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The early symptoms of hepatocellular carcinoma patients are often subtle and
easily overlooked. By the time patients exhibit noticeable symptoms, the disease
has typically progressed to middle or late stages, missing optimal treatment
opportunities. Therefore, discovering biomarkers is essential for elucidating their
functions for the early diagnosis and prevention. In practical research, challenges
such as high-dimensional features, low sample size, and the complexity of gene
interactions impact the reliability of biomarker discovery and disease diagnosis
when using single-omics approaches. To address these challenges, we thus
propose, Multi-level attention graph neural network (MLA-GNN) model for
analyzing integrated multi-omics data related to liver cancer. The proposed
protocol are using feature selection strategy by removing the noise and
redundant information from gene expression and DNA methylation data.
Additionally, it employs the Cartesian product method to integrate multi-
omics datasets. The study also analyzes gene interactions using WGCNA and
identifies potential genes through the MLA-GNN model, offering innovative
approaches to resolve these issues. Furthermore, this paper identifies
FOXL2 as a promising liver cancer marker through gene ontology and survival
analysis. Validation using box plots showed that the expression of the gene
FOXL2 was higher in patients with hepatocellular carcinoma than in normal
individuals. The drug sensitivity correlation and molecular docking results of
FOXL2 with the liver cancer-targeting agent lenvatinib emphasized its potential
role in hepatocellular carcinoma treatment and highlighted the importance of
FOXL2 in hepatocellular carcinoma treatment.
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1 Introduction

Liver hepatocellular carcinoma (LIHC) is a globally prevalent cancer with increasing
incidence andmortality in recent years (Sevic et al., 2019). In China, the annual incidence of
LIHC ranks fifth among all types of cancer, and its mortality rate even exceeds that of the
second-ranked one (Acharya and Mukhopadhyay, 2024). Besides, LIHC is the only cancer
with annually increasing incidence (Sun et al., 2020).

With the popularization of high-throughput technologies, artificial intelligence and
multi-omics data are increasingly utilized in tumor therapy research. Cancer-related
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biomarkers can be more accurately identified by using multi-omics
data (Kanchan et al., 2024). Integrating data across gene mutations,
protein expression, and metabolite levels offers a robust foundation
for cancer diagnosis and prognosis (Acharya and Mukhopadhyay,
2024). However, the traditional assumption of independent and
identically distributed may not universally apply to gene expression
(GE) (Palsson and Zengler, 2010). Advanced methodologies are
required to assess gene interactions and correlations effectively.
Integrating and analyzing multi-omics data presents a complex
challenge due to variations and interrelationships across different
data types. Moreover, the high-dimension disaster and low-sample
size (HDLSS) features is still challenging to address.

In this paper, we utilized the Cartesian product to integrate
gene expression and DNA methylation datasets of LIHC and
MLA-GNN model for n-depth analysis of integrated multi-omics
data and its implications for cancer research. For instance,
previous studies have successfully applied multi-omics data for
predicting Alzheimer’s disease, demonstrating the utility of the
Cartesian approach (Park et al., 2020). In addition, MLA-GNN
has been used to explore gene modules and topological
information in histology data (Xing et al., 2022). The
association between potential geneses and LIHC were further
investigated through survival analysis, gene ontology analysis,
literature review and drug correlation analysis, and found that
FOXL2 may be associated with LIHC as potential biomarkers.

1.1 Related work

Advances in sequencing technology have led to the rapid
accumulation of extensive cancer genome data. However, the curse
of dimensionality and redundancy in the cancer gene data is
significantly higher than the number of available instances (Zhang
et al., 2011). HDLSS issues pose significant challenges in
bioinformatics and medical research, making dimensionality
reduction an essential technique formanaging such data (Tang, 2020).

In the dimensionality reduction algorithm, feature selection
methods aim to choose the most representative subset of features
from the original dataset, creating a more explanatory set. This
approach is highly effective in high-dimensional data like GE, where
selected features hold significant biological relevance (Afshar and
Usefi, 2020). For example, the “MI”(Tang and Zhou, 2016) and SNR
(Hamraz et al., 2023) are utilized for feature selection to enhance
classification accuracy.

Multi-omics data enables a comprehensive analysis of the entire
genome, promising significant advancements in genetic data
precision and disease prediction reliability. Moreover, recent
studies increasingly employ Machine Learning techniques such as
Random Forest (Breiman, 2001), Support Vector Machine (Huang
et al., 2018) and Neural Networks (Picard et al., 2021) to analyze
histological data, achieving notable success in Gene Expression
classification and prediction.

The use of graph neural networks has advanced histological
analysis significantly (Wang et al., 2021). For instance, one study
employed a curated database to build a gene graph and utilized a
deep feed-forward network embedded within the graph to predict
disease outcomes (Wysocki and Ritter, 2011). These approaches not

only enhance classification accuracy but also offer more
interpretable biomarkers.

2 Methods

In this section, we provide an overview of the LIHC-based
biomarker discovery process. This process comprises three main
stages: data preprocessing and feature selection, data combination
and constructioning an adjacency matrix, and MLA-
GNN (Figure 1).

2.1 Data collection and preprocessing

The relevant GE dataset (GSE76427) and DNA methylation
dataset (GSE54503) were obtained and analyzed using the GEO
database platform (https://www.ncbi.nlm.nih.gov/geo/) (Davis and
Meltzer, 2007). Additionally, clinical data were integrated and
analyzed to gain a deeper understanding of the role of these
genes in the immune system. These clinical data were sourced
from The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov/), which offers extensive clinical information on
cancer patients.

In the data preprocessing phase, the raw data underwent
background correction, normalization, and genotype re-
annotation. These critical steps were carried out using the
“limma” package in R software to eliminate experimental noise
and enhance data quality and comparability (Ramírez-Gallego
et al., 2017).

According to the platform annotation file, map the probes in the
CEL files of GE and DNA methylation data to the corresponding
genes. If multiple probes correspond to the same gene, their average
is taken and removed the genes with missing values.

In the preprocessing of the DNAmethylation dataset, after cleaning
and transformation, we obtained a dataset containing 20,908 genes.
Duplicated genes were merged by averaging their values within each
group (patients and normals), and missing values were imputed with
the mean of their respective group. A similar cleaning and
transformation process was applied to the gene expression data. This
resulted in a dataset of 20,606 genes, which will be used for subsequent
differential gene analysis and functional studies (Table 1).

The two datasets were normalized in order to avoid the effects of
integrating the two dataset gauges. The Min-Max Normalization
method was employed in this study to ensure uniformity across all
data, facilitating reliable comparisons between the different datasets.

To assess the model’s performance, the dataset was randomly
split into training and test sets in a 7: 3 ratio. The training set was
utilized to build and train the model, whereas the test set was
employed to validate the model’s predictive capabilities.

2.2 Differential gene identification

After data preprocessing, volcano plots, PCA, and heat maps
were used to demonstrate whether the preprocessed gene expression
and DNAmethylation data as a whole clearly differentiated patients
from normal individuals.
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A volcano plot is a type of scatterplot that illustrates statistical
significance (p-value) against the magnitude of change (fold
change). depict volcano plots based on GE data and DNA
methylation data, correspondingly. On the plot, each point
denotes an identified gene: the upregulated genes are depicted by
the red points, while gray points denote genes without significant
differences (Figures 2A, D). Vertical black lines indicate genes with a
fold change (FC) greater than 2, and horizontal lines mark genes
with p-values less than 0.05, indicating significant differential
expression. Smaller p-values indicate greater significance in gene
expression differences.

Specifically, highlights 824 upregulated genes in the DNA
methylation dataset under specific conditions, while focuses on
1,355 upregulated genes in gene expression (Figures 2A, D).

In order to investigate the data plausibility, principal component
analysis (PCA) and heat maps were conducted. PCA plots (Figures
2B, E) for GSE54503 and GSE76427 were used to visualize sample
distribution. Points in the PCA plot represent samples, with greater
distances between points indicating larger differences between
samples. Both plots show distinct clustering of normal and tumor
samples, suggesting significant differences between LIHC samples
and normal samples with a well-defined data distribution.

In the heat map (Figures 2C, F), the horizontal axes represent
normal and patient samples. The upper part of the graph uses blue to
denote normal samples and red to denote patient samples. Utilizing
K-means clustering, the heat map employs upregulated genes from
the volcano map as horizontal coordinates, demonstrating complete
differentiation between patients and normal individuals. These
results underscore the meaningful selection and analysis of data.

The screening of differential genes for gene expression and DNA
methylation based on volcano plots, as well as the PCA plots and
heat maps of the screened differential genes, respectively, showed
that they all clearly differentiated patients from normal people,
suggesting that the gene expression and DNA methylation datasets
are biologically significant in distinguishing between the patient and
normal populations.

2.3 Feature selection method

Despite data preprocessing, challenges persisted with HDLSS,
which increased the risk of overfitting and gradient variance. To
address these issues, a biomarker selection method was employed.

FIGURE 1
Workflow of hepatocellular carcinoma prediction and biomarker recognition.

TABLE 1 Dataset summary.

Dataset GE DNA methylation

GEO ID GSE76427 GSE54503

Normal samples 115 66

LIHC samples 51 66

Genes 20,908 20,606

upregulated gene 9,932 10,839

Common upregulated genes 300 (DEGs: FC > 2, P value < 0.05)
(DMPs: FC > 1. 2, P value < 0.05)
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Specifically, the Fold Change (FC) was utilized. This method
calculates the ratio of average gene expression levels between two
sample groups. Genes surpassing a predefined threshold are
identified as differentially expressed. Additionally, the t-test was
applied to compute a t-statistic for each gene to quantify expression
differences between sample types. The resulting p-value, derived
from the t-distribution, assesses the significance of these differences

We intersected genes based on biometric feature selection
criteria (Table 1). This intersection targeted genes that were
differentially expressed (Differentially Expressed Genes(DEGs):
FC > 2, P value <0.05) and differentially methylated
(Differentially Methylated Positions(DMPs): FC > 1.2, P
value <0.05). Through this approach, we identified 300 genes
common to both datasets.

2.4 Cartesian product

To overcome the limitations of HDLSS, integrating the gene
expression dataset with the DNA methylation dataset is crucial. It
provides a comprehensive approach to understanding gene function
and regulatory mechanisms when targeting the same gene.

To achieve this, we integrated all available gene expression and
DNA methylation data from tumor samples and normal samples
using the Cartesian product into one comprehensive dataset. New
tumor samples were constructed by amalgamating gene expression
and methylation data labeled as tumor, while new normal samples
were similarly compiled from corresponding normal data. For
instance, the gene expression dataset contains 167 samples,

including 52 tumor samples and 115 normal samples. The DNA
methylation dataset includes 132 samples, with 66 tumor samples
and 66 normal samples. Upon integration, we obtained 3,432 tumor
samples and 7,590 normal samples, totaling 11,022 samples in the
new data set. This substantial dataset scale provides a robust
foundation for subsequent studies (Figure 3).

2.5 Adjacency matrix construction

To apply omics data to a multi-level attention graph neural
network (MLA-GNN), it is necessary to create an adjacency matrix
that reflects the relationships between genes. This process often
involves using a bioinformatics technique known as weighted gene
co-expression network analysis(WGCNA). WGCNA examines
pairwise correlations between variables, typically genes, to
construct a graph network that represents the strength and
direction of associations among genes based on their expression
profiles (Pei et al., 2017). Assuming that there areN patient samples,
each sample contains the expression values of K genes, then the
expression of each gene can be expressed as aN dimensional vector.
For any two genes (nodes) i and j, the WGCNA between them is
calculated as follows:

Extraction of gene expression vectors: extract the expression
vectors of gene i and j from the training data, denoted as xi and xj,
respectively. These two vectors areN dimension, with each element
representing the expression level of the gene in a patient sample.

Calculating correlation: use Pearson correlation coefficient to
calculate the correlation between xi and xj.

FIGURE 2
(A) Volcano map of DEGs in GE data. (D) Volcano map of DMPs in DNA methylation data. PCA of all instances in (B) GSE67427 and (E)
GSE54503 dataset represent two distinct groups. All instances Heatmap in (C) GSE67427 and (F) GSE54503.
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The specific conversion is shown in Formula 1, for the training data
XK×N (whereN denotes the number of patients in the training set and
K denotes the number of corresponding genes in each patient), the
expression of each node (gene) is characterized by K -dimensional
vectors derived fromN samples. For any two nodesxi and xj ∈ RN, the
correlation Cij between them is calculated as follows:

Cij � 1
2α

1 +
∑N
n�1

xi,n − �xj( ) xj,n − �xj( )�����������∑N
n�1

xi,n − �xi( )2√ ������������∑N
n�1

xj,n − �xj( )2√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α

(1)

where �xi and �xj are the average values of xi and xj, respectively. The
adjacency matrix is obtained by applying a power transformation to
the correlation matrix computed by WGCNA analysis, using a soft
threshold α. This soft threshold α is automatically determined by the
‘pickSoftThreshold’ function in the WGCNA package.

When constructing the adjacency matrix, incorporating all relevant
information into the graph structure can lead to information
redundancy and include a significant amount of redundant data and
noise. If these features are used directly for training, theymay negatively
impact themodel’s generalization performance. The specific conversion
is shown in Formula 2, a soft queer value adjthersh is applied to the
adjacency matrix to generate the edge matrix A, and the continuous
value C in the adjacency matrix are then processed using the following
formula to obtain the matrix A:

Aij � 1, Cij > adjthersh
0, otherwise

{ (2)

where the hyperparameter adjthersh is optimized by an automatic
machine learning algorithm (Xing et al., 2022). The edge matrix A is
calculated based on all the training data. Using the edge matrix A, it
is possible to transform the gene expression data of each patient into
an intuitive gene co-expression map.

2.6 MLA-GNN construction

The MLA-GNN construction centers on transforming each
patient’s gene expression data into a structural graph. This graph
is then integrated into a network where the adjacency matrix is
derived from WGCNA analysis. A crucial element is the stacked
Graph Attention Network (GAT), which employs self-attention to
handle graph data. This mechanism ensures that node features
represent a weighted blend of neighboring nodes and their own
characteristics (Velikovi et al., 2017; Qiu et al., 2024), with weights
determined by node connectivity and features (Figure 4).

Regarding the construction of the structural map, stacking two
GAT layers yields three important outputs from the graph convolution
network: the original gene expressionmatrix G1, a new gene expression
matrix G2 that is obtained by weighting and combining through the
GAT layers, and the weighted expressionmatrixG3 that results from an
additional convolution with the GAT layers. The original gene
expression matrix reflects the differences in genes between patients
and normal individuals; while the latter two matrices further combine
the correlations between genes and assign them corresponding
weighted values, resulting in new gene-sample expression relationships.

To ensure consistency between the original gene expression
matrix and the newly weighted gene expression matrix, we employ
linear projection via fully connected layers. This approach generates
high-level graph features G2

′ andG3
′ that maintain uniform weighting

across datasets. By addressing potential weight imbalances
introduced by the GAT layer, each dataset contributes equally to
the final outcome.

Due to the impressive outcomes demonstrated by full gradient
saliency (FGS) in graph neural networks (Srinivas and Fleuret, 2019),
we apply this full gradient saliency mechanism to elucidate the MLA-
GNN model and assess node significance. Typically, these nodes
represent gene expression within the MLA-GNN framework, with
their importance potentially impacting both locally and globally.

FIGURE 3
The process of Cartesian product.
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3 Results

In this paper, we propose three hypotheses: first, predicting
LIHC using multi-omics dataset lead to higher accuracy than
using single-omics dataset; second, a biometric feature selection
method (Differentially Expressed Gene(DEG) + Differentially
Methylated Position(DMP)) outperforms standard
dimensionality reduction algorithms in LIHC prediction; and
third, the MLA-GNN classifier outperforms traditional classifiers
in LIHC prediction.

To test these hypotheses, we divided our experiment into three
parts: (I) comparing prediction model accuracies using different
dataset types; (II) performing dimensionality reduction with MI,
T-SNE, and biometric feature selection methods; and (III)
comparing the performance of traditional classifiers (DNN, SVM,
and NB) with the MLA-GNN model during prediction.

In this paper, the proposed MLA-GNN model input layer is
composed of integrated GE and DNA methylation data. For fair
evaluation, we compare the developed MLA-GNN method with
conventional machine learning-based (ML) and deep learning-
based (DL) classifiers. The classifiers discussed are: Deep Neural
Networks (DNN), Support Vector Machines (SVM), and Naive
Bayes (Table 2).

3.1 Comparison between single-omics
dataset and multi-omics dataset

In processing the multi-omics dataset, we follow procedures
similar to those of single-omics dataset, selecting the top 300
significant features for each type of omics data. By utilizing the MI
and T-SNE algorithms, we extracted dimensions that aligned with the
study’s feature selection criteria. To assess prediction performance, we
compared the conventional ML-based learning models such as SVM,
RF and DL-based model such as DNN. demonstrates that the feature
selection methods proposed in this paper (DEG and DMP)
outperform MI or T-SNE alone across multiple datasets (Table 3).

Specifically, applying DEG feature selection to gene expression
data and using it as input for the SVM prediction model yielded an
AUC of 0.95 for LIHC. This accuracy surpassed that achieved by the
T-SNE method by 0.05 and the MI method by 0.01. Similarly, DNA
methylation data post-DMP feature selection also achieved a high
AUC of 0.96.

Additionally, we conducted a comparative analysis of single-
omics dataset and multi-omics dataset, evaluating nine
combinations that included various feature extraction methods
and data types.visualizes AUROC values across different datasets
and feature selection methods, emphasizing the robustness and
effectiveness of DEG and DMP feature selection methods across
diverse classifiers (SI Appendix, Supplementary Figure S1).

Comparing AUC values across various classifiers using different
feature selection methods in both single-omics dataset and multi-
omics datasets (Table 3, SI Appendix, Supplementary Figure S1), the
combining of DEG +DMP feature selection provedmore effective in
integrating GE and DNA methylation datasets for hepatocellular
carcinoma classification.

3.2 The impact of different classifiers on
performance

In comparing single-omics dataset and multi-omics dataset, we
identified the DEG + DMP feature selection method as particularly
effective. To comprehensively assess model performance, we

FIGURE 4
MLA-GNN model.

TABLE 2 Parameter configuration.

Methods Parameter setup

DNN learning rate = 0.02, dropout = 0.6

SVM kernel = “linear”, C = 1, probability = True

NB shuffle = True, random_state = 42

MLA-GNN learning rate = 0.005, dropout = 0.4
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examined various classifiers under this feature selection approach
and detailed our findings (Table 4).

Illustrate that MLA-GNN excels across several evaluation metrics
(SI Appendix, Supplementary Figure S2).While slightly trailing SVM in
precision, MLA-GNN significantly outperforms DNN in metrics like
Accuracy and Recall, and remains competitive with SVM and NB.
Notably, MLA-GNN uses its unique self-attentionmechanism to reveal
intrinsic gene relationships, which further enhances classification
performance. The experimental outcomes unequivocally demonstrate
MLA-GNN’s efficiency and efficacy in classification tasks, highlighted
by metrics such as average accuracy, F1-score, and AUC value, thereby
underscoring its robust applicability in relevant domains.

4 Discussion

During the key gene screening process, we utilized feature selection
in conjunction with MLA-GNN as a classifier to identify genes pivotal
to specific biological processes or disease states.

Initially, we employed a feature selection algorithm to filter
genes. This step aims to identify a subset of genes that significantly
contribute to the classification task, thereby reducing redundancy
and enhancing both classifier performance and interpretability.

Subsequently, we developed a graph network model of gene
expression where genes represent nodes and their interactions or
regulatory relationships represent edges. Using the graph neural
network, we captured the intricate network structure’s information
and learned node feature representations effectively. We evaluated
each gene’s importance by utilizing the gene representations learned
throughMLA-GNN and their performance in the classification task.

Ultimately, based on the feature selection results, we identified
key genes that make substantial contributions to the classification
task. These key genes will serve as focal points in subsequent
biological experiments or clinical studies.

To maintain clarity and coherence in our discussion, we have
separated the key gene screening results from the subsequent
empirical analyses into different sections. In the empirical
analysis section, we will present the performance and validation
outcomes of these key genes in clinical and drug trials.

4.1 Screening key genes

The FGS saliency algorithm was used to identify critical nodes and
perform detailed analysis at deeper layers (Figure 5). Illustrates this
process, highlighting PSMA and TP73 as pivotal biomarkers in liver
cancer at the F1 level. Subsequently, the analysis identified the
transcription factor EMX1, which promotes hepatocellular carcinoma
metastasis through the EMX1-EGFR-ERK axis in the F3 tier (Wen
et al., 2023).

4.2 Key genes empirical analysis

To evaluate the potential of these 10 genes in identifying LIHC, we
conducted a gene analysis. After reviewing the literature, we found that
the PSMA8 gene is associated with tumor cell invasion andmetastasion
(Li et al., 2024). The upregulation of the LIMD1 gene may be due to
hypomethylation of the promoter through downregulation of
DNMT1 expression (Pal et al., 2021). Inhibition of the Akt/mTOR
pathway by FOXK1 reduces cell viability and glycolysis in
hepatocellular carcinoma cells (Cui et al., 2018). ZNF473 has been
reported as a diagnostic marker in various cancers (Bulanenkova et al.,
2022; Lai et al., 2023). The expression of TP73 is specific to the cancer
cell line and not to the neighboring normal liver tissue (Yao et al., 2019).
GRIA4 hypermethylation is significantly increased in primary tumors
and liver metastases (Lukacova et al., 2023). GIPR is highly prevalent
(approaching 100%) in both functional and non-functional pancreatic
tumors (Reubi et al., 2020). GIPR produces effects in non-alcoholic fatty
liver disease and liver fat (Yao et al., 2019). ART5 has significant
prognostic value in colorectal cancer. SLC35D3 is highly expressed in
colorectal cancer (CRC) tissue (Geng et al., 2024). FOXL2 can
significantly induce apoptosis in cancer cells (Han et al., 2019).

Selected sets of genes underwent analysis using the DAVID
database to determine their biological significance (Dennis et al.,
2003), which is detailed in Table 5. The following Gene Ontology
(GO) terms were identified:

“GO: 0000978~RNA polymerase II core promoter proximal region
sequence-specific DNA binding”in RNA polymerase II-mediated
transcription initiation (Martin et al., 2020); “GO:
0001228~transcriptional activator activity” involved in promoting or

TABLE 3 The AUROC results of different prediction algorithms.

Gene expression DNA methylation Gene expression and DNA methylation

MI T-SNE DEG MI T-SNE DMP MI T-SNE DEG + DMP

SVM 0.94 0.90 0.95 0.92 0.90 0.96 0.95 0.94 0.97

DNN 0.92 0.92 0.95 0.91 0.90 0.93 0.93 0.97 0.98

RF 0.92 0.93 0.96 0.88 0.91 0.94 0.91 0.96 0.99

Bold values indicate the distribution of maximum values for the feature selection methods compared.

TABLE 4 Average test results based on learning algorithms.

Gene expression and DNA methylation

Accuracy Precision Recall F1-score

DNN 0.98 0.97 0.95 0.98

NB 0.95 0.94 0.92 0.91

MLA-GNN 0.98 0.98 0.98 0.98

SVM 0.95 1.00 0.94 0.96

Bold values represent the distribution of maximum values for the classifiers compared.
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repressing the expression of tumor-associated genes (Xiao et al., 2020);
“GO: 0045892~negative regulation of transcription, DNA-templated”
associated with gene silencing or expression inhibition in cancer; “GO:
0006357~regulation of transcription from RNA polymerase II promoter
“describes the process of DNA template based transcription; “GO:
0003700~transcription factor activity, sequence-specific DNA binding”
is significantly associated with the expression of β-globin by cancer cells
(Zheng et al., 2017); “GO: 0045893~positive regulation of transcription,
DNA-templated “plays a role in hepatitis B (Zhang et al., 2020).

Box plot and Kaplan-Meier survival curve analysis were conducted
on 10 genes identified in 424 LIHC patients using the TCGA database
(Figure 6). These genes were initially screened through a model that
integrates gene expression and DNA methylation datasets from the
GEO and hepatocellular carcinoma data. The validation results of these
genes were displayed using the TCGA gene expression database,
showing significant differences (p < 0.05) in eight genes between the
patient group and the normal group, where the gene expression in the
patient group was higher than that in the normal group (Figure 6A).
Meanwhile, the core genes screened in this paper were based on DNA
hypermethylation and upregulated expression, suggesting that
hypermethylation may promote their high expression.

Subsequently, the eight genes showing significant differences
underwent Kaplan-Meier survival curve analysis and ROC curve
analysis for prognostic evaluation (Figures 6B–D). Among these,
FOXK1 and FOXL2 demonstrated statistically significant differences
(p < 0.05) in survival analysis. ART5 also showed promising results
as indicated by the RiskScore predicting favorable 1-, 3-, and 5-year AUC
values, except for FOXL2, which showed less ideal results (3-year: 0.5, 5-
year: 0.52). These findings suggest the potential utility of FOXK1, FOXL2,
and ART5 expression levels as biomarkers for LIHC, highlighting their
role in prognostic assessment and clinical implications.

Utilizing functional enrichment analysis from the DAVID database
and Kaplan-Meier survival curve analysis from the TCGA database, we
identified significant enrichment of FOXK1 and FOXL2 in various
biological pathways, particularly those linked to LIHC. The Kaplan-
Meier analysis revealed a strong association between these genes and
patient survival, with P values below 0.05, underscoring their potential
as prognostic indicators in liver cancer.

Furthermore, box plot validation from the TCGA database
confirmed that FOXL2 expression was markedly elevated in
LIHC patients compared to healthy individuals. This observation
bolsters the evidence for FOXL2’s role in LIHC progression. Since

FIGURE 5
Visualization of the TOP 10 important genes and their gradient-based saliency scores in each layer (F1 , F2 and F3 ) and after fusion (FGS on F ).

TABLE 5 GO analysis of selected genes.

Category Term (GO) P value Genes

GOTERM_MF_DIRECT 0000978 0. 010 ZNF473, FOXK1, FOXL2, TP73

GOTERM_MF_DIRECT 0001228 0. 017 ZNF473, FOXL2, TP73

GOTERM_BP_DIRECT 0045892 0. 021 FOXK1, FOXL2, LIMD1

GOTERM_BP_DIRECT 0006357 0. 023 ZNF473, FOXK1, FOXL2, TP73

GOTERM_MF_DIRECT 0003700 0. 025 FOXK1, FOXL2, TP73

GOTERM_BP_DIRECT 0045893 0. 033 FOXK1, FOXL2, TP73
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FOXK1 is already established as an LIHC biomarker, our findings
imply that FOXL2 could also be a valuable marker for LIHC, aiding
in both diagnosis and prognosis.

4.3 Correlation analysis of drug sensitivity

FOXL2’s potential involvement in drug resistance prompted us to
obtain gene expression and drug sensitivity data from the CellMiner
database (Luna et al., 2021). We rigorously filtered out drugs not tested
in clinical trials or approved by the FDA. Using the cor. Test function in
R, we calculated correlation coefficients between FOXL2 expression and

drug sensitivity. Based on the R-values, we identified the top 9 drugs
most strongly correlated with FOXL2 expression.

The study results demonstrated a significant positive correlation
between FOXL2 gene expression and drug sensitivity (Figure 7, SI
Appendix; Supplementary Table S1). Specifically, FOXL2 exhibited
statistically significant associations with several drugs: Lenvatinib
(cor = 0.38, p = 0.003), benzaldehyde (cor = 0.442, p = 0.001),
Bleomycin (cor = 0.37, p = 0.003), Raltitrexed (cor = 0.36, p = 0.004),
and Triapine (cor = 0.36, p = 0.005). Notably, Lenvatinib, a
multikinase inhibitor, is used to treat various cancers, including
liver and thyroid cancers (Suyama and Iwase, 2018). Bleomycin is an
antitumor antibiotic that inhibits cell growth by damaging DNA

FIGURE 6
Screening markers of liver cancer by 10 genes. (A) expression levels in LIHC patients from the TCGA cohort. *p < 0.05, **p < 0.01, ***p < 0.001. (B)
FOXK1, (C) FOXL2 and (D) ART5 have significant effects on the prognosis of overall survival of LIHC (p < 0.05) and AUC values for predicting the 1-,3- and
5-year survival rates of patients with LIHC.
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FIGURE 7
Gene-drug sensitivity analysis based on the CellMiner database; the top 9 drugs with high correlation with gene expression in inflammation-related
prognostic models were screened. Related prognostic models were screened.

FIGURE 8
Molecular docking analysis: Lenvatinib was docked with 7VOU.
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(Wang et al., 2013). Triapine is an iron-binding ligand and
anticancer drug acid (Ratner et al., 2016).

To illustrate this trend more clearly, we stratified gene
expression into high-risk and low-risk groups based on the
median. We then extracted the IC50 values associated with these
groups and presented them in a box plot (SI Appendix,
Supplementary Figure S3). Following a Wilcoxon rank sum test,
we observed statistically significant differences in drug sensitivities
associated with FOXL2 gene expression, except for Bleomycin
(p-value = 0.066), for which the difference was not significant.
This finding underscores the important role of the FOXL2 gene
in influencing responses to specific classes of drugs.

FOXL2 expression exhibited significant negative correlations with
drug sensitivities, notably with ARRY-162 (cor = –0.40, p = 0.001),
RO–4987655 (cor = -0.37, p = 0.001), Pimasertib (cor = –0.36, p =
0.001), and TAK-733 (cor = –0.36, p = 0.001) (Figure 7, SI Appendix;
Supplementary Table S1). ARRY–162 (Binimetinib) is used for treating
melanoma and other cancers (Lee et al., 2009). Ulixertinib is used to
treat non-small cell lung cancer (Sullivan et al., 2018). Vinorelbine, a
chemotherapy agent, is prescribed for non-small cell lung and breast
cancer (Galano et al., 2011). After performing the Wilcoxon rank sum
test, we observed that all differences in drug sensitivities were
statistically significant (SI Appendix, Supplementary Figure S3).

In our study, we identified Lenvatinib, a multikinase inhibitor
with proven clinical efficacy in HCC, as a key therapeutic target by
analyzing drug sensitivity data. Our analysis revealed a significant
correlation between FOXL2 gene expression and Lenvatinib
sensitivity, suggesting FOXL2’s potential as a predictive
biomarker for drug response in HCC patients.

Supported by clinical and preclinical evidence, Lenvatinib targets
VEGF and FGFR pathways critical for HCC progression, as
demonstrated by Suyama and Iwase (2018) and confirmed by the
phase III REFLECT trial (Watanabe and Koyama, 2019; Kim et al.,
2020). This correlation between FOXL2 expression and Lenvatinib
sensitivity highlights the importance of FOXL2 in HCC. Our findings
indicate that FOXL2 may serve as a HCC biomarker and a predictor of
Lenvatinib sensitivity, warranting further investigation into its role in
HCC and its clinical application in treatment decision-making.

4.4 Molecular docking of FOXL2 gene with
lenvatinib

In our drug sensitivity analysis, we identified a significant positive
correlation between FOXL2 and Lenvatinib, suggesting that FOXL2 may
serve as a potential biomarker for liver cancer therapy. To further
investigate this correlation, we conducted molecular docking
experiments using Vina software to assess the potential of compounds
binding to FOXL2. According to literature and industry standards,
molecular docking results with binding energies below −7 kcal/mol are
considered as candidate drugs (Apaer et al., 2024), as such binding affinity

is typically associated with the efficacy and potency of drugs. In our
experiments, Lenvatinib exhibited a binding energy of −8.5 kcal/mol,
which is well below the industry threshold, indicating a very strong
interaction between Lenvatinib and FOXL2 (Table 6; Figure 8). These
experimental results not only support the notion that FOXL2 is a potential
biomarker for liver cancer treatment but also provide significant
molecular evidence for the development of new therapeutic strategies.

In our study, throughmolecular docking technology, we found that
the key gene FOXL2 can effectively bind to the compounds, Lenvatinib.
This discovery is of great significance for understanding themechanism
of action of these compounds in immune regulation, especially for
diseases such as Liver Hepatocellular Carcinoma (LIHC). Lenvatinib is
an established and promising drug for the treatment of advanced
hepatocellular carcinoma (Catalano et al., 2021). Its mechanism of
treatment for hepatocellular carcinoma has shown significant results
from preclinical studies to anticancer therapy (Zhao et al., 2020).

5 Conclusion

In this study, we applied theMLA-GNNmodel to analyze LIHC and
identified key biomarkers using integrated multi-omics data. Our
comparison of various feature selection methods and models revealed
the superior performance of the method proposed in this study. Its
notable advantage lies in integrating multi-omics data without blind
dimensionality reduction, thereby allowing for the selection of biologically
significant features. Biological correlation analysis and literature
validation further supported the potential of these genes as LIHC
biomarkers. Despite our exhaustive bioinformatics analysis, this study
has limitations. For example, given that WGCNA emphasizes the
importance of positive correlation in constructing gene co-expression
networks, and that the ReLU activation function effectively avoids the
problem of gradient disappearance by passing only positive gradients and
ignores genes negatively correlated with the target category, we selected
only upregulated genes in DNA methylation and gene expression.
Moving forward, we aim to further explore this method’s application
with similar histological data and refine our research strategy accordingly.
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