, a widely used machine learning technique, derives prediction
parameters from training data and uses these to calculate a data
segmentation hyperplane for classification (Broeckx et al., 2018; Lin
et al., 2014; Munshi et al., 2014).

3 Results and discussion

3.1 Model preparation

3.1.1 Labeling of yellow-seeded rapeseed samples
To classify the yellow and non-yellow rapeseed samples, we first

labeled the 300 seed samples as yellow or non-yellow. This
classification was based on internationally recognized guidelines
using R, G, and B color channel thresholds (Zhang et al., 2006;
Baetzel et al., 2003; Tańska et al., 2005), defined as follows:

YR � 0 R ∉ SR
1 R ∈ SR|164.1<R< 245.3{ },{ (4)

YG � 0 G ∉ SG
1 G ∈ SG|101.1<G< 226.2{ },{ (5)

YB � 0 B ∉ SB
1 B ∈ SB|9.1<B< 92.2{ },{ (6)

and

Y � YR ∩ YG ∩ YB � 0, otherwise
1, R ∈ SR, G ∈ SG, B ∈ SB.

{ (7)

Here, Y � 1 signifies yellow-seeded, while Y � 0 denotes non-
yellow-seeded. This labeling process resulted in 103 yellow-
seeded and 197 non-yellow-seeded samples. Table 2 summarizes
the RGB statistics for the 300 samples.

3.1.2 Spectral index feature extraction
The spectral indices in Equations 1–3 capture various aspects of

hyperspectral information. Selecting optimal band combinations is
critical to obtaining the three spectral indices that best represent the
red, green, and blue color information. A correlation analysis was
conducted between the spectral indices and RGB values, with half of
the samples used to distinguish between training and test sets, with
100 independent repetitions to minimize random noise effects. The
highest average correlation coefficients for each spectral index, along
with corresponding band combinations, are shown in Table 3.
Figure 2 illustrates one of the implementations.

3.1.3 Trilateral parameter feature extraction
We also performed a correlation analysis between trilateral

parameters and RGB color channels. A random selection of
150 samples with 100 repetitions was used. Figure 3 displays the
absolute average correlation coefficients of the 23 trilateral
parameters with red, green, and blue channels. For the red
channel, the top three parameters are Nrb, Srb, and SDb, which
are identical to those for the green channel. For the blue channel, the
top three are Sry, Nry, and Dr, with lower correlation coefficients
than the red and green channels but significant at the 0.01 level.

Based on the above correlation analysis, we identified optimal
feature parameters for each channel. We subsequently combined the
three spectral indices with the top three trilateral parameters to
create feature sets for predicting the RGB values of test samples.

3.2 Modeling of rapeseed yellow-seeded
identification

In this subsection, we establish four yellow-seed identification
models by using PLSR, Logistic regression (Logit-R), and two
machine learning methods, i.e., support vector classifier (SVC)
and random forest. In each model, the 300 samples are randomly
divided into two groups, namely, M training samples and
(300 −M) test samples, where M varies from 150 to 240 with
step size 10. We train the models by the samples in the training set
and test the model on the test set. In practice, we first input the
feature combination of three spectral indexes and top-three trilateral
parameters of theM training samples and the corresponding labeled

TABLE 1 Hyperspectral trilateral characteristic parameter calculation
formulas.

Name Description or calculation

Db Spectral maximum value of first derivative in blue edge (490–530 nm)

BDb Bands corresponding to maximum first derivative value in blue edge

SDb Square of blue edge: integration of first derivative over blue edge range

Dbmin Minimum first derivative value in blue edge

NDb Normalized blue-edge index, (Db-Dbmin)/(Db + Dbmin)

Dy Spectral maximum value of first derivative in yellow edge
(560–640 nm)

BDy Bands corresponding to maximum first derivative value in yellow edge

SDy Square of yellow edge: integration of first derivative over yellow edge
range

Dymin Minimum first derivative value in yellow edge

NDy Normalized yellow-edge index, (Dy-Dymin)/(Dy + Dymin)

Dr Spectral maximum value of first derivative in red edge (680–760 nm)

BDr Bands corresponding to maximum first derivative value in red edge

SDr Square of red edge: integration of first derivative over red edge range

Drmin Minimum first derivative value in red edge

NDr Normalized red-edge index, (Dr-Drmin)/(Dr + Drmin)

Srb SDr/SDb

Sry SDr/SDy

Syb SDy/SDb

NBDb (SDr-SDb)/(SDr + SDb)

Nry (SDr-SDy)/(SDr + SDy)

Nby (SDb-SDy)/(SDb + SDy)

Kur Kurtosis of red-edge first derivative curve

Ske Skewness of red-edge first derivative curve
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TABLE 2 Statistical characteristics of R/G/B values.

Number of
Samples

Red value Green value Blue value

Mean Std. Mean Std. Mean Std.

Yellow 103 202.786 16.737 135.796 17.443 63.747 6.065

Non-yellow 197 118.426 31.735 79.061 9.63 63.035 6.673

TABLE 3 Most correlated bands for spectral index.

Spectral Index Red value Green value Blue value

(λ1, λ2) CC (λ1, λ2) CC (λ1, λ2) CC

RSI (705, 910) 0.9673** (582, 983) 0.9278** (534, 571) 0.4449**

DSI (418, 610) 0.9165** (421, 536) -0.9440** (419, 994) -0.4068**

NDSI (646, 995) 0.9660** (568, 988) 0.9380** (531, 571) 0.4563**

**significance at 0.01 level.

FIGURE 2
Correlation analysis between spectral indices and RGB values. Each heatmap highlights the highest correlation coefficient with an arrow. The top
panels (label 1), middle panels (label 2) and bottom panels (label 3) denote R-value; 2 G-value; 3 B-value, respectively. (A) RSI; (B) DSI; (C) NDSI.
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yellow or non-yellow seeded (values of R/G/B or Y) to train the
modes. Then, the feature combination of the 300 −M test samples is
input into the trained model to predict the result. In the end, the
recognition accuracy (RA) is calculated according to the predicted
results and the labeled results. To eliminate the interference of
random noise, the above process is repeated 100 times to acquire
the average RA.

3.2.1 Predication modeling based on PLSR
According to the corn idea of PLSR, the arguments can be input

into the model directly regardless of whether multi-collinearity or
not. Therefore, we use the six parameters (the three spectral indexes
and the top three trilateral parameters) of training samples and the
corresponding R/G/B values to train the PLSR model first
(constructing regression model to estimate the values of red,
green, and blue, denoted by R̂, Ĝ, and B̂, respectively). Taking the
M � 150 (it means there are randomly chosen 150 training samples
and 150 test samples) as an example, the regression estimation is,

R̂ � 192.76 + 6.64SDb − 29.05Srb + 10.63Nrb + 75.79RSI 705,910( )
+126.53DSI 418,610( ) − 130.96NDSI 646,995( ),

Ĝ � 171.39 + 33.79SDb + 13.69Srb + 23.13Nrb − 90.19RSI 583,983( )
+104.84DSI 421,536( ) + 148.18NDSI 568,988( ),

B̂ � 45.53 − 1.69SDb + 0.41Srb + 0.09Nrb + 4.65RSI 534,571( )
−11.79DSI 419,994( ) + 7.04NDSI 531,571( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

Remark 2. Here, we approached false positives and false
negatives with equal consideration. It is indeed accurate to
acknowledge that lower error rates can also bring significant
losses due to distinct economic implications associated with false
negatives and false positives. Moving forward, we plan to enhance
our color identification model by incorporating the economic
impact of oil content.

Next, the same arguments of the 150 test samples are input into
Equation 8 to inverse the R, G, and B values respectively. The

predicted values and the labeled results are shown in Figure 4. The
blue values locate a relatively narrow range compared to the red and
green values, but they are all around the theoretical line of Ŷ � Y.

Then, using the predicted values of R/G/B, the test samples can
be classified into yellow-seeded and non-yellow-seeded according to
Equations 4–7. Table 4 shows the confusion matrix for two different
numbers of training samples, M � 150 (150 test samples) and M �
240 (60 test samples), respectively. The small number of
misclassified samples is satisfactory.

Varying M from 150 to 240, the RA of yellow-seeded, non-
yellow-seeded, and mixed are calculated on the test set. As seen from
Figure 5, the RA of the non-yellow-seeded is higher than that of the
yellow-seeded. Naturally, the average RA tends to increase with the
increase of training samples, however, it is located in the narrow
interval of (92.32%, and 96.55%), which confirms the PLSR-based
model with fusion feature of spectral index and trilateral parameters
is workable.

3.2.2 Recognition modeling based on Logit-R
Similar to the PLSRmodel, we first use the fusion feature and the

corresponding labeled seed attribute of training samples to train the
Logit-R model. Then, the fusion feature of the test samples is input
into the trained model to predict the discriminant probability and
further calculate the classification accuracy. What’s different from
the PLSR model is the label of seed attribute is a Boolean variable of
Y � 1 (denotes yellow-seeded) and Y � 0 (denotes non-yellow-
seeded). To compare the model performance brought by the
spectral index and trilateral parameters, the two kinds of features
are input into the model respectively. To do so, the three spectral
indexes and top-three trilateral parameters related to the highest
correlation coefficient for the R/G/B channels are used as feature
combinations, respectively to calculate the RA, as shown in Figure 6.
In the Logit-R model, the regular coefficient is set at 0.2, the
maximum iterations are set at 300, the learning rate is set at
0.01, and the threshold is set at 0.5. As seen in Figure 6, the RA
obtained from the spectral index fusion for the green channel and
the trilateral parameters for the blue channel is comparatively low.
However, using the fusion feature of the three spectral indexes based
on the red channel can reach as high as 98% RA, which is higher
than other fusion features significantly, even higher than the result

FIGURE 3
Absolute correlation coefficients between trilateral parameters
and color channels. (A) Red channel, (B) Green channel, (C) Blue
channel. Error bars represent standard deviations from
100 repetitions. * and ** denote significance at the 0.05 and
0.01 levels, respectively.

FIGURE 4
Comparison of predicted value and observed value of R, G, and B.
The black solid line denotes the theoretical Ŷ � Y .
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from the six-feature fusion based on the PLSR model. In addition,
the high RA is regardless of the number of training samples. In this
regard, the three-spectral index fusion for the red channel based on
Logit-R is suggested to identify the rapeseed yellow seeded.

Following, let’s show how the Logit-R model using three-spectral
indexes combination {RSI(705, 910),DSI(418, 610),NDSI(646, 995)}
for classifying the yellow and non-yellow seeded. TakingM � 150 as
an example. Before that, we placed the randomly selected 150 test
samples in the three-dimensional space constructed by the above
spectral indexes, as shown in Figure 7. The yellow-seeded and non-
yellow-seeded are clustered together visually, respectively and
separated from each other.

Now, we hope to find a segmentation hyperplane to separate the
above two types of samples. To do so, firstly, we input the remaining
150 samples including the spectral index combination and the

corresponding labeled Y = 0/1 to train the Logit-R model. The
trained discriminant function is

h � 1
1 + exp −3.3589RSI + 4.3883DSI − 5.1165NDSI( ).

Then, inputting the three-spectral indexes combination of the
150 remaining samples into the trained model. Figure 7 depicts the
sample distribution of four categories: yellow-seeded (yellow dots),
non-yellow-seeded (grey squares), misclassified yellow-seeded
samples (red dots), and misclassified non-yellow-seeded (red
squares). As seen in Figure 8, there are only one yellow sample is
misclassified and 9 non-yellow samples are misclassified. The RA of
yellow-seeded and non-yellow-seeded is 97.78% and 91.43%,
respectively, and the average RA is 93.33%.

3.2.3 Predication results with machine
learning methods

In this section, we employ two machine learning techniques:
random forest Breiman (2001) and support vector classifier (SVC)
Pisner and Schnyer (2020) to perform a classification task aimed at
identifying the yellow seed. Differing from the preceding feature
selection methods, we enhance our feature pool by integrating the
original hyperspectral reflectances, consisting of nine spectral
indexes calculated according to Table 3, and 23 trilateral
parameters. This augmentation results in a total of 633 features.

To extract pivotal attributes and eliminate redundant data, we
employ lasso-penalized logistic regression with the R package
‘glmnet’ (Friedman et al., 2010). The parameter λ, which balances
the penalty and loss terms, is fine-tuned to maximize the “auc”
index. Upon tuning, λ is set at 0.0062. Consequently, we identified
10 key features out of the initial 633. These features include the
original hyperspectral values at wavelengths 394, 415, 416, 417, and

TABLE 4 The identification results on the test set based on PLSR.

150 samples Yellow Non-yellow 60 samples Yellow Non-yellow

Yellow 45 6 Yellow 21 1

Non-yellow 4 95 Non-yellow 1 37

FIGURE 5
Recognition accuracy based on the PLSR model.

FIGURE 6
The recognition accuracy brought from R, G, and B channels based on different fusion features. (A) is spectral index combination and (B) is trilateral
parameters combination.
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418, NDSI(568,988) (a spectral index), as well as Yep, Dymin, SDr, and
ske (trilateral parameters).

According to these selected ten features, we conduct random
forest and support vector classifier algorithms via R packages ‘rpart’
(Therneau et al., 2015) and ‘e1071’ (Meyer et al., 2024), respectively,
by default settings with different training sizes (M: 150–240). The
prediction results in test sets for the recognition task are reported
in Table 5.

In comparing the recognition accuracies achieved by random
forest and SVC methods, several key observations emerge.
Regarding average accuracy, random forest demonstrates results
ranging from approximately 96.52%–96.92%, while SVC exhibits a
slightly higher range of around 97.87%–98.08%. Both methods
exhibit an increase in accuracy with larger training sizes, with
random forest’s accuracy gradually ascending and SVC’s accuracy
following a similar trend, albeit with minor fluctuations.

In terms of category-specific accuracies, random forest achieves
accuracy rates between approximately 93.25% and 94.26% in the
yellow category, whereas SVC yields higher accuracy within the
range of 95.68%–96.61%. For the non-yellow category, random

forest consistently attains commendable accuracy, hovering
between roughly 98.23% and 98.57%, whereas SVC shows even
greater accuracy, ranging from approximately 98.94%–99.32%,
generally surpassing random forest.

The consistency of performance across training sizes and
categories is notable in the random forest’s case, where stability
is observed. On the other hand, SVC displays slight performance
variations, particularly noticeable within the yellow category. In the
broader context of comparison, SVC emerges as the more favorable
option, showcasing superior performance across most categories
and training sizes. While random forest performs admirably in the
non-yellow category, it falls short of SVC’s accuracy levels in the
yellow category. This analysis underscores the nuanced strengths of
eachmethod and the importance of considering the specific problem
context when selecting an appropriate machine learning approach.

3.3 Discussion of the proposed
recognition methods

Up to this point, the task of recognizing yellow-seeded varieties
has been effectively accomplished through the application of
hyperspectral technology. Now, we would like to delve into the
details of the four proposed models.

Beginning with the PLSR-based model, our approach involves
identifying yellow-seeded varieties by predicting the RGB values
through three essential trilateral parameters obtained from
hyperspectral imaging of rapeseed, along with three significant
spectral indices. During the process of predicting each R/G/B
channel, we extract several noteworthy spectral features that
contribute to enhancing the model’s interpretability. It’s
important to note that the success of this method relies heavily
on the accuracy of RGB calibration. Moving on to the Logit-R
model, our strategy revolves around determining yellow-seeded or
non-yellow-seeded categorization based on generating probabilities.
However, one potential challenge of this model lies in dealing with
imbalanced sample data. To address this, when data imbalance is
encountered, it’s essential to consider adjusting classification
thresholds to ensure accurate results. The optimal hyperspectral
feature chosen for both the aforementioned models is determined
through a thorough correlation analysis between the R/G/B values
and the 23 trilateral parameters and spectral indices derived from a
complete band combination. It’s worth mentioning that this
approach might potentially omit some information from the
original spectral reflectance data. Diverging from the two
aforementioned methods, the machine learning models operate
differently. In this case, we initially conduct feature
dimensionality reduction from a total of 633 features,
encompassing all 23 trilateral parameters, 9 spectral indices, and
reflectance data from 601 original bands. Subsequently, we select ten
key features to input into the random forest and SVC models.

All four models demonstrate high average accuracy rates,
showcasing relatively similar performance differences ranging
from 93% to 98%. This consistency highlights the feasibility of
the framework that combines spectral features with intelligent
models for accurately identifying yellow-seeded B. napus
varieties. Considering factors like ease of operation and
comprehensive utilization of information, the SVC model is

FIGURE 7
Two-classification of the yellow and non-yellow-seeded
samples based on the feature combination {RSI(705,910),
DSI(418,610),NDSI(646,995)}.

FIGURE 8
The classification of the yellow and non-yellow-seeded samples
based on the feature combination {RSI(705,910),DSI(418,610),
NDSI(646,995)}.
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recommended as an optimal choice for the task of identifying
yellow-seeded varieties.

4 Discussions and conclusion

Remote sensing technology, recognized as an essential national
strategy, finds extensive application across both military and civilian
domains. It facilitates the efficient acquisition of spectral data,
enabling tasks like land classification and parameter inversion
that are challenging for vision-based systems. Hyperspectral
imaging technology, a near-Earth remote sensing tool, forms the
basis for this advancement. As an innovative method of
photoelectric detection and recognition, it integrates spectroscopy
with optical imaging, offering a non-destructive and highly efficient
alternative to traditional empirical and lab-based approaches for
discerning the color of rapeseed seeds. Leveraging the rich spectral
and image data inherent to rapeseed samples, this technology holds
great promise for agricultural applications.

Comparing yellow seeds with black and brown seeds in Brassica
napus reveals that yellow seeds have a thinner seed coat, higher oil

content, and better quality. They also have higher protein content in
the cake, lower cellulose and polyphenol levels, and higher economic
value. Breeding yellow-seed varieties has become a key goal in
rapeseed breeding worldwide. However, the complex seed color
and inconsistent standards in current identification methods pose
challenges. Most researchers use the naked eye or RGB color systems
for seed color identification. However, the inconsistent phenotypic
color and environmental influences make RGBmethods unstable. In
contrast, hyperspectral technology, which detects internal seed
quality, is less affected by surface color, providing more
stable results.

In this study, we introduce four intelligent models carefully
designed to distinguish yellow-seeded rapeseed, as depicted in the
model flowchart in Figure 9. The first two models, PLSR and Logit-
R, synergize spectral indices with hyperspectral trilateral parameters.
This process begins with extracting three spectral indices and
23 trilateral parameters. Through correlation analyses across the
R, G, and B color channels of rapeseed seeds, we determine the
optimal combinations of these spectral indices and trilateral
parameters.

The PLSR model leverages six features derived from three
spectral indices and three trilateral parameters, achieving
an impressive recognition accuracy (RA) between 92.32%
and 96.55% in differentiating yellow from non-yellow seeds.
The Logit-R model, which prioritizes the three spectral
indices combined with the R channel, achieves a remarkable
RA of 98%.

Additionally, we employ two machine learning models-random
forest and SVC-to tackle the identification task. Beyond the
23 trilateral parameters and nine optimal spectral indices, we
include the original 601 spectral reflectance values in the feature
set. Using lasso-penalized logistic regression, we identify ten key
features, which serve as input for the random forest and SVC
models, achieving an average RA of approximately 98%, with
SVC slightly outperforming random forest.

We emphasize that the proposed identification framework for
yellow-seeded rapeseed, which integrates classical statistical

TABLE 5 Results of recognition accuracies with machine learning methods.

Training size M Random forest Support vector classifier

Average Non-yellow Yellow Average Non-yellow Yellow

150 96.52% 98.31% 93.25% 97.99% 99.25% 95.68%

160 96.56% 98.23% 93.52% 97.87% 99.18% 95.50%

170 96.65% 98.42% 93.49% 97.98% 99.26% 95.70%

180 96.60% 98.34% 93.49% 98.07% 99.32% 95.81%

190 96.63% 98.38% 93.53% 97.98% 99.20% 95.83%

200 96.70% 98.55% 93.51% 98.00% 99.14% 96.03%

210 96.77% 98.42% 93.91% 97.99% 99.02% 96.21%

220 96.70% 98.35% 93.90% 97.94% 98.94% 96.23%

230 96.75% 98.34% 94.15% 98.03% 99.07% 96.33%

240 96.92% 98.57% 94.26% 98.08% 99.00% 96.61%

FIGURE 9
Flowchart of identification modeling.
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methods and advanced machine learning tools, demonstrates robust
generalizability. This framework is not limited to rapeseed
classification but holds significant potential for application to
seed classification and identification tasks across a wide range of
other crops. By combining hyperspectral feature extraction with
predictive modeling techniques, it provides a versatile approach that
can adapt to various seed types, accommodating their unique
physical and spectral characteristics. This generalizability makes
it a valuable tool for advancing precision agriculture and improving
the efficiency of crop breeding programs. Additionally, the
framework’s ability to extract internal quality information and
analyze large-scale data through machine learning models makes
it adaptable for various agricultural tasks, including crop variety
identification, stress detection, and quality assessment across
different agricultural production systems. By customizing the
spectral features and models for specific crops, this framework
can be effectively extended to other agricultural systems,
enhancing precision farming and crop management in
diverse contexts.

This study identifies several limitations and proposes future
research directions. It suggests integrating machine vision with
machine learning for rapeseed color recognition as a cost-
effective alternative to hyperspectral feature fusion, which
remains expensive. Machine vision, efficient for non-destructive
small-target color recognition, contrasts with hyperspectral remote
sensing, which excels in large-area identification. A promising
approach involves combining hyperspectral remote sensing with
intelligent models, establishing a key paradigm for agricultural
monitoring. Future work will focus on integrating machine vision
and hyperspectral remote sensing to enhance rapeseed color
recognition across broader areas.

Second, this study is limited by the small sample size and narrow
color range, based on two B. napus varieties from a single field trial
in Changsha (2020–2021). As an initial exploration of hyperspectral
technology and machine learning for yellow-seeded rapeseed
identification, it provides valuable insights but requires
expansion. Future research will include more rapeseed varieties
and account for environmental factors like temperature,
humidity, light, and altitude by incorporating multi-year, multi-
location data for a comprehensive analysis of seed color variability.
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