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Introduction: To prevent disease, it is of great importance to detect the critical
point (pre-disease state) when the biological system abruptly transforms from
normal to disease state. However, rapid and accurate pre-disease state detection
is still a challenge when there is only a single sample available. The state transition
of the biological system is driven by the variation in regulations between genes.

Methods: In this study, we propose a rapid single-sample pre-disease state-
identifying method based on the change in gene expression ranking, which can
reflect the coordinated shifts between genes, that is, S-PCR. The R codes of S-
PCR can be accessed at https://github.com/ZhenshenBao/S-PCR.

Results: This model-free method is validated by the successful identification of
pre-disease state for both simulated and five real datasets. The functional
analyses of the pre-disease state-related genes identified by S-PCR also
demonstrate the effectiveness of this computational approach. Furthermore,
the time efficiency of S-PCR is much better than that of its peers.

Discussion: Hence, the proposed S-PCR approach holds immense potential for
clinical applications in personalized disease diagnosis.
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Introduction

The biological system may undergo sudden deterioration during the progression of a
complex disease (Venegas et al., 2005; McSharry et al., 2003), which conforms to the
bifurcation and critical slowing down theory. Based on this feature, Chen et al. divvied the
progression of complex disease into three states: a normal state, a disease state, and a pre-
disease state (Chen et al., 2012; Liu et al., 2012). When the system is in the normal state, it is
stable, under control, and with high resilience. When the system is in the disease state, it is
also stable but in deterioration.When the system is in the pre-disease state, it is unstable and
easily revised to the normal state with appropriate intervention but may transform into the
deteriorated disease state without intervention. Thus, it is imperative to identify such pre-
disease states to signal the upcoming disease and take suitable interventions to prevent
the disease.

High-throughput technologies enable us to observe the expression of thousands of
genes in a single sample at the same time, which makes it possible to measure the long-term
dynamics of the biological system. However, the pre-disease state is defined as the limit of
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the normal state (Achiron et al., 2010); thus, the mean gene
expression of the pre-disease state is similar to that of the
normal state. Hence, it is a challenge to accurately detect the pre-
disease state as the early warning signal for the disease state via time
series gene expression data. To solve this problem, Chen et al.
proposed a model-free method called the dynamic network
biomarker (DNB), which selects a small group of genes using
three statistical measurements: the average Pearson’s correlation
coefficients (PCCs) of these genes significantly increase, the average
PCCs of these genes between this group and any other significantly
decrease, and the average standard deviations (SDs) of these selected
genes significantly increase (Chen et al., 2012; Liu et al., 2012). The
implementation of these measurements needs multiple measures for
an individual. However, clinical experiments can usually provide
only a single sample for an individual, which limits the clinical
application of the DNB approach. Therefore, there is an urgent
requirement to develop methods to identify the pre-disease state as
early warning signals for disease using the clinical single-sample
dataset. Recently, inspired by the DNB method, many single-sample
suitable methods have been proposed. These methods can be divvied
into two classes. The first category of methods is mainly based on the
network and entropy, for example, DNB-s (Liu et al., 2014), iENA
(Yu et al., 2017), SLE (Liu et al., 2020), SNE (Han et al., 2020), SSP
(Huo et al., 2022), DNRS (Zhong et al., 2022), SNPE (Zhong et al.,
2023), and ERE (Hong et al., 2024; Bao et al., 2022; Huo et al., 2023).
The second category of methods is gene expression distribution-
based methods, which focus on gene expression distribution
differences between normal and pre-disease states, such as sKLD
(Zhong et al., 2020) and sJSD (Yan et al., 2021). These methods have
successfully identified the pre-disease state. However, due to the
application of complex biological networks and the distribution
comparison for thousands of genes, the application of these methods
remains limited. The running time of such a method should be as
less as possible for the timely treatment to reverse the state of
biological systems in clinical practice. Therefore, developing a rapid
and accurate method to detect the pre-disease state is still an
open problem.

According to the DNB theory (Chen et al., 2012; Liu et al., 2012),
the expression of DNBs highly fluctuates and is highly associated
with each other at the pre-disease state. In a biological system, the
huge changes in the expression rankings of two genes not only
signify a significant alteration in their expression patterns but also
imply coordinated shifts in their expressions, revealing a close
interplay between the two genes (Subramanian et al., 2005).
Thus, the genes with significant changes in expression ranking
also highly interact with each other. Specifically, the genes with
huge changes in their expression value and ranking can be
considered DNBs, which are the outcome of the underlying
system (Liu et al., 2014). In this study, we propose a rapid
model-free single-sample pre-disease state-identifying method
based on the change in gene expression ranking, that is, S-PCR.
The results of both simulation and real datasets demonstrate that the
proposed S-PCR can detect the early warning signals before the
system reaches a critical transition/pre-disease state. The results of
the functional analysis for the two influenza virus infections and
three cancer datasets indicate that the genes selected by S-PCR are
highly associated with the development of diseases. Furthermore,
benefitting from gene expression ranking while accurately detecting

the pre-disease state, S-PCR achieves faster computational speed
than other methods. Hence, the proposed approach holds immense
potential for clinical applications as it enables the fast identification
of individual-specific states from a single sample, thereby facilitating
personalized disease prediction.

Materials and methods

Algorithm to detect the pre-disease state
using S-PCR

According to the DNB theory (Chen et al., 2012; Liu et al.,
2012), when the system is close to the pre-disease state, there is a
group of highly related genes (DNBs) whose expressions widely
fluctuate. Thus, to determine whether the sample of a time point
is in the pre-disease state, we should identify whether such a set of
DNBs exists at this time point. For a time point, S-PCR combines
the change in the expression value and ranking. The change in the
gene expression value used in S-PCR is to identify expression
fluctuating signals of DNBs. The change in gene expression
ranking is used to amplify such signals and seek the set of
DNBs. The pre-disease state in S-PCR is detected by the
following procedures (see Figure 1).

Given n normal samples which are all in the normal state, the
expression value Eb

i of a gene gi at the time point baseline is
calculated as Formula 1.

Eb
i � mean E1

i , E
2
i ,/, En

i( ), (1)
where E1

i , E
2
i ,/, En

i are the expression values of gene gi in the n
normal samples.

For a time point t, the expression change ΔEt
i of a gene gi is

calculated as Formula 2.

ΔEt
i � Et

i − Eb
i

∣∣∣∣
∣∣∣∣, (2)

where Et
i andE

b
i are the expression values of gene gi at the time point

t and baseline, respectively. Then, the expression ranking change
ΔRt

i of that gene at the time point t is calculated as Formula 3.

ΔRt
i � Rt

i − Rb
i

∣∣∣∣
∣∣∣∣, (3)

where Rt
i and Rb

i are the expression ranking of gene gi at the time
point t and baseline, respectively. The local score Sti of gene gi at the
time point t can be gained by combining the expression change ΔEt

i

and expression ranking change ΔRt
i , as Formula 4 shown.

Sti � ΔEt
i · ΔRt

i . (4)

The genes with coordinated shifts in their expressions may
have close interplays (Subramanian et al., 2005). Furthermore,
the DNBs are always a little number of genes with huge change
in their expressions and closely interact with each other (Chen
et al., 2012; Liu et al., 2012). Thus, the system state at time point
t can be represented as the score St, which is calculated based on
the top m (m = 50) genes with the largest score Sti , as Formula
5 shown.

St � 1
m
∑
m

i�1

Sti
N
, (5)
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whereN is the total number of genes measured for each time point of
a single sample. To better seek the early warning signal for the pre-
disease state, the ranking score ΔSt is calculated from the score St for
the time point t, as Formula 6 shown.

ΔSt � St − S0
∣∣∣∣

∣∣∣∣, (6)

where S0 is the ranking score of the initial time point, which is the
first time point after the baseline.

FIGURE 1
Schematic illustration of S-PCR. Given a number of normal samples to calculate the baseline data, S-PCR is calculated based on a single sample from
any individual. Specifically, the ranking of all genes for both the baseline sample and the to-be-determined single sample is calculated. For each gene, the
local ranking score is calculated by combining the expression and ranking changes. Given the time-course samples from an individual, the early warning
signal for the pre-disease state can be detected through the significant increase in the ranking score.
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When the system is near the pre-disease state, the two measures
ΔEt

i and ΔRt
i of these DNB biomolecules will suddenly increase.

Then, the ranking score ΔSt will sharply increase accordingly. Thus,
the significant increase in the ranking scores for an individual can be
considered an early warning signal for the pre-disease state and help
understand the significantly collective fluctuating behaviors of genes
in the pre-disease state.

Determination of the threshold for the
detection of the pre-disease state

To identify the pre-disease state, the determination of the
threshold θ for the ranking scores ΔSt plays an important role.
The threshold θ is calculated from the scores of normal samples,
as follows:

Step 1: calculating the ranking scores ΔSt for all normal samples.
Step 2: normalizing the ranking scores of all normal samples in a

dataset to z-scores using the mean and standard deviation
of these ranking scores.

Step 3: assuming that these z-scores follow a standard normal
distribution, the value corresponding to the upper 0.05 is
set as the threshold θ of the ranking scores for detecting
the pre-disease state.

Data processing and functional analysis

To show the utility of S-PCR, a simulated gene regulatory network
with 18 genes was used, as shown in Figure 2A. Such a network follows
the Michaelis–Menten form and is a classical model for studying non-
linear biological processes (Srinivasan, 2022). A detailed description of
the network characterized by a set of 18 stochastic differential equations
in Michaelis–Menten form was provided by Zhong et al. (2022). Then,
the numeric simulation dataset was generated from the network based

on a parameter q varying from −0.4 to 0.2 and q = 0 as the critical point
(Zhong et al., 2022).

Two real-time course gene expression datasets are obtained from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/), including
influenza virus H3N2 infection dataset GSE30550 and
H1N1 infection dataset GSE52428 (Huang et al., 2011; Woods
et al., 2013). Each gene is mapped by multiple probes, and the
average value of these probes is used as the gene expression. The
probes without the corresponding NCBI Entrez gene symbol are
discarded. Three tumor disease datasets from the TCGA database
(http://cancergenome.nih.gov), namely, breast cancer (BRCA),
esophageal carcinoma (ESCA), and rectum adenocarcinoma
(READ), are composed of both tumor and tumor-adjacent
samples. The tumor samples are grouped into different stages
according to the stage information of TCGA, and the samples
lacking corresponding information are ignored. Table 1 lists the
detailed information of the five datasets.

For the five real datasets, the top 5% genes with the largest
ranking scores at the early warning signal appearing the time point
are selected as candidate signaling genes. Functional analyses are
carried out using GO term enrichment and KEGG pathway analysis
based on these genes to find the early biological features of diseases.
The GO term enrichment analysis is carried out using the web
analysis tool DAVID (https://david.ncifcrf.gov/) (Sherman et al.,
2022; Huang da et al., 2009). KEGG pathway analysis is performed
using the key pathways in the Kyoto Encyclopedia of Genes and
Genomes database (https://www.kegg.jp) (Kanehisa et al., 2024).
Gene analysis is performed based on the GeneCards database
(https://www.genecards.org/).

Results

The theoretical background and computational algorithm of
S-PCR were delineated in the preceding section. To demonstrate the
effectiveness of S-PCR, we implemented it on a simulated dataset,

FIGURE 2
Performance of the proposed method of the simulated dataset. (A) A 18-node regulatory network. (B) Curve of the ranking score.
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two influenza infection datasets, and three cancer datasets. The
detailed description of these datasets is provided in the previous
section. For all datasets, the proposed S-PCR successfully detected
the early warning signals for critical points, which validated the
effectiveness of our method in quantifying critical points just before

critical transitions into irreversible disease states. In this process,
some genes with high ranking scores in the pre-disease state were
selected as candidate signaling genes for further analysis. To further
validate the performance of our method, we compared it with the
following peer methods: SLE (Liu et al., 2020) and sJSD (Yan et al.,

TABLE 1 Details of the real datasets.

Dataset Hour/stage Subject

GSE30550 Baseline, 0, 5, 12, 21, 29, 36, 45, 53, 60, 69, 77, 84, 93, 101, and 108 Sx:9/Asx:8

GSE52428 Baseline, 0, 5, 12, 21.5, 29, 36, 45.5, 53, 60, 69.5, 77, 84, 93.5, 101, and 108 Sx:9/Asx:15

BRCA I, IA, IB, II, IIA, IIB, III, IIIA, IIIB, IIIC, IV, and X -

ESCA I, IA, IB, II, IIA, IIB, III, IIIA, IIIB, IIIC, IV, IVA, and IVB -

READ I, II, IIA, IIB, IIC, III, IIIA, IIIB, IIIC, IV, and IVA -

Sx, symptomatic subjects; Asx, asymptomatic subjects.

FIGURE 3
Summarized prediction results of the two influenza virus infection datasets. (A, C) Heatmap of prediction results for datasets GSE30550 and
GSE52428. (B, D) Average ranking scores across all symptomatic subjects from datasets GSE30550 and GSE52428.
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2021), which are the representative methods in the two classes of
pre-disease state prediction. In addition, the function of the
expression ranking change was validated in the following result.

Validation based on numerical simulation

The numerical simulation dataset generated from a classical 18-
node regulatory network (Figure 2A), which was represented in the
Michaelis–Menten form, is used to demonstrate the performance of
the proposed method (Zhong et al., 2022). In the dataset, a special
parametric value, q = 0, is the critical point of the dynamic system.

As shown in Figure 2B, the ranking score increases rapidly when
the regulatory network model arrives at a special parametric value,
q = 0, which is the critical point of the dynamic system. Moreover,
there is a sharp increase at a parameter value q = −0.001, indicating
the upcoming critical point at the parameter value q = 0. Such a
signal can be successfully detected by our method, which
demonstrates the effectiveness of S-PCR in detecting the early
warning signal of the pre-disease state.

Pre-disease state identification for
influenza infection

To illustrate how S-PCR works, the proposed method was
applied to two time-series influenza infections, namely,
GSE30550 and GSE52428. In datasets GSE30550 and GSE52428,
the data were collected from 17 and 23 human adult subjects, and
their influenza virus H3N2 or H1N1 infection process was recorded
(Huang et al., 2011; Woods et al., 2013), respectively. For each
dataset, nine subjects developed clinical symptoms of influenza
infection and were called symptomatic subjects. Others did not
have clinical symptoms at all time points and were called
asymptomatic subjects. For each subject, the data at the time
point baseline were used to calculate the data of their time point
baseline. Following the algorithm of S-PCR in Section 2, 17 and
23 ranking scores were calculated based on all subjects at each time
point for each dataset (Figures 3A, C). The samples from all
asymptomatic subjects were utilized as normal samples to
determine the threshold for detecting the pre-disease state. A
ranking score above the threshold indicates the imminent
appearance of influenza infection symptoms.

Figure 3A shows the ranking scores of the 17 H3N2 virus-
infected subjects across the 16 time points in GSE30550 (θ = 0.619).
As shown in the figure, for each symptomatic subject, an early
warning signal can be detected. All the signals are no later than the
influenza infection diagnoses through the standardized symptom
scoring record. Furthermore, six of nine signals are earlier than the
symptom appearing; three of nine signals are detected at the same
time points with the symptom appearance time. For five of eight
asymptomatic subjects, no early warning signal can be detected.
Furthermore, the ranking scores of the eight asymptomatic subjects
are much more stable than those of the symptomatic subjects. In
addition, for asymptomatic subjects 3, 16, and 17, early warning
signals can be detected, which may indicate that the three subjects
have symptoms after the experiment ended. Figure 3B shows the
average ranking scores across the nine symptomatic subjects.

According to the average score across 16 time points, we can
also predict the average time points of the early warning signal:
hour 045, which is all no later than the symptom appearance time
point of each symptomatic subject.

Figure 3C shows the ranking scores of the 23 H1N1 virus-
infected subjects across the 16 time points in GSE52428 (θ = 0.2). As
shown in the figure, for eight of nine symptomatic subjects, the early
warning signals can be successfully detected; seven early warning
signals of symptomatic subjects detected by the proposed method
are earlier than the symptom appearance. Only in 3 of
15 asymptomatic subjects could early warning signals be
detected. The ranking scores of these asymptomatic subjects are
also more stable than those of symptomatic subjects. For
symptomatic subject 10, no signal can be detected by our
method. This may be due to the poor data quality of the dataset.
For asymptomatic subject 07, a signal can be detected because in the
clinical experiment, this subject has clinical symptoms, and the total
symptom score of 5 days of this subject is larger than that of some
symptomatic subjects (Woods et al., 2013). For asymptomatic
subjects 05 and 10, the signals can be detected, which may be
because the noise exists in the gene expression data at the time point
baseline. Figure 3D shows the average ranking scores across the nine
symptomatic subjects. According to the average score across 16 time
points, we can also predict the average time points of the early
warning signal, hour 045.5, which is earlier than 53 h detected by
CCs (Li et al., 2015), and the average time point of symptom onset at
61.3 h (Woods et al., 2013).

The successful detection of early warning signals for the pre-
disease state in datasets GSE30550 and GSE52428 by S-PCR
demonstrates the effectiveness of this method in detecting the
early warning signal of critical transition.

Pre-disease state identification for cancers

To further validate the effectiveness of the proposed method,
the method is applied to three tumor datasets (BRCA, ESCA, and
READ) from TCGA. For each dataset, the expressions of every
gene are obtained by their average value across all samples at a
stage. In this way, each tumor dataset can be transformed into a
single-sample dataset with only one sample for each stage. For
each tumor disease dataset, the tumor-adjacent samples are
utilized as reference samples to calculate the data of the time
point baseline. However, the number of tumor-adjacent samples
in the three tumor disease datasets is small, and the gene
expression data from such a tumor-adjacent sample always
mix with some biological noise. Thus, a ranking score
threshold is not calculated for each tumor disease dataset. The
pre-disease states for the three datasets are identified through the
drastic increase in the ranking scores on a continuous basis after
stage I. The pre-disease states of the three datasets are identified
at stage II for BRCA and ESCA and at stage IIC for READ
(Figures 4A–C). Metastasis is the cause behind most cancer-
related deaths and the ultimate challenge in our effort to fight
cancer as a life-threatening disease (Wan et al., 2013). Stage II
means the tumor cells start to spread to the nearby lymph nodes
(Chiang and Massagué, 2008). These results of the proposed
method are highly consistent with the actual biological processes.
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To validate the identification of the pre-disease stage, a survival
analysis is performed between the samples from different stages
(Figures 4D–F). Compared with the samples from the stages in the
disease state, the samples from the stages in normal and pre-disease
states have higher life expectancy. For BRCA, Figure 4A shows that
the ranking score has a sudden increase at stages IB and II, after
which the tumor cells spread to the nearby tissue (Chiang and

Massagué, 2008). As shown in Figure 4D, a significant difference
(p = 0.0006) exists between the survival curves of samples from
stages I–II and stages IIA–X. Samples from stages I–II have
significantly longer survival periods than samples from stage
IIA–X. For ESCA, Figure 4B shows that there is a sudden
increase at stages IB and II in the ranking score. Figure 4E shows
a significant difference between the survival periods of samples in

FIGURE 4
Identification of the pre-disease state of tumor near metastasis in three cancers. (A–C) Identifying the pre-disease state for (A) BRCA, (B) ESCA, and
(C) READ. (D–F) Comparing survival curves between the before the pre-disease state and after the pre-disease state in (D) BRCA, (E) ESCA, and (F) READ.

FIGURE 5
Results of functional analysis for the two influenza infection datasets. Top five GO terms with the smallest FDR-adjusted p-values for (A)
GSE30550 and (B)GSE52428. Themain direct and indirect interactions between the common and effector signaling genes in the pathway influenza A for
(C) GSE30550 and (D) GSE52428.
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stages I–II and stages IIA–IVB. For READ, as shown in Figure 4C,
the drastic increase in the ranking score appears in stages IIB and
IIC. Figure 4F shows that there is a significant difference between the
survival curves of samples in stages I–IIC and samples in stages
III–IVA. These results demonstrate that S-PCR can detect the early
warning signals of a critical transition of the biological process of a
tumor; that is, the critical transition associated with nearby
metastasis at stage II can be identified by the proposed method.

Functional analysis for influenza infection

To validate the effectiveness of the proposed ranking score, the
biological process GO term enrichment analysis and KEGG pathway
analysis are carried out for each dataset based on the common
candidate signaling genes that appear in more than four
symptomatic subjects in datasets GSE30550 and GSE52428. For
each individual symptomatic subject in the datasets at the early
warning signal appearing time point, the top 5% genes with the
largest ranking scores are selected as candidate signaling genes.

For the two datasets, there are 70 and 225 common signaling genes
(see Supplementary Table S1), respectively. Based on these genes, the
top five GO terms with the smallest FDR-adjusted p-values of
enrichment analysis for each dataset are shown in Figures 5A, B.
The biological processes of immunity or defense against the
influenza virus including “defense response to virus,” “innate
immune response,” and “response to virus” are all ranked in the top
three. The other two terms are also highly associated with the process of
influenza virus infection. Interferon (IFN)-α can protect against
influenza viral infection indirectly by promoting neutrophil
respiratory burst responses (Little et al., 1994). Thus, the GO term
“positive regulation of interferon-alpha production” may be highly
associated with the process of influenza virus infection. Furthermore, in
the lung epithelial cells, the tumor necrosis factor alpha can exert
powerful anti-influenza virus effects (Seo and Webster, 2002).
Therefore, the GO term “tumor necrosis factor-mediated signaling
pathway” may also play an important role during influenza virus
infection. The GO term “negative regulation of viral genome
replication” is also a biological process of defense against the
influenza virus. The antiviral effects of IFN-β against influenza virus
infections are well recognized (Yoo et al., 2010). So, the GO term
“positive regulation of interferon-beta production” is an important
biological process during influenza virus infection. All enriched GO
terms for influenza virus infection are given in Supplementary Table S2.
Clearly, the signaling genes are involved in important biological
processes during influenza virus infection. Such results imply that
S-PCR can also help understand the biological mechanism of
influenza early infection. The common signaling genes can also be
seen as the biomarker for disease early diagnosis and potential drug
targets against influenza virus infection.

Figures 5C, D show the main direct and indirect interactions
between the common and effector signaling genes (Bao et al., 2020) in
the pathway influenza A for the two influenza infection datasets. These
effector genes typically decide cell functional attributes. The functions of
the genes that are both common key and effector genes are validated to
be highly associated with influenza virus infection. CCL2 and
CCL5 encoding proteins are included in the CC subfamily of
chemokines, which are a superfamily of secreted proteins involved

in immunoregulatory and inflammatory processes, and play pivotal
roles in controlling leukocyte recruitment during inflammatory
responses (Zlotnik and Yoshie, 2012). CXCL10 and IL1B encoding
proteins are the pro-inflammatory cytokines that are involved in a wide
variety of processes, and thereby play an important role during viral
infections by stimulating the activation and migration of immune cells
to the infected sites (Van Damme et al., 1985; Angiolillo et al., 1995).
MX1 and MX2 encoding proteins are included in interferon-induced
dynamin-like GTPase, which inhibits several different viruses by
blocking the early steps of the viral replication cycle (Haller et al.,
2015). PML proteins, the key component of subnuclear structures
known as PML nuclear bodies (PML-NBs), are involved in the
antiviral defense against a variety of DNA and RNA viruses (Scherer
and Stamminger, 2016). OAS1, OAS2, and OAS3 encoding enzymes all
play critical roles in cellular innate antiviral response (Sarkar et al., 1999;
Wickenhagen et al., 2021).

Functional analysis for cancers

To further validate the effectiveness of the proposed ranking score,
the biological process GO term enrichment and KEGG pathway
analyses are also carried out for each cancer dataset based on the
candidate signaling genes. For each cancer type, the top 5% genes with
the largest ranking scores in the predicted pre-disease stage are selected
as signaling genes (see Supplementary Table S3).

The top five GO terms with the smallest FDR-adjusted p-values of
enrichment analysis for each cancer dataset are shown in Figures 6A–C.
All enriched GO terms for cancer metastasis are given in
Supplementary Table S4. The dysregulations of these biological
process GO terms are highly associated with cancer. For example,
the dysregulation of the mitotic spindle assembly checkpoint may cause
chromosomal instability, which is a driving force for cancer
development (Yu et al., 2022). Tumorigenesis in humans is a
multistep process, which can reflect genetic alterations that drive the
progressive transformation of normal cells into highly malignant
derivatives, including cell differentiation and cell division (Hanahan
andWeinberg, 2011). Gross chromosomal aberrations are usually lethal
but can cause cancer (Curtis et al., 2020). Thus, the GO terms “cell
division,” “cell differentiation,” “mitotic cell cycle,” “mitotic spindle
assembly checkpoint,” “mitotic spindle organization,” and
“chromosome segregation” are highly related to cancers. Many
studies have elucidated that cellular adhesion processes are highly
associated with cancer malignant transformation and metastasis
(Janiszewska et al., 2020). Therefore, the GO term “cell adhesion” is
highly associated with cancers. Cancer can be understood as a failure of
multicellular systems to suppress somatic evolution (Nedelcu, 2020). So,
the GO term “multicellular organism development” is related to
cancers. The GO terms “neuron projection development” and
“positive regulation of neuron projection development” are highly
related to cancers because nerves are important pathological
elements of the microenvironment of tumors (Wang et al., 2021).
Alterations in Cu homeostasis may promote tumor growth or
invasiveness, and may even confer resistance to cancer treatments
(Wang et al., 2021). Thus, the dysregulation of the GO term
“detoxification of copper ion” may be associated with cancers.
Clearly, the signaling genes are involved in important biological
processes to define the influenza virus infection. Such results imply
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that S-PCR can also help understand the biological mechanism of early
influenza infection. The signaling genes can also be seen as the
biomarker for disease early diagnosis and potential drug targets.

Ample evidence has indicated that the focal adhesion signaling
pathway can stimulate metastasis through its regulation of cell
migration, invasion, and angiogenesis (Owen et al., 1999; Hauck
et al., 2002; Luo and Guan, 2010). Thus, the focal adhesion pathway
in the KEGG database is used to perform the KEGG pathway analysis
for the three cancer datasets. Figures 6D–F show the interactions
between signaling genes for each cancer type. In the KEGG
database, the focal adhesion pathway mainly involves three cell
functions: cell motility, cell proliferation, and cell survival. As shown
in the figures, these signaling genes selected by the three cancer datasets
in the focal adhesion pathway are all highly associated with cell function
and cell motility, which is highly associated with tumor metastasis
(Stuelten et al., 2018; Palmer et al., 2011). In general, the above results
suggest that in cancer progression, abnormal cell motility would cause
the uncontrolled progression of the cell cycle, ultimately causing further
malignant metastasis.

Time complexity and running time
comparison

The previous results of the simulated and five real datasets
validated the good performance of the proposed method S-PCR in

accurately identifying the pre-disease state. The results of the
functional analysis also demonstrated the effectiveness of the
ranking score used in this computational approach. In addition
to these, profiting from the use of gene expression ranking, the time
complexity and running time of S-PCR are greatly reduced
compared to other methods.

Network and entropy-based methods always need to calculate
the entropy based on complex biological networks. Furthermore,
gene expression distribution-based methods need to fit the
distribution comparison for thousands of genes. Thus, previous
single-sample suitable methods are always complex. S-PCR only
needs to acquire the expression ranking of each time point and then
calculate the change in such ranking and expression value by matrix
operation, which can omit such limitations. So, compared to other
methods, S-PCR is a simple method. To validate the simplicity of
S-PCR, the time complexity of the proposed method is compared to
other methods, SLE (Liu et al., 2020) and sJSD (Yan et al., 2021),
which is the classical method for the methods based on the network
and gene expression distribution, respectively. If we use genomic
data including total n genes to perform the three methods, the time
complexity analysis of the three methods is as follows. The main step
in S-PCR is the calculation of gene expression ranking using a fast
sort algorithm. Thus, the time complexity of S-PCR is O(nlogn). The
main step of the SLE method is the calculation of Pearson’s
correlation coefficient between the whole n genes. Thus, the time
complexity of SLE is O(n2). For sJSD, the expression curve and

FIGURE 6
Results of the functional analysis for the three cancer datasets. The top five GO terms with the smallest FDR-adjusted p-values for (A) BRCA, (B)
ESCA, and (C) READ. The main interactions between the signaling genes in the pathway Focal adhesion for (D) BRCA, (E) ESCA, and (F) READ.
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probability for each gene should be calculated before calculating
Jensen–Shannon divergence for each gene using m normal or case
samples. Therefore, the time complexity of sJSD is also O(n2).

Extrapolating from the result of time complexity comparison,
our method should run much faster than SLE and sJSD with the
same computational machine. To validate such results, the average
running time for each symptomatic subject in GSE30550 of the
proposed method is compared to that of the other two methods.
S-PCR is performed using R 4.0.3. SLE and sJSD are performed
using MATLAB 2018b. All numerical experiments are done on a
Windows computer with eight Core 2.3 GHz processors (Intel Core
i7-10875H CPU) and 16 GB of physical memory. As shown in
Figure 7, our method is implementedmuch faster than SLE and sJSD
on the same computer. Therefore, the S-PCR method can better
simplify the processes of personalized early disease prevention and
promote its development.

Advantage of using gene expression ranking
in S-PCR

By using the change in gene expression ranking, S-PCR can
amplify the early warning signal just like DNA PCR amplification
techniques. To validate this advantage of gene expression ranking
change, the gene expression value is compared with the ranking
score. Figure 8 shows the normalized gene expression values and
ranking scores of symptomatic subject 01 across 70 common
signaling genes for dataset GSE30550.

The gene expression value and ranking score are all normalized
in a similar way to make the comparison at the same level. For a
common signaling gene kJ, the normalized gene expression value
and ranking score are normalized by the minimum value across all
common signaling genes, as Formula 7 shown.

ΔVj � Vj

min V1, V2,/, V70( ), (7)

where ΔVj is the normalized gene expression value or ranking score
of the common signaling gene kj. Vj is the original gene expression
value or ranking score of the gene kj. V1, V2,/, V70 are the gene
expression values or ranking scores of the 70 common signaling
genes, respectively.

As the figure shows, the normalized ranking scores for most
common signaling genes are much more than their normalized gene
expression values. Such a result indicates that the usage of gene
expression ranking can amplify the early warning signal.

Discussion

Detecting the pre-disease state is of great importance to signal
the upcoming disease, which is helpful for the development of
disease prevention and ultra-early precision treatment. Chen
et al. proposed the DNB method to predict the pre-disease state
(Chen et al., 2012; Liu et al., 2012). However, this method needs to
select a small group of molecules using three measurements,
including the calculation of Pearson’s correlation coefficient and
standard deviation, which need multiple samples at each time point.

FIGURE 7
Average running time of three methods for each symptomatic
subject in GSE30550.

FIGURE 8
Normalized gene expression values and rank scores of 70 common signaling genes for subject 01 in GSE30550.
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In clinical practice, only one sample can be gained at each time
point. Thus, the DNBmethod is unsuitable for clinical single-sample
datasets. In this study, we propose a novel pre-disease state
prediction method based on the ranking change in gene
expression following the DNB theory, which is suitable for
single-sample datasets, called S-PCR. A simulated dataset, two
influenza virus infection datasets, and three TCGA cancer
datasets are used to measure the performance of the proposed
method. The results are consistent with those of the clinical and
experimental observations. For the six datasets, only one
symptomatic subject from dataset GSE52428 could not be found
during the pre-disease state. Furthermore, the signaling genes
detected by S-PCR for the five real disease datasets are always
highly related to the pre-disease state-related biological processes
and cell functions. Thus, the accuracy of S-PCR is competitive.
Furthermore, the time efficiency of S-PCR is also validated by
comparing with other methods. Furthermore, using the gene
expression ranking change in S-PCR can help us better identify
gene expression fluctuating signals at the pre-disease state.

Additionally, S-PCR is a gene expression fluctuating signal-
sensitive approach. The pre-disease state is always defined as the
limit of the normal state. Thus, the expression value of a gene at
the pre-disease state may have little/no difference from that at the
normal state. However, the expression ranking of the gene may
have a bigger change from the pre-disease to the normal state. On
the other hand, if the expression values of whole genes in the
system are all changed at the same time, the gene expression
rankings of these genes may have little/no changes. From these
aspects, the proposed S-PCR can remove some noises in gene
expression data and is a gene expression-fluctuating signal-
sensitive approach.

However, we should point out that using gene expression
ranking may introduce some noises for that there are no
interactions between some genes with huge changes in the
expression ranking. In the future, there are two ways to solve
this problem. First, the credible small-scale functional gene
regulatory networks or relevant key regulatory targets, which
are identified to be highly associated with the initial progression
of complex diseases, can be introduced instead of the whole
genome (Zhenshen et al., 2023; Jin et al., 2023). This is because
the genes in these sets always interact strongly with each other.
Second, energy landscape theory can be used to amplify abnormal
signals and minimize the impact of noise. Thus, the expression
ranking change can be further combined with the energy
landscape theory (Jin et al., 2024).

Conclusion

In this paper, a method called S-PCR to rapidly identify the pre-
disease state of complex diseases for a single sample is presented.
S-PCR obtains a set of DNBs by using the change in gene expression
ranking. Benefiting from the use of gene expression ranking, the
calculation performed using the S-PCRmethod takes much less time
than that performed using other methods. Therefore, S-PCR can
accurately identify the pre-disease state in less time than other
methods. Hence, the S-PCR method has great potential in
clinical early prevention medicine.
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