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Background: The realization of many protein functions requires binding with
ligands. As a significant protein-binding ligand, ATP plays a crucial role in various
biological processes. Currently, the precise prediction of ATP binding residues
remains challenging.

Methods: Based on the sequence information, this paper introduces a method
called S-DCNN for predicting ATP binding residues, utilizing a deep convolutional
neural network (DCNN) enhanced with the synthetic minority over-sampling
technique (SMOTE).

Results: The incorporation of additional feature parameters such as dihedral
angles, energy, and propensity factors into the standard parameter set resulted in
a significant enhancement in prediction accuracy on the ATP-289 dataset. The
S-DCNN achieved the highest Matthews correlation coefficient value of
0.5031 and an accuracy rate of 97.06% on an independent test set.
Furthermore, when applied to the ATP-221 and ATP-388 datasets for
validation, the S-DCNN outperformed existing methods on ATP-221 and
performed comparably to other methods on ATP-388 during
independent testing.

Conclusion: Our experimental results underscore the efficacy of the S-DCNN in
accurately predicting ATP binding residues, establishing it as a potent tool in the
prediction of ATP binding residues.
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Introduction

Adenosine 5′-triphosphate (ATP) is an unstable high-energy phosphate compound. It
interconverts with adenosine 5′-diphosphate (ADP) to achieve energy storage and release
in cells and ensures the energy supply of various life activities of cells. As an important
ligand, ATP also plays a critical role in the realization of protein functions (Chauhan et al.,
2009). For example, ATP binds with myosin to provide energy and promotes its
combination with actin to form cross bridges, which is used to regulate muscle
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contraction (Holmes et al., 2003); the combination of ATP and
sodium-potassium ATPase can regulate the concentration of
intracellular sodium/potassium ions, thus maintaining the
resting potential of the cell (Kanai et al., 2013). In fact, the
protein-ATP interactions depend on ATP binding residues on
proteins. Therefore, accurate prediction of ATP binding residues is
of great value for understanding protein function, disease
occurrence and molecular drug design.

At present, substantial advancements have been achieved in the
prediction of ATP binding residues from protein sequences (Guo
et al., 2005; Chauhan et al., 2009; Song et al., 2020b). In 2017, Ding
et al. (2017) utilized the ATP-221 dataset devised by Yu et al. (2013),
extracting features from the discrete cosine transform of the
position-specific scoring matrix (PSSM) and predicted relative
solvent accessibility. They employed the random under-sampling
(RUS) technique and weighted sparse representation-based classifier
(WSRC) to predict protein-ATP binding sites, achieving a Matthews
correlation coefficient (MCC) of 0.506 and an accuracy (ACC) of
96.8% on an independent test set. Similarly, Zhao et al. (2019)
introduced an SXGBsite prediction model in the same year, utilizing
PSSM and predicted relative solvent accessibility as parameters with
the extreme gradient boosting algorithm. The prediction
performance yielded MCC and ACC values of 0.463% and 96.5%,
respectively, on the independent test set. Nguyen et al. (2019)
developed a tool of DeepATP for predicting ATP-binding sites in
membrane proteins, which combined evolutionary information in
the form of PSSM and two-dimensional convolutional neural
network. In 2020, our research group (Hu et al., 2020)
constructed a new dataset, ATP-289, and selected amino acids,
hydrophilic-hydrophobic, polarity, predicted secondary structure,
and relative solvent accessibility as feature parameters. By utilizing
random undersampling with the support vector machine (SVM)
algorithm, the MCC value reached 0.549 with 5-fold cross-
validation. Additionally, Song et al. (2020a) utilized the ATP-388
dataset, choosing PSSM, predicted secondary structure, predicted
relative solvent accessibility, and one-hot encoding as feature
parameters. They applied class-weighted ensemble deep learning
algorithms, achieving ACC and MCC values of 97.2% and 0.626,
respectively, on the independent test set. In 2021, Hu et al. (2021)
introduced the novel method DeepATPseq, achieved ACC and
MCC values of 57.42% and 0.655, respectively, on the
independent ATP-388 test set. Nguyen et al. (2022) applied
multiple convolutional window scanning filters of a convolutional
neural network on PSSM to predict ATP-binding sites, and the
resulting model outperformed other algorithms on the
same datasets.

In summary, previous studies have primarily enhanced the
prediction accuracy of ATP binding residues in three main areas.
Firstly, sampling techniques were frequently applied to address the
significant imbalance between positive and negative samples.
Secondly, novel feature parameters and extraction methods were
integrated into the prediction models. Lastly, a variety of traditional
machine learning algorithms and deep learning methods were
utilized for prediction tasks.

This study introduced the S-DCNN method to enhance the
accuracy of predicting ATP binding residues. A balanced dataset was
created using the SMOTE algorithm, which preserved information
integrity. New parameters, including dihedral angles, energy, and

propensity factors, were introduced. Furthermore, the DCNN
algorithm with three optimized hyperparameters enhanced the
prediction of ATP binding residues. Finally, the S-DCNN was
applied to two additional datasets to validate the model.

Materials and methods

Datasets

The ATP dataset utilized in this study was constructed by our
group (Hu et al., 2020) through the following steps: initially,
1728 ATP protein chains were sourced from the semi-manual
BioLip database (Yang et al., 2013); subsequently, these chains
were filtered with sequence length (>50 residues), the resolution
(<3 Å), and the sequence identity (<30%); resulting in the ATP-289
dataset with 289 protein chains including 3901 ATP binding
residues and 104153 ATP non-binding residues; the dataset was
then partitioned randomly into training and testing sets, with the
former containing 260 protein chains encompassing 3526 ATP
binding residues and 92804 non-binding residues, and the latter
comprising 29 protein chains with 375 ATP binding residues and
11349 ATP non-binding residues. We performed five-fold cross-
validation using the training set to obtain the trained model and
validated the model’s effectiveness using an independent test set.
The source codes and datasets in this study are available at https://
github.com/tlhsx/S-DCNN.

Previous researches indicated that residues neighboring binding
sites can influence ligand interactions with these sites (Hu et al.,
2016; Liu et al., 2019). To address this, protein sequences were
segmented into fragments using the sliding window method,
ensuring each amino acid resided at the fragment center by
adding (L-1)/2 pseudo-amino acids at both sequence ends. Here,
L denotes the fragment length. If a residue of (L + 1)/2 was the
binding residue, it was defined as a positive sample, otherwise, it was
a negative sample. Based on the previous references (Yu et al., 2013;
Ding et al., 2017; Zhao et al., 2019; Hu et al., 2020; Hu et al., 2021),
the intercepted fragment L was 17.

Statistical analysis and reclassification of
predicted dihedral angle

The secondary structure of proteins can reflect the trend of the
backbone chain, and the dihedral angle is the main descriptor of the
secondary structure, which can reflect the local structural
information of proteins and is a very effective feature for
predicting protein-ligand binding residues (Chen et al., 2011; Cui
et al., 2019; Liu et al., 2020). Here, we applied firstly the reclassified
dihedral angles to the prediction of ATP binding residues. First, the
values of phi (φ) and psi (ψ) angles were obtained from the primary
sequence using ANGLOR software (Wu and Zhang, 2008), and the
value range of φ and ψ angles both were [−180°, 180°]; then every 15°

was divided into an interval, the φ and ψ angles both were divided
into 24 intervals; the difference value of probability of the φ and ψ
angles between the positive and negative samples was obtained, as
shown in Figures 1A, B. The formula for calculating the probability
difference is expressed in Equation 1 as follows:
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ΔPi � Pi+ − Pi− (1)

where, Pij � nij∑24

i�1nij
, nij represents the number of ith interval in

positive or negative samples; i (i = 1, 2, . . . , 24) represents
the divided interval; j (+ or -) represents a positive or
negative sample.

In Figure 1, it was found that there exist significant differences in
the probabilities of the φ and ψ angles between the positive and
negative samples. Using 0 as the threshold, we divided the φ and ψ
angles into three intervals, which were represented by functions g(x)
and h(x) (i.e., Equations 2, 3). Through the above analysis, we
selected the reclassification information of the φ and ψ angles
as features.

g x( ) �
I, x ∈ −180+,−90+[ ]
II, x ∈ −90+,−60+( ]
III, x ∈ −60+, 180+( ]

⎧⎪⎨⎪⎩ (2)

h x( ) �
I, x ∈ −180+,−60+[ ]
II, x ∈ −60+, 0+( ]
III, x ∈ 0+, 180+( ]

⎧⎪⎨⎪⎩ (3)

Statistical analysis and reclassification of
energy values

In accordancewith the principles of physics, the stability ofmolecular
structures increases as energy decreases (Wang et al., 2021). In
consideration of the specificity of ATP binding to proteins, we
analyzed the Laplace energy values of the 20 amino acids between
positive and negative samples in Figure 2. The analysis revealed
varying energy probabilities among the 20 amino acids between the
positive and negative samples. Consequently, the amino acids were
regrouped into four categories: the first group comprised G, I, S, T
andV,withmarkedly higher values in the positive set than in the negative
set; the second group includedC,H andM,where the positive set’s values
slightly surpassed those of the negative set; the third group encompassed
F, K, N, R, W and Y, in which the values of negative set were slightly
higher than that of positive set; the fourth group consisted of A, D, E, L, P
and Q, with notably higher values in the negative set than in the positive
set. Subsequently, the energy reclassification details were utilized as
feature parameters for ATP binding residue identification.

Propensity factors feature

Researchers have analyzed the influence of binding residues and
their neighboring residues on the protein-ATP binding process at
the sequence fragment level. In protein-ligand interactions, the
amino acids’ specific preferences in crucial binding residues that
directly engage with the ligand play a vital role in the binding
process. Hence, we introduced a novel parameter extraction method
termed propensity factors. Originally suggested by Chou and
Fasman (1974), propensity factors have found utility in
predicting protein secondary structures and ion ligand-binding
sites (Chou and Fasman, 1979; Xu et al., 2022). The formula was
expressed in Equation 4 as follows:

FIGURE 1
The difference value of probability between positive and negative samples. Note: (A, B) represent the φ and ψ angles, respectively. The x-axis
represents the divided 24 intervals, the y-axis represents the difference value of probability between positive and negative samples.

FIGURE 2
Energy probability of 20 amino acids in positive and negative
samples. Note:The x-axis represents 20 amino acids, the y-axis
represents the probability value, and P and N represent the positive
and negative samples, respectively.
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Fij � pij

pj
(4)

where, pij � nij
Ni
, pj � Nj

Nt
, Ni � ∑20

i�1nij, Nt � ∑2
j�1Nj, nij represents

the number of amino acid i in binding residues or non-binding
residues; Nj represents the number of binding residues or non-
binding residues; i (i = 1, 2, . . . , 20) represents 20 amino acids; j (j =
1, 2) represents binding residues and non-binding residues. The
propensity factors of 20 amino acids were statistically analyzed, as
shown in Figure 3.

The propensity factor values of amino acids D, G, H, K, R, S, and
T within the binding residues exhibited notably higher values
compared to those in the non-binding residues. Hence, the
propensity factors, serving as a novel extraction method,
effectively capture the preferences of the binding residues.

Basic features

Utilizing sequence information, we extracted amino acids and
derived predicted secondary structure information, relative solvent
accessibility, and the hydrophilic-hydrophobic profile as
fundamental features. These parameters, extensively employed in
prior research, have demonstrated exceptional predictive
capabilities (Chen et al., 2011; Zhang et al., 2012; Yu et al., 2013;
Hu et al., 2016; Ding et al., 2017; Zhao et al., 2019; Hu et al., 2020;
Song et al., 2020a; Hu et al., 2021). The hydrophilic-hydrophobic
properties were used to classify the 20 amino acids into six distinct
categories (Pánek et al., 2005). Secondary structure and solvent
accessibility predictions were generated through ANGLOR software,
categorizing secondary structure into α-helix, β-sheet and coil.

Following guidelines from a source (Hu et al., 2020), relative
solvent accessibility predictions were partitioned into four
intervals: (0, 0.2], (0.2, 0.45], (0.45, 0.6], (0.6, 0.85].

Composition and site conservation
information

The researchers observed significant disparities in amino acid
frequencies between positive and negative samples, prompting the
utilization of amino acid composition as a parameter (Hu et al.,
2020; Wang et al., 2021; Sun et al., 2022). Here, from the amino acids
composition, secondary structure, relative solvent accessibility, φ
angle, ψ angle and energy, we extracted 21, 4, 5, 4, 4 and 5-
dimensional composition information, respectively.

Previous studies have shown that the position weight matrix can
well reflect the site conservation of amino acids in protein sequences
(Hu et al., 2020; Xu et al., 2022). Here, the matrix elements were
expressed in Equation 5 as follows:

mi,j � ln
pi,j

p0,j
( ) (5)

where, pi,j � (ni,j+
		
Ni

√
q )

(Ni+ 		
Ni

√ ), Ni � ∑21
j�1ni,j, P0,j represents the background

probability, and ni,j represents the frequency of the j
th amino acid at

the ith site, j represents 20 kinds of amino acids and vacancies, q
represents the number of classifications, here it is 21. Two standard
scoring matrices were obtained from the positive and negative
training sets, and 2L-dimensional feature vector were obtained for
each segment. Similarly, the predicted secondary structure (q = 4),
relative solvent accessibility (q = 5), energy (q = 5), φ angle (q = 4) and
ψ angle (q = 4) were also extracted by the samemethods, and a total of
6 × 2L-dimensional site conservative information was obtained.

Information entropy

The intermolecular hydrophobic effect was a complex process
which was mainly determined by the entropy effect (Wang et al.,
2021). The information entropy was an effective method to extract
information of hydrophilic-hydrophobic (Wang et al., 2021; Sun
et al., 2022; Xu et al., 2022). Here, the information entropy formula
was expressed in Equation 6 as follows:

H x( ) � −∑q
j�1
pj log2 pj (6)

where, pj � nj
N, nj represents the frequency of occurrence of the jth

classification in a segment, N is the segment length, and q represents
the hydrophilic-hydrophobic classifications and vacancies, here it
is q = 7.

Algorithm

SMOTE algorithm
The number of non-binding residues was far greater than the

that of binding residues, and the serious imbalance of data would

FIGURE 3
The propensity factors of 20 amino acids of binding residues and
non-binding residues. Note: letters on the radius represent 20 amino
acids; red triangles and blue dots represent amino acid propensity
factor values of binding residues and non-binding residues,
respectively.
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lead to a high false positive. For this reason, researchers often used
random undersampling technology to process the dataset, which
randomly selected the same number as the binding residue sample
from the non-binding residue sample to construct a balanced set.
The disadvantage of this method was the loss of non-binding residue
sample information. To overcome the above limitations, we
employed an over-sampling technique: SMOTE (Chawla et al.,
2002). It generated the same number of non-binding residue
samples from binding residue samples to construct a balanced
training set. For each sample of the binding residue, the SMOTE
algorithm calculated the distance (i.e., Euclidean distance) between
the point and other binding residue sample points and selected the
nearest k binding residue samples; then a sample point was
randomly selected from the k sample points, the two points drew
a line segment; finally it generated a new sample point by
interpolation operation on the line segment, where k was the
default value. This technique ensured that sample information
would not be lost and the data had integrity. The SMOTE
algorithm was different from the random over-sampling
technique, and the newly generated sample was obtained by the
analysis of the binding residue sample rather than direct copy, so it
not only conformed to the generality of the binding residue sample,
but also differed from each binding residue sample, which can
effectively solve the classification over-fitting problem caused by
the small decision interval. In the sample space, SMOTE generated
new samples according to the following Equation 7:

xnew � xold + rand 0, 1( ) × x′ − xold( ) (7)
where, xold represents the ATP binding residue sample in the
training set, xnew represents the newly generated ATP binding
residue sample, and x′ represents a sample of ATP binding
residue randomly selected from k neighbors of xold.

Deep convolutional neural network (DCNN)

As one of the most important branches of deep learning
framework, DCNN usually consisted of the input layer,
convolutional layer, pooling layer, fully connected layer and
output layer. The potential complex information was detected for
the input raw data, and then through a series of high-dimensional
and high-level projection mapping, the deeper representation
information of the classified objects was obtained. The
alternating distribution of the convolutional layer and the
pooling layer made the convolutional neural network had better
fault tolerance and parallel processing ability, and the generalization
ability and adaptability of the model were greatly enhanced. It has
been widely used in various fields.

The DCNNmodel framework in this paper was implemented by
Keras, and the bottom layer was based on the TensorFlow
framework. Here, the batch normalization was employed to avoid
vanishing gradients and speed up the convergence of the network. In
order to prevent over-fitting of the model, the layer of dropout was
employed. The relu nonlinear activation function was used to
improve the expressive ability of the model and greatly shortened
the learning cycle. To effectively avoid over-fitting problems caused
by continued training, the early stopping module was used. Adam

and cross-entropy were used as optimizer and loss function,
respectively. The output layer applied the sigmoid function to
make the classification objects output probability values between
0 and 1. The hyperparameters in DCNN algorithm had an influence
on the training speed and performance of the predictor. Based on the
previous research, we mainly optimized the following three
hyperparameters. Here, the dropout was set as 0.2; the range of
the number of convolutional layers was from 1 to 6; the range of
filters and batch size was both from 2 to 128. Detailed description of
DCNN architecture can be viewed at https://github.com/
tlhsx/S-DCNN.

Validation methods and evaluation metrics

The validation methods in this paper were 5-fold cross-
validation and independent testing. For the evaluation of the
prediction results, we adopted the evaluation indicators
commonly used in the identification of ATP binding residues:
sensitivity (Sn), specificity (Sp), accuracy (ACC), and Matthews
correlation coefficient (MCC) (i.e., Equations 8–11) (Zou
et al., 2023).

Sn � TP

TP + FN
× 100% (8)

SP � TN

TN + FP
× 100% (9)

ACC � TP + TN

TP + TN + FP + FN
× 100% (10)

MCC � TP × TN( ) − FP × FN( )																																					
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (11)

where, the number of ATP binding residues correctly predicted is
TP, otherwise it is FN; the number of ATP non-binding residues
correctly predicted is TN, otherwise it is FP. In addition, the
flowchart was clearly described in Figure 4.

Results

Prediction results of basic feature
parameters

The basic feature parameters were input into the S-DCNN
predictor, and the results of the 5-fold cross-validation were
shown in Table 1. Here, the Sn and MCC values were 43.39%
and 0.4101, respectively.

Prediction results of adding dihedral angle,
energy and propensity factors

To improve the prediction performance, the dihedral angle,
energy and propensity factors were introduced. The extracted
dihedral angle, energy, propensity factor feature parameters and
basic feature parameters were fused and input to the S-DCNN
predictor, and the results were shown in Table 1 on 5-fold cross-
validation.
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In Table 1, when the feature parameters PP, E or F were
respectively added to the feature B, the prediction results of B + F
were relatively better. Then, the parameter PP or E was added to
the above parameter set of B + F, and the results with parameter
set of B + F + PP were relatively better. When the feature
parameters PP, E and F were added at the same time, the best
prediction results were obtained. The Sn, Sp, ACC and MCC
values with feature set of B + F + PP + E reached 50.9%, 98.01%,
96.31% and 0.4773, respectively.

Optimization of hyperparameters

The prediction results of the three hyperparameters of the 5-fold
cross-validation were shown in Figure 5. Figure 5A was a bar chart of
the MCC and Sn values changing with the number of convolution
layers. When the number of layers was 3, the Sn and MCC values
reached the peak at the same time, then the optimal number of layers
is 3. From Figures 5B, C, the optimal filters and batch size were
16 and 32, respectively.

FIGURE 4
Flowchart of the proposed method for predicting ATP binding residues. Note: B, F, PP, and E represent basic features, propensity factors, dihedral
angle, and energy, respectively; DCNN, RUS-DCNN, and S-DCNN represent DCNN predictors with using samples without preprocessing, random
undersampling, and SMOTE, respectively; S-RF and S-SVM stand for RF and SVM predictors based on SMOTE, respectively.

TABLE 1 The prediction results of 5-fold cross-validation.

Features Sn(%) Sp(%) ACC(%) MCC Hyperparameter

B 43.39 97.82 95.83 0.4101 4,16,16

B+E 44.36 97.83 95.90 0.4176 4,16,16

B+PP 46.15 97.91 96.04 0.4363 4,16,16

B+F 47.82 97.93 96.12 0.4509 4,16,16

B+F+E 48.47 97.96 96.15 0.4597 4,16,16

B+F+PP 49.32 97.96 96.18 0.4663 4,16,16

B+F+PP+E 50.90 98.01 96.31 0.4773 4,16,16

(B+F+PP+E)* 58.82 98.40 96.97 0.5681 3,16,32

Note: B, F, PP, and E represent basic features, propensity factors, dihedral angle and energy, respectively; () * represents the prediction results after optimization of hyperparameters; the three

hyperparameters are the number of convolution layers, filters and batch size, respectively.
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The prediction results after optimization of hyperparameter were
shown in (B + F + PP + E)* of Table 1. The Sn, Sp, ACC and MCC
values reached 58.82%, 98.4%, 96.97%, and 0.5681, respectively.

Prediction results of DCNN algorithm with
different preprocessing methods

To assess the efficacy of the SMOTE algorithm in predicting ATP
binding residues, we conducted a comparative analysis between
SMOTE and random undersampling alongside samples without
preprocessing (referred to as RUS-DCNN and DCNN,
respectively). In RUS-DCNN, for result stability, negative set
samples were randomly selected ten times, with the average
outcome of these ten selections serving as the final prediction. The
prediction results of 5-fold cross-validation after optimization of
hyperparameter were listed in Table 2. In Table 2, the MCC values
of RUS-DCNN, DCNN and S-DCNN reached more than 0.438, and
the ACC values of DCNN and S-DCNN reached more than 96.97%.

Prediction results of different algorithms
based on SMOTE

To verify the superiority of the S-DCNN algorithm, we
computed the results of the SVM and random forest (RF)
algorithm with SMOTE(i.e., S-SVM and S-RF) through 5-fold
cross-validation, as detailed in Table 2. Specifically, the RF model
utilized 500 decision trees, the SVM model employed a radial basis
function kernel, and other parameters remained at default values.

To test the generalization ability of the prediction model, an
independent testing set was utilized to predict ATP binding residues
with the corresponding results outlined in Table 2 within brackets.
Across the evaluation metrics of MCC and ACC, S-SVM, S-RF, and
S-DCNN achieved values exceeding 0.409% and 96.2% respectively.
Notably, S-DCNN demonstrated superior performance in terms of
Sn and MCC. Moreover, the prediction model’s performance was
assessed using the area under the Receiver Operating Characteristic
(ROC) curve (AUC). Figure 6 illustrates the ROC curves for various
algorithms based on SMOTE on the ATP-289 independent testing

FIGURE 5
Bar chart of Sn and MCC values changing with hyperparameters. Note: (A–C) represent the optimization of the number of convolution layers, filters
and batch size, respectively, and the y-axis is the value of MCC and Sn.

TABLE 2 Comparison of prediction results.

Methods Sn(%) Sp(%) ACC(%) MCC Hyperparameter

DCNN 29.75 99.49 96.97 0.4385 3,32,32

−29.07 +1.09 0 −0.1296

RUS-DCNN 79.26 74.24 76.75 0.5357 2,32,32

+20.44 −24.16 −20.22 −0.0324

S-DCNN 58.82 (49.20) 98.40 (98.64) 96.97 (97.06) 0.5681 (0.5031) 3,16,32

S-SVM 52.69 (44.27) 96.65 (97.95) 95.06 (96.23) 0.4171 (0.4097) —

−6.13 (−4.93) −1.75 (−0.69) −1.91 (-0.83) −0.151 (−0.0934)

S-RF 41.76 (44.53) 99.21 (98.94) 97.10 (97.20) 0.5140 (0.4950) —

−17.06 (−4.67) +0.81 (+0.3) +0.13 (+0.14) −0.0541 (−0.0081)

Note: values in brackets are the prediction results of independent testing; DCNN, RUS-DCNN, and S-DCNN, represent DCNN, predictors with using raw dataset without preprocessing,

random undersampling, and SMOTE, respectively; S-RF, and S-SVM, stand for RF, and SVM, predictors based on SMOTE, respectively; the second row of eachmethod represents the difference

between the results of the method and the S-DCNN method, “+” and “−” represent the increase and decrease of the prediction performance over the S-DCNN method, respectively; the three

hyperparameters are the number of convolution layers, filters and batch size, respectively.
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set, where S-SVM, S-RF, and S-DCNN yielded AUC values of
0.8585, 0.8841, and 0.9088 respectively.

Comparison with previous results

To further verify the prediction performance of S-DCNN, we
applied S-DCNN on another two frequently used datasets. The first
set was constructed by Yu et al. (2013), in which the training set had
221 protein chains (ATP-221), and the independent testing set had
50 protein chains (ATP-50). The other set was constructed byHu et al.
(2018), in which the training set had 388 protein chains (ATP-388),
and the independent testing set had 41 protein chains (ATP-41).

Prediction results on the 5-fold cross-
validation

Using 5-fold cross-validation with optimized hyperparameters,
the S-DCCN method was performed on the ATP-221 and ATP-388
datasets. The corresponding two prediction results were shown in
Tables 3, 4, respectively. In Table 3, the S-DCNN achieved ACC of
97.0% on the ATP-221 dataset, surpassing other methods by 0.6%–

0.8%. The MCC of the S-DCNN also exhibited significant
improvement, with an increase ranging from 3.6% to 12.5%. In
Table 4, the ACC and MCC values of the S-DCNN on the ATP-388
dataset reached 97.04% and 0.5887, respectively. To make a better
comparison, we also listed the prediction results of the previous on
the ATP-221 and ATP-388 datasets.

Prediction results of independent testing

The prediction results of independent testing were listed in
Tables 3, 4, with values displayed in brackets. Notably, Table 3
showcased the enhanced prediction performance of the S-DCNN
method. Specifically, on the independent testing set ATP-50,
S-DCNN achieved an ACC value of 97.0%, surpassing other
methods by 0.2%–0.5%. Concurrently, the Sn and MCC values of
S-DCNN exhibited notable enhancements, reaching 50.2% and
0.573, respectively, marking a 0.1%–6.5% increase and 3.9%–8.2%
improvement compared to alternative methods. The Sp value of the
S-DCNN was slightly higher than that of other methods. In Table 4,
the ACC and MCC values of the S-DCNN on the independent
testing set ATP-41 reached 96.78% and 0.5850 respectively. In
addition, we drew the ROC curve of the S-DCNN method on the
ATP-50 and ATP-41 sets, as shown in Figure 7. The AUC values of
the S-DCNN method on the ATP-50 and ATP-41 sets were
0.9138 and 0.8973 respectively.

Discussion

The comparative analysis in Table 1 revealed that introducing
the feature parameters PP, E, and F simultaneously resulted in all
four evaluation metrics reaching their maximum values. When
compared to the prediction results using parameter B, there were
notable increases in the values of Sn, Sp, ACC, and MCC. This
suggests that incorporating dihedral angles, energy, and
propensity factors is beneficial for accurately predicting ATP
binding residues. Furthermore, after optimizing the
hyperparameters, the prediction results were notably
enhanced, with increases of 7.92% in Sn, 0.39% in Sp, 0.66% in
ACC, and 9.08% in MCC. These results demonstrate the
significant performance improvement achieved by optimizing
the hyperparameters of the DCNN algorithm.

The data presented in Table 2 highlights that S-DCNN yielded
superior prediction results for the evaluation metrics ACC and
MCC. Notably, the Sn and MCC values of S-DCNN exhibited

FIGURE 6
ROC curves of different algorithms based on SMOTE on ATP-289
independent testing set.

TABLE 3 Comparison of prediction performance on ATP-221 dataset.

Method Sn(%) Sp(%) ACC(%) MCC Hyperparameter

S-DCNN 58.4 (50.2) 98.5 (98.8) 97.0 (97.0) 0.573 (0.545) 3,32,32

SXGBsite 40.3 (43.7) 98.6 (98.5) 96.4 (96.5) 0.448 (0.463) −

EC-RUS 58.6 (45.4) 97.9 (98.8) 96.4 (96.8) 0.537 (0.506) −

TargetS 48.4 (50.1) 98.2 (98.3) 96.2 (96.5) 0.492 (0.502) −

Note: values in brackets are the prediction results of independent testing; SXGBsite is data obtained from Reference (Zhao et al., 2019); EC-RUS, is data obtained from Reference (Ding et al.,

2017); TargetS is data obtained from Reference (Yu et al., 2013); the three hyperparameters are the number of convolution layers, filters and batch size, respectively.
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significant increases of 29.07% and 3.24%, respectively, in
comparison to the DCNN outcomes. Similarly, compared to
the prediction outcomes of RUS-DCNN, S-DCNN
demonstrated substantial enhancements in Sp, ACC, and MCC
values by 24.16%, 20.22%, and 3.24%, respectively. This
underscores the efficacy of employing SMOTE-based DCNN
in improving prediction performance. Furthermore, in 5-fold
cross-validation, S-DCNN demonstrated superior performance
over S-SVM with increments in Sn, Sp, ACC, and MCC by 6.13%,
1.75%, 1.91%, and 15.1%, respectively, and over S-RF with
increases in Sn and MCC by 17.06% and 5.41%, respectively.
For independent testing, S-DCNN displayed better performances
than S-RF, with increases in Sn and MCC by 4.67% and 0.81%,
and compared to S-SVM with enhancements in Sn, Sp, ACC, and
MCC by 4.95%, 0.69%, 0.83%, and 9.34%, respectively. Notably,
the comparison of AUC values highlighted S-DCNN as the
highest predictor, affirming its robustness in identifying ATP
binding residues.

The prediction results from the 5-fold cross-validation and
independent testing were shown in Tables 3, 4. Compared to
SXGBsite (Zhao et al., 2019), EC-RUS (Ding et al., 2017), and

TargetS (Yu et al., 2013), S-DCNN showcased improvements in
ACC values by 0.6%, 0.6%, and 0.8%, respectively. Notably,
when compared with S-SITEatp (Hu et al., 2018), the Sp, ACC,
and MCC values of S-DCNN increased significantly by 4.08%,
3.51%, and 13.37%, respectively. Moreover, the Sn value of
S-DCNN closely resembled that of ATPbinding (Song et al.,
2020b) and surpassed that of DeepATPseq (Hu et al., 2021) by
6.77%. The distinguishing results in independent testing, as
detailed in Tables 3, 4 (values in brackets), indicated
enhancements in ACC values compared to SXGBsite, EC-
RUS, and TargetS by 0.5%, 0.2%, and 0.5%, respectively.
Through the analysis in Table 4, S-DCNN presented
superiority over S-SITEatp, NsitePred, and TargetATPsit (Hu
et al., 2018) in terms of the evaluation metric MCC.
Furthermore, it outperformed NsitePred, TargetATPsit, and
ATPbinding in the evaluation of Sn. The performance of
S-DCNN closely rivaled that of DeepATPseq. Moreover, the
enhanced prediction performance of S-DCNN across diverse
datasets was evident from Figures 7A, B, highlighting its
robustness. In summary, the S-DCNN method demonstrated
consistent reliability.

TABLE 4 Comparison of prediction performance on ATP-388 dataset.

Method Sn(%) Sp(%) ACC(%) MCC Hyperparameter

S-DCNN 58.97 (50.95) 98.55 (98.99) 97.04 (96.78) 0.5887 (0.5850) 3,32,16

S-SITEatp 69.88 (67.51) 94.47 (92.65) 93.53 (91.51) 0.4550 (0.4160) −

NsitePred (46.74) (97.70) (95.39) (0.4560) −

TargetATPsit (41.25) (99.49) (96.84) (0.5590) −

ATPbinding 59.00 (49.40) 98.80 (99.50) 97.30 (97.20) 0.6130 (0.6260) −

DeepATPseq 52.20 (57.42) 99.03 (99.22) 97.39 (97.32) 0.6130 (0.6550) −

Note: values in brackets are the prediction results of independent testing.; S-SITEatp, NsitePred and TargetATPsit, are data obtained from Reference (Hu et al., 2018); ATPbinding is data

obtained from Reference (Song et al., 2020a); DeepATPseq, is data obtained from Reference (Hu et al., 2021); the three hyperparameters are the number of convolution layers, filters and batch

size, respectively.

FIGURE 7
ROC curve of S-DCNN method on ATP-50 (A) and ATP-41 set (B).

Frontiers in Genetics frontiersin.org09

Hao et al. 10.3389/fgene.2024.1513201

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1513201


Conclusion

To precisely predict ATP binding residues is a critical content
for understanding protein function. In this paper, we proposed a
novel method of S-DCNN for the prediction of ATP binding
residues. Utilizing sequence information, we conducted statistical
analysis on dihedral angles, energy, and propensity factors to extract
new feature parameters. By optimizing hyperparameters in the
S-DCNN predictor, we achieved significantly improved
prediction results. Our approach in the S-DCNN involved
different data optimization methods. The SMOTE algorithm was
employed to prevent information loss in non-binding residue
samples, while the DCNN algorithm captured in-depth
representation from complex feature parameters with enhanced
fault tolerance. Comparative analysis of the prediction results
among the DCNN, SVM, and RF algorithms based on SMOTE
demonstrated the superiority of the S-DCNN algorithm.
Furthermore, applying the S-DCNN predictor to two additional
datasets yielded further enhancements in ATP binding residue
prediction. In conclusion, the S-DCNN predictor stands out as a
robust tool for accurate ATP binding residue prediction. In next
step, we will further improve prediction accuracy and build a web
server with a user-friendly interface to predict the ATP
binding residues.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

SH: Methodology, Software, Writing–original draft. C-YL:
Validation, Writing–review and editing. XH: Supervision,
Validation, Writing–review and editing, Investigation. ZF:
Writing–original draft, Writing–review and editing, Supervision.

GZ: Data curation, Formal Analysis, Writing–review and editing.
CY: Data curation, Formal Analysis, Writing–review and editing.
HH: Writing–review and editing, Investigation.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Natural Science Foundation of China
(61961032), the Natural Science Foundation of Inner Mongolia of
China (2024MS06027), the Operation expenses basic scientific
research of Inner Mongolia of China (JY20230067), Inner
Mongolia College students innovation and entrepreneurship
training program project (S202119127007) and Baotou Medical
College Science Foundation Project (BYJJ-ZROM 202209).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Chauhan, J. S., Mishra, N. K., and Raghava, G. P. (2009). Identification of ATP
binding residues of a protein from its primary sequence. BMC Bioinforma. 10, 434.
doi:10.1186/1471-2105-10-434

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:
synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357. doi:10.
1613/jair.953

Chen, K., Mizianty, M. J., and Kurgan, L. (2011). ATPsite: sequence-based prediction
of ATP-binding residues. Proteome Sci. 9 (S1), S4. doi:10.1186/1477-5956-9-S1-S4

Chou, P. Y., and Fasman, G. D. (1974). Conformational parameters for amino acids in
helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13
(2), 211–222. doi:10.1021/bi00699a001

Chou, P. Y., and Fasman, G. D. (1979). Prediction of beta-turns. Biophysical J. 26 (3),
367–383. doi:10.1016/S0006-3495(79)85259-5

Cui, Y. F., Dong, Q. W., Hong, D. C., and Wang, X. K. (2019). Predicting protein-
ligand binding residues with deep convolutional neural networks. BMC Bioinforma. 20
(1), 93. doi:10.1186/s12859-019-2672-1

Ding, Y. J., Tang, J. J., and Guo, F. (2017). Identification of protein-ligand binding sites
by sequence information and ensemble classifier. J. Chem. Inf. Model. 57 (12),
3149–3161. doi:10.1021/acs.jcim.7b00307

Guo, T., Shi, Y. X., and Sun, Z. R. (2005). A novel statistical ligand-binding site
predictor: application to ATP-binding sites. Protein Eng. Des. and Sel. 18 (2), 65–70.
doi:10.1093/protein/gzi006

Holmes, K. C., Angert, I., Kull, F. J., Jahn, W., and Schroder, R. R. (2003). Electron
cryo-microscopy shows how strong binding of myosin to actin releases nucleotide.
Nature 425 (6956), 423–427. doi:10.1038/nature02005

Hu, J., Li, Y., Zhang, Y., and Yu, D. J. (2018). ATPbind: accurate protein-
ATP binding site prediction by combining sequence-profiling and structure-
based comparisons. J. Chem. Inf. Model. 58 (2), 501–510. doi:10.1021/acs.jcim.
7b00397

Hu, J., Zheng, L. L., Bai, Y. S., Zhang, K. W., and Zhang, G. J. (2021). Accurate
prediction of protein-ATP binding residues using position-specific frequency matrix.
Anal. Biochem. 626, 114241. doi:10.1016/j.ab.2021.114241

Hu, X. Z., Ge, R., and Feng, Z. X. (2020). Recognizing five molecular ligand-binding
sites with similar chemical structure. J. Comput. Chem. 41 (2), 110–118. doi:10.1002/jcc.
26077

Hu, X. Z., Wang, K., and Dong, Q. W. (2016). Protein ligand-specific binding residue
predictions by an ensemble classifier. BMC Bioinforma. 17 (1), 470. doi:10.1186/s12859-
016-1348-3

Frontiers in Genetics frontiersin.org10

Hao et al. 10.3389/fgene.2024.1513201

https://doi.org/10.1186/1471-2105-10-434
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1186/1477-5956-9-S1-S4
https://doi.org/10.1021/bi00699a001
https://doi.org/10.1016/S0006-3495(79)85259-5
https://doi.org/10.1186/s12859-019-2672-1
https://doi.org/10.1021/acs.jcim.7b00307
https://doi.org/10.1093/protein/gzi006
https://doi.org/10.1038/nature02005
https://doi.org/10.1021/acs.jcim.7b00397
https://doi.org/10.1021/acs.jcim.7b00397
https://doi.org/10.1016/j.ab.2021.114241
https://doi.org/10.1002/jcc.26077
https://doi.org/10.1002/jcc.26077
https://doi.org/10.1186/s12859-016-1348-3
https://doi.org/10.1186/s12859-016-1348-3
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1513201


Kanai, R., Ogawa, H., Vilsen, B., Cornelius, F., and Toyoshima, C. (2013). Crystal
structure of a Na+-bound Na+, K+-ATPase preceding the E1P state. Nature 502 (7470),
201–206. doi:10.1038/nature12578

Liu, L., Hu, X. Z., Feng, Z. X., Wang, S., Sun, K., and Xu, S. (2020). Recognizing ion
ligand-binding residues by random forest algorithm based on optimized dihedral angle.
Front. Bioeng. Biotechnol. 8, 493. doi:10.3389/fbioe.2020.00493

Liu, L., Hu, X. Z., Feng, Z. X., Zhang, X. J., Wang, S., Xu, S., et al. (2019). Prediction of
acid radical ion binding residues by K-nearest neighbors classifier. BMC Mol. Cell Biol.
20 (Suppl. 3), 52. doi:10.1186/s12860-019-0238-8

Nguyen,T.T.D.,Chen, S.,Ho,Q.T., andOu,Y.Y. (2022).Usingmultiple convolutionalwindow
scanning of convolutional neural network for an efficient prediction of ATP-binding sites in
transport proteins. Proteins Struct. Funct. Bioinforma. 90 (7), 1486–1492. doi:10.1002/prot.26329

Nguyen, T. T. D., Le, N. Q. K., Kusuma, R. M. I., and Ou, Y. Y. (2019). Prediction of
ATP-binding sites in membrane proteins using a two-dimensional convolutional neural
network. J. Mol. Graph. Model. 92, 86–93. doi:10.1016/j.jmgm.2019.07.003

Pánek, J., Eidhammer, I., and Aasland, R. (2005). A new method for identification of
protein(sub)families in a set of proteins based on hydropathy distribution in proteins.
Proteins Struct. Funct. Bioinforma. 58 (4), 923–934. doi:10.1002/prot.20356

Song, J. Z., Liang, Y. C., Liu, G. X., Wang, R. Q., Sun, L. Y., and Zhang, P. (2020a). A
novel prediction method for ATP-binding sites from protein primary sequences based
on fusion of deep convolutional neural network and ensemble learning. IEEE Access 8,
21485–21495. doi:10.1109/ACCESS.2020.2968847

Song, J. Z., Liu, G. X., Song, C. Y., and Jiang, J. Q. (2020b). A novel sequence-based
prediction method for ATP-binding sites using fusion of SMOTE algorithm and
random forests classifier. Biotechnol. and Biotechnol. Equip. 34 (1), 1336–1346.
doi:10.1080/13102818.2020.1840436

Sun, K., Hu, X. Z., Feng, Z. X., Wang, H. B., Lv, H. T., Wang, Z. Y., et al. (2022).
Predicting Ca2+ and Mg2+ ligand binding sites by deep neural network algorithm. BMC
Bioinforma. 22 (Suppl. 12), 324. doi:10.1186/s12859-021-04250-0

Wang, S., Hu, X. Z., Feng, Z. X., Liu, L., Sun, K., and Xu, S. (2021). Recognition of
ion ligand binding sites based on amino acid features with the fusion of energy,
physicochemical and structural features. Curr. Pharm. Des. 27 (8), 1093–1102. doi:10.
2174/1381612826666201029100636

Wu, S. T., and Zhang, Y. (2008). ANGLOR: a composite machine-learning algorithm
for protein backbone torsion angle prediction. Plos One 3 (10), e3400. doi:10.1371/
journal.pone.0003400

Xu, S., Hu, X. Z., Feng, Z. X., Pang, J., Sun, K., You, X. X., et al. (2022).
Recognition of metal ion ligand-binding residues by adding correlation
features and propensity factors. Front. Genet. 12, 793800. doi:10.3389/fgene.
2021.793800

Yang, J. Y., Roy, A., and Zhang, Y. (2013). BioLiP: a semi-manually curated database
for biologically relevant ligand-protein interactions. Nuclc Acids Res. 41 (D1),
D1096–D1103. doi:10.1093/nar/gks966

Yu, D. J., Hu, J., Yang, J., Shen, H. B., Tang, J. H., and Yang, J. Y. (2013). Designing
template-free predictor for targeting protein-ligand binding sites with classifier
ensemble and spatial clustering. IEEE/ACM Trans. Comput. Biol. Bioinforma. 10 (4),
994–1008. doi:10.1109/TCBB.2013.104

Zhang, Y. N., Yu, D. J., Li, S. S., Fan, Y. X., Huang, Y., and Shen, H. B. (2012).
Predicting protein-ATP binding sites from primary sequence through fusing bi-profile
sampling of multi-view features. BMC Bioinforma. 13, 118. doi:10.1186/1471-2105-
13-118

Zhao, Z. Q., Xu, Y. H., and Zhao, Y. (2019). SXGBsite: prediction of protein-
ligand binding sites using sequence information and extreme gradient
boosting. Genes 10 (12), 965. doi:10.3390/genes10120965

Zou, X. D., Ren, L. P., Cai, P. L., Zhang, Y., Ding, H., Deng, K. J., et al. (2023).
Accurately identifying hemagglutinin using sequence information and
machine learning methods. Front. Med. 10, 1281880. doi:10.3389/fmed.
2023.1281880

Frontiers in Genetics frontiersin.org11

Hao et al. 10.3389/fgene.2024.1513201

https://doi.org/10.1038/nature12578
https://doi.org/10.3389/fbioe.2020.00493
https://doi.org/10.1186/s12860-019-0238-8
https://doi.org/10.1002/prot.26329
https://doi.org/10.1016/j.jmgm.2019.07.003
https://doi.org/10.1002/prot.20356
https://doi.org/10.1109/ACCESS.2020.2968847
https://doi.org/10.1080/13102818.2020.1840436
https://doi.org/10.1186/s12859-021-04250-0
https://doi.org/10.2174/1381612826666201029100636
https://doi.org/10.2174/1381612826666201029100636
https://doi.org/10.1371/journal.pone.0003400
https://doi.org/10.1371/journal.pone.0003400
https://doi.org/10.3389/fgene.2021.793800
https://doi.org/10.3389/fgene.2021.793800
https://doi.org/10.1093/nar/gks966
https://doi.org/10.1109/TCBB.2013.104
https://doi.org/10.1186/1471-2105-13-118
https://doi.org/10.1186/1471-2105-13-118
https://doi.org/10.3390/genes10120965
https://doi.org/10.3389/fmed.2023.1281880
https://doi.org/10.3389/fmed.2023.1281880
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1513201

	S-DCNN: prediction of ATP binding residues by deep convolutional neural network based on SMOTE
	Introduction
	Materials and methods
	Datasets
	Statistical analysis and reclassification of predicted dihedral angle
	Statistical analysis and reclassification of energy values
	Propensity factors feature
	Basic features
	Composition and site conservation information
	Information entropy
	Algorithm
	SMOTE algorithm

	Deep convolutional neural network (DCNN)
	Validation methods and evaluation metrics

	Results
	Prediction results of basic feature parameters
	Prediction results of adding dihedral angle, energy and propensity factors
	Optimization of hyperparameters
	Prediction results of DCNN algorithm with different preprocessing methods
	Prediction results of different algorithms based on SMOTE
	Comparison with previous results
	Prediction results on the 5-fold cross-validation
	Prediction results of independent testing

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


