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Tail type of sheep, which may be affected by many genes with a complex
mechanism, is an important economic trait concerned by both raiser and
consumers. Here, we employed two sheep breeds with extreme phenotypes -
Mongolian sheep (short-fat-tailed) and Bamei Mutton sheep (long-thin-tailed) to
analyze the genetic differences at the genomic level and find candidate genes
associated with tail phenotype. The results of population structure analysis
showed that the LD decay rate of Mongolian sheep was greater than that of
Bamai Mutton sheep. When K = 2, the two populations were obviously separated
with a certain degree of mixing. From 49 sheep individuals, 20,270,930 and
2,479,474 SNPs and Indels were identified, respectively. Selection signals were
detected based on FST, π-Ratio, and XP-EHH. These three methods identified
85 candidate genes, of which PDGFD, GLIS1, AR, and FGF9 were reported to be
associated with tail fat deposition, while VRTN associated with tail length in sheep
tail phenotype; the others were novel genes that may play important roles in
sheep tail phenotype formation. Gene annotation revealed that these candidate
genes mainly participate in pathways associated with fat deposition or lipid
metabolism. This study provided insight into sheep tail type development and
a guide for molecular breeding.
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1 Introduction

Sheep (Ovis aries), as a major source of meat, milk, fiber and leather for mankind, has
been domesticated since Mesolithic period, ~11,000 years ago (Chessa et al., 2009; Alberto
et al., 2018; Deng et al., 2020). During this long procedure sheep has evolved diverse
phenotypes such as coat color, horn, tail type, etc., under natural and artificial selection
(Kijas et al., 2009). Of these phenotypes, tail type is an important economic trait concerned
by both producers and consumers. According to its length and fat deposition, sheep tail can
be divided into five major types: long-fat tail, short-fat tail, long-thin tail, short-thin tail, and
fat-rumped tail. It is widely believed that the wild ancestors of sheep were thin-tailed, while
the fat-tailed sheep breeds emerged as an adaptive response to harsh and challenging
environmental conditions (such as climate fluctuation, drought, and food scarcity) (Atti
et al., 2004; Pourlis, 2011; Moradi et al., 2012; Kalds et al., 2021). Fat-tailed sheep could
deposit up to 20% of their carcass weight as fat in the tail (Yousefi et al., 2012). The large
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amount of tail fat serves as an energy source for sheep, and also
provided people valuable edible fat in the era of material scarcity.
Nowadays, however, with the increasing incidences of obesity and
cardiovascular disease, people prefer a diet low in fat and high in
protein. On the other hand, with the popularization of intensive and
semi-intensive feeding management, fat-tail of sheep has lost its
original advantages and brought inconvenience to production
management, such as inconvenience for mating (Kridli and Said,
1999) and locomotion (Orihuela and Ungerfeld, 2019). In addition,
a large amount of fat deposition in tails may reduce feed conversion
rate and even affect the carcass quality (Safdarian et al., 2008; Yousefi
et al., 2012). Yousefi et al. found that the thin-tailed breed
accumulated more intramuscular fat in longissimus dorsi muscle
and had lower shear force and better eating quality, tenderness, and
drip loss than the fat-tailed breed (Yousefi et al., 2012). In practice,
tail docking (O’Donovan et al., 1973; Shelton et al., 1991; Bicer et al.,
1992; Moharrery, 2007; Wang et al., 2018) and cross-breeding
(Kashan et al., 2005; Khaldari et al., 2008; Abdullah et al., 2010)
are usually taken to reduce tail size and length. It was reported that
tail docking may improve lambs’ growth, slaughter performance and
mutton quality (Atti and Mahouachi, 2011; Marai et al., 1987; Bicer
et al., 1992; Abouheif et al., 1993; Bing et al., 2006). However, tail
docking is stressful and risky, and has been banned in several
countries to improve animal welfare (Eck et al., 2019). Cross-
breeding takes time and efforts, and the results are usually
unsatisfactory. Currently, how to breed short-thin-tailed sheep
through molecular breeding methods has become a focus of
sheep breeders, and the key to solve this problem is to identify
genes related to tail phenotype of sheep. There were some research
on tail phenotype and several promising genes such as PDGFD,
BMP2 and TBXT, etc., associated with tail phenotype had been
suggested (Yuan et al., 2017; Zhi et al., 2018; Dong et al., 2020;
Mastrangelo et al., 2019; Pan et al., 2019; Moradi et al., 2012), but
most of the studies focused either on fat deposition or tail length,
and the results are usually inconsistent. The genetic mechanics
underlying tail phenotype still remain unclear.

Mongolian sheep, short-fat-tailed (Figure 1A), is the most
widely distributed and abundant sheep breed in China. It is
mainly distributed in Inner Mongolia Autonomous Region,
northeast, north, and northwest of China. Mongolian sheep is an
ancient indigenous breed formed by natural and artificial selection
for a long time, and is favored by local herdsman and consumers
because of its rough feeding resistance, cold resistance, drought
resistance, and high-quality meat. Bamei Mutton sheep, which is

long-thin-tailed (Figures 1B, C), is the first dual-purpose breed that
was bred in China by crossing local fine-mixed sheep as the maternal
line with German Merino sheep as the paternal line. It contains
6.25% bloodline of Mongolian sheep. Bamei Mutton sheep is mainly
distributed in Bayannur City of Inner Mongolia Autonomous
Region, China. It is characterized by resistance to rough forage,
strong stress resistance, good adaptability, rapid weight gain in lamb
fattening, and early sexual maturity. In the present study, we
performed whole genome resequencing of the two breeds with
extreme tail phenotypes to investigate selection signatures and
candidate genes associated with tail phenotype (fat vs. thin and
long vs. short) based on three statistical tests, including fixation
index (FST), π-Ratio, and cross-population extended haplotype
homozygosity test (XP-EHH). The candidate genes identified in
our study provided the basis for understanding the molecular
mechanism of tail phenotype in sheep.

2 Materials and methods

2.1 Sample collection, DNA extraction, and
sequencing

A total of 28 Mongolian sheep (MG) and 21 Bamei Mutton
sheep (BM) were selected from Inner Mongolia Autonomous
Region, China. The sheep were raised and managed under the
same condition. All individuals were typical of the breeds and
unrelated according to pedigree records or owner’s information.
Blood samples were collected and returned to laboratory on dry ice.
Genomic DNA was extracted from the blood samples following the
standard phenol-chloroform extraction procedure. DNA samples
that passed the test (D260 nm/D280 nm = 1.7–1.9) were randomly
interrupted into fragments of 500 bp in length. Paired-end
sequencing libraries were constructed according to the
manufacturer’s instructions (Illumina Inc., San Diego, CA, USA)
and sequenced on the Illumina HiSeq Xten Sequencer (Illumina
Inc.) with PE150 module.

2.2 Alignments and variant identification

After filtering out low quality reads, the 150-bp paired-end clean
reads were mapped onto the sheep reference genome Oar v.4.0
(https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.2) with

FIGURE 1
Tail phenotype of sheep. (A) Short-fat-tailed Mongolian sheep. (B) Long-thin-tailed Bamei Mutton sheep after docking. (C) long-thin-tailed lamb of
Bamei Mutton sheep before docking.
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BWA-MEM using the default parameters (Li and Durbin, 2009).
After alignments, SNP calling was performed using SAMtools and
Genome Analysis Toolkit (GATK, v.3.8) (Nekrutenko and Taylor,
2012). All SNPs were filtered using the ‘Variant Filtration’module of
GATK with the standard parameters as below: Window 4; Variants
with QD (quality depth) < 4.0; FS (Phred-scaled p-value using
Fisher’s exact test to detect strand bias) > 60.0; MQ < 40.0; -G_
filter “GQ < 20”.

The implementation of SAMtools mpileup (v.1.8) (Li, 2011) was
run in a multi-sample mode to calculate genotype likelihoods from
the aligned reads for all samples simultaneously. The parameters -E
and -t were used to recalculate (and apply) base alignment quality
and produce per-sample genotype annotations, respectively. Then,
the estimated genotype likelihoods were converted into genotypes
using BCFtools call using the -v and -m flags to output variable sites
only, and permitted sites to have more than two alternative alleles,
respectively.

Based on the annotation file of the sheep reference genome Oar
v.4.0, a transcript FASTA file for database was built using the
retrieve_seq_from_fasta.pl module of ANNOVAR, and then the
functional annotation for each SNP was performed using the table_
annovar.pl module of ANNOVAR (Wang et al., 2010).

2.3 Population structure analysis

SNPs were pruned the in high levels of pair-wise LD using
PLINK v.1.9 (Purcell et al., 2007) with the parameter (−-indep-pair-
wise 50 5 0.2) to perform principal component analysis (PCA) and
ADMIXTURE analysis. PCA of whole-genome SNPs for all
49 individuals was conducted using the GCTA v.1.24.2 (Yang
et al., 2011). Furthermore, population structure analysis was
carried out using the ADMIXTURE v1.3 (Alexander and Lange,
2011) with kinship (K) ranged from 2 to 5. The unrooted Neighbor-
joining (NJ) tree was constructed with TASSEL using the matrix of
pairwise genetic distances and visualized with iTOL (https://itol.
embl.de/). The LD decay for each group was measured using
PopLDdecay (Zhang et al., 2019) with default parameters.

2.4 Genome-wide selective sweep test

To identify the selective sweep regions, we performed genome-
wide scans of selection signals using three metrics: allele frequency
based methods FST (Weir and Hill, 2002), π-Ratio (Danecek et al.,
2011), and haplotype-based method XP-EHH (Sabeti et al., 2007a).

The SNPs were filtered with parameters (--maf 0.05 -max-
missing 0.90) using PLINK v.1.9 (Purcell et al., 2007). The FST
was calculated using VCFtools (Danecek et al., 2011) with parameter
“--weir-fst-pop group1 --weir-fst-pop group2 --fst-window-size
50000 --fst-window-step 20000 --maf 0.05 --max-missing 0.90”.
Then the FST values were normalized (ZFST) using the
Ztransformation method (Rubin et al., 2010). The genetic
diversity (π-Ratio) was calculated using VCFtools with
parameters “--keep gropu1/gropu2 --window-pi 50000 --window-
pi-step 20000 --maf 0.05 --max-missing 0.90” and python scripts.
The overlap of the top 5% windows in each method was considered
as candidate signatures of selection.

The XP-EHH was performed for every SNP using the default
settings by selscan v.1.1 (Szpiech and Hernandez, 2014), and
genotypes were phased using Beagle (Browning and Browning,
2007) with default parameters. The genome-wide raw XP-EHH
statistics were standardized to a distribution with zero mean and
unit variance. SNPs in the top 0.1% are taken as significant SNPs.
Significant regions are identified by combining SNPs of significant
XP-EHH scores that are less than 200 kb apart. If two SNPs both
have significant XP-EHH scores and were less than 200 kb apart,
then the two SNPs formed a region.

In the π-Ratio and XP-EHH tests, the BM sheep were used as the
target population, and the MG sheep as the reference population.

2.5 Gene ontology enrichment and KEGG
pathway analyses

According to genome annotation, a gene was assumed to be
under positive selection if it overlapped with a selection signal. To
obtain an in-depth view of the biological significance of the
candidate genes, online Gene Ontology (GO) enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses were conducted by retrieving O. aries in self-built
database (No.AH96240) on AnnotationHub website (https://
annotationhub.bioconductor.org/). Protein-Protein Interaction
(PPI) analysis was performed using STRING database (https://cn.
string-db.org/).

3 Results

3.1 Overview of sequencing quality

After sequencing and data quality control, more than
100 million clean reads were obtained in the MG and BM
groups, respectively. The number of clean bases in the BM group
was found to be more than 4G greater than that in the MG
group. The mapping rate is greater than 98% in both groups
with an average depth of 7.31 × (Table 1; Supplementary Table S1).

3.2 SNP identification

In total, 29,926,218 and 23,122,081 SNPs, 3,755,604 and
5,005,409 Indels were identified in MG and BM sheep,
respectively, among which, 20,270,930 SNPs and 2,479,474 Indels
are common inMG and BM sheep (Figure 2). Functional annotation
of the polymorphic sites showed that the vast majority of SNPs and
Indels were present either in intergenic regions (62.2% and 60.8%,
respectively) or in intronic regions (34.8% and 36.3%, respectively).
Exons contained 0.60% of the total variation (Table 2). These results
indicate that the variants on the MG and BM genomes differ.

3.3 Population genetic structure

Following the identification of the SNPs, PCA, phylogenetic
relationship analysis, and population genetic structure analysis were
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conducted for all the individuals. The PCA results showed that the
BM and MG sheep were clearly separated (Figure 3A), and the NJ
tree also produced similar results, with BM and MG sheep divided
into 2 clades (Figure 3B), which indicated that there is a certain
degree of genetic distance between BM andMG sheep. The results of
population genetic structure (Figure 3C) showed that for the BM
group, the consistency within groups was better when K = 2 and K =
4, while for the MG, it was better when K = 2 and K = 3, indicating
that the consistency of the individuals within the groups was better,
and that differences existed between the groups. Furthermore, when
K = 2, BM and MG sheep were obviously divided into two
subgroups, but with a certain degree of mixing, which was
consistent with the fact that BM sheep contains a certain amount

of ancestry of MG sheep. When K = 3, no new subgroups appeared
in the experimental population. The aforementioned results
demonstrate that there are distinctions between BM and GM
sheep, which may be attributed to tail phenotype variation. In
order to further explore the genetic diversity, linkage
disequilibrium, in terms of the correlation coefficient (r 2), was
calculated for BM and MG sheep populations. As shown in
Figure 3D, the faster LD decay was observed in the MG
population, which indicates that MG sheep had higher genetic
diversity, and BM sheep had higher degree of domestication and
greater intensity of selection.

3.4 Detection of selective sweeps

Due to the genetic separation between MG and BM sheep,
selective sweep analysis using FST, π-Ratio and XP-EHH were
performed to investigate selection signals in BM sheep, which
would facilitate the identification of target genes. The results
demonstrated that the majority of SNPs exhibited moderate
genetic variance within the population (Figure 4A, FST < 0.15).
Additionally, some SNPs exhibited high genetic variance and high
genetic variability on chromosomes 13, 16, and 17, suggesting that
these SNPs may be mutations specific to the BM and MG
populations. A further 544,123 SNPs were identified under the
conditions of FST ≥ 0.2 and π-Ratio ≤0.397 (Figure 4B). The
combined analysis of FST and π-Ratio revealed that 1884 genes
(representing the top 10% of genes) were identified by log2 (Pi_BM/
GM)_ZFST, while 294 genes were identified by XP_EHH
(Figure 4C). Eventually, a total of 85 overlapping genes were
identified as candidate genes by log2 (Pi_BM/GM)_ZFST and
XP_EHH (Figure 4D; Supplementary Table S2). Of these
candidate genes, some were known to be related to sheep tail
phenotype, such as fat deposition associated genes PDGFD,
GLIS1, AR, FGF9, and vertebral number variation associated gene
VRTN; some were novel genes that may have relationship with sheep
tail phenotype formation.

3.5 Function annotation of the
selected genes

Functional association of the 85 candidate genes was further
investigated by GO and KEGG analysis. For GO analysis, the
biological processes mainly focused on ‘cellular response to
organic substance’, ‘cellular response to lipid’, ‘cellular
response to organic cyclic compound’, ‘negative regulation of
cell development’, ‘beta stimulus regulation of DTPase activity’,
and so on (Figure 5A) (p < 0.05). In terms of KEGG, several
signaling pathways related to lipid metabolism were significantly

TABLE 1 Overview of sequencing statistics.

Group Clean reads number Clean bases number (G) Map rate (%) Effective depth

MG 113,552,917 17.03 99.30 6.47

BM 143,757,312 21.56 98.73 8.14

FIGURE 2
SNPs identified in BM and MG sheep.

TABLE 2 Annotation of SNPs/Indels.

Variant type SNP count Indel count

Intergenic 12,609,201 1,782,495

Intronic 7053401 1062533

Exonic 135627 3,549

Downstream 119577 20132

UTR3 118337 23552

Upstream 111348 18491

UTR5 90819 14489

ncRNA intronic 25381 3,850

Upstream or downstream 3,822 655

ncRNA exonic 2,923 282

Splicing 412 266

Exonic, splicing 16 23
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enriched, including ‘phospholipase D signaling pathway’,
‘glycerophospholipid metabolism’, ‘glycerolipid metabolism’,
and ‘fatty acid elongation’ (Figure 5B). In addition, some
significant pathways were also enriched, such as ‘MAPK
pathway’, ‘P13K Akt signaling pathway’, ‘Calcium signaling
pathway’ and ‘ras signaling pathway’. The interaction of
KEGG pathways and the relationship between genes and
pathways was show in Figure 5B. Furthermore, these
candidate genes showed close functional association (Figure 6).

4 Discussion

In the past decade, the improvement of sheep tail phenotype
has gradually developed from utilization of traditional
hybridization or tail-docking to molecular breeding

technology. To date, several methods are employed to detect
the selective sweeps in various livestock genomes. In the present
study, we used three metrics, allele frequency-based methods FST,
π-Ratio, and haplotype-based method XP-EHH, to identify
genome-wide selective sweep regions. The power of each test
was different, and any set of candidate genes may contain some
false positives (Nielsen et al., 2007). FST measures the genetic
differentiation between populations (Holsinger and Weir, 2009);
π-Ratio identifies the differences in nucleotide divergence
between populations (Sun et al., 2020); XP-EHH detects
ongoing or nearly fixed selective sweeps by comparing
haplotypes between the two populations (Sabeti et al., 2007b).
Combining multiple tests can improve the power of detecting
selection signatures (Zeng et al., 2007), making the results more
reliable. We considered the overlapping genes derived from three
methods as candidate genes and eventually identified

FIGURE 3
Population genetic structures of BM and MG sheep. (A) Principal component analysis (PCA) of 49 sheep individuals. (B) Neighbor-joining (NJ) tree
constructed from SNPs data of the two populations. (C) Model-based clustering of sheep individuals using ADMIXTURE with K = 2–5. (D) Correlation
coefficients (r2) were calculated for the MG and BM sheep over 50-kb windows.
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85 candidate genes. Among these genes, PDGFD (Dong et al.,
2020; Zhu et al., 2021; Pan et al., 2019; Mastrangelo et al., 2019;
Zhao et al., 2020; Li et al., 2020a; li et al., 2020b; Wang et al., 2022;
Wei et al., 2015; Luo et al., 2021), GLIS1 (Luo et al., 2021), NRIP1

(RIP140) (Xu et al., 2017), AR (Moradi et al., 2022), FGF9 (Moioli
et al., 2015), and VRTN (Mastrangelo et al., 2019; Zhu et al., 2021;
Moioli et al., 2015) were formerly reported to be involved in
regulation of tail fat deposition or tail length.

FIGURE 4
Genomic Selection analyses. (A) Selective signals detected by FST. (B) Selective signals detected by log2 (Pi_BM/GM)_ZFST. (C) Selective signals
detected by XP_EHH. (D) Overlapping genes identified by log2 (Pi_BM/GM)_ZFST and XP_EHH.

Frontiers in Genetics frontiersin.org06

Qi et al. 10.3389/fgene.2024.1509177

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1509177


FIGURE 5
GO and KEGG analysis of the 85 candidate genes. (A) GO analysis. (B) KEGG analysis.

FIGURE 6
Protein-Protein Interaction (PPI) of the 85 candidate genes.
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Many studies have recently highlighted the platelet-derived
growth factor D (PDGFD) gene as a new sheep tail phenotype
pattern maker (Wei et al., 2015; Pan et al., 2019; Dong et al.,
2020; Li Q. et al., 2020; Li X. et al., 2020; Luo et al., 2021;
Mastrangelo et al., 2019). Dong et al. found that the expression
of the PDGFD gene is higher in fat-tailed breeds than in thin-tailed
breeds, and a similar result was observed in obese mice and human
after analyzing a public transcriptomic data (Dong et al., 2020).
Overexpression of PDGFD in ovine preadipocytes could promote
adipogenic differentiation, and the expression levels of two
adipogenesis marker genes (PPARc and LPL) increased after
PDGFD overexpression (Li Q. et al., 2020). Furthermore, oil red
O staining showed that the number of lipid drops was higher in the
PDGFD-overexpressing group than in the control group (Li Q. et al.,
2020). These studies indicated that PDGFD gene plays a positive
regulation role in the fat deposition process of sheep tail.
Interestingly, there were also different discoveries about the
expression profile of the PDGFD gene. Li X. et al. (2020)
identified four PDGFD transcripts (I, II, III, and IV), and
transcript I was the most differentially expressed transcripts
between the thin-tailed and the fat-tailed/fat-rumped sheep
breeds. Notably, PDGFD expression (at the mRNA and protein
levels) was consistently negatively correlated with fat deposition in
sheep tails (Li X. et al., 2020). The highest PDGFD gene expression
level was observed in the thin-tailed Chinese Merino sheep, followed
sequentially by the small fat-tailed Han sheep, the large fat-tailed
Han sheep, and the fat-rumped Altay sheep (Li X. et al., 2020). The
authors inclined to the idea of involving the PDGFRb signaling (a
receptor of PDGFD) in inhibiting the differentiation of white
adipocytes by regulating the expression of two key transcriptional
regulators of adipogenesis (PPARc2 and C/EBPa) (Olson and
Soriano, 2011; Kalds et al., 2021). In the present study we found
that PDGFD gene was strongly selected by Bamei Mutton sheep,
combined with previous researches, indicating that PDGFD was
involved in regulating the fat deposition process of sheep tail, but
how to regulate this process still needs more in-depth research.

GLIS1 is a zinc finger protein that acts as both an activator and
repressor of transcription (Kim et al., 2002). The temporal and
spatial expression of GLIS1 is consistent with mesoderm
differentiation during mouse embryonic development
(Nakashima et al., 2002). Later, Tosic et al. discovered that
GLIS1was highly expressed in bipotent muscle satellite cells. But
when overexpressed, increased occupancy of GLIS1 is observed at
the promoters of adipogenic genes Adipoq, Cebpa and Ucp1, and
drives brown adipogenesis both in vitro and in vivo, indicating that
GLIS1 was a novel pro-adipogenic transcription factor (Tosic et al.,
2018). Most recently, GLIS1was detected as a candidate gene of
selective signature of sheep tail phenotype (Luo et al., 2021). A non-
synonymous point mutation (g.27807636G > T) was found within
GLIS1 in two fat-tailed Chinese indigenous sheep breeds
(Mongolian sheep and Small Tail Han sheep) compared with two
thin-tailed dairy sheep (DairyMeade and East Friesian), and resulted
in a Pro to Thr substitution (Luo et al., 2021). In our study, GLIS1
was also strongly selected in Bamei Mutton sheep compared with
Mongolian sheep. Taken together,GLIS1, as a pro-adipogenic factor,
may plays a key role in mesodermal cell differentiation during fetal
development in fat-tailed sheep to initiate differentiation of pre-
adipocytes and fat accumulation (Luo et al., 2021).

Nuclear receptor interacting protein one gene (NRIP1, also
known as RIP140), encodes a nuclear protein also known as
receptor-interacting protein 140 (RIP140). RIP140 is widely
expressed and plays an important role in regulating lipid and
glucose metabolism (Leonardsson et al., 2004; Ho et al., 2011;
Hochberg et al., 2015). RIP140 interacts with multiple adipocyte-
specific genes, such as uncoupling protein 1 (UCP1), mitochondrial
fatty acid transporter carnitine palmitoyl transferase 1 (CPT1) and
lipid droplet protein cell death-inducing DFFA-like effector A
(CIDEA). The expression of these genes is characteristic of
brown adipose tissue (Nautiyal et al., 2013). Previous studies in
adipocyte cell models also revealed that RIP140 functions as a
corepressor of catabolic pathways, including fatty acid oxidation,
oxidative phosphorylation, glycolysis and tricarboxylic acid cycle
(Christian et al., 2005; Powelka et al., 2006). Moreover, Xu et al.
conducted a genome-wide association study using phenotypes and
genotypes of two breeds of contrasting tail types (Small-tailed and
Large-tailed Han sheep breeds) to identify functional genes and
variants associated with fat deposition, and revealed that RIP140was
a strong candidate for fat deposition in the tails of sheep (Xu et al.,
2017), which is consistent with our results.

It has been proved that androgen receptor (Ar) gene gets
participate in lipid binding (Huang et al., 2009), and has a
negative function in fat deposition in both mice and human
beings (Rubinow et al., 2015; Kim et al., 2019). Adipose tissue
macrophages express the androgen receptor (AR) and regulate
adipose tissue remodeling. Thus, testosterone signaling in
macrophages could alter the paracrine function of these cells and
thereby contribute to the metabolic effects of androgens in men
(Rubinow et al., 2015). In order to determine whether the loss of AR
signaling in hematopoietic cells results in greater fat accumulation,
Rubinow et al. performed a metabolic phenotyping study in male
mice. C57BL/6J male mice (ages 12–14 weeks) underwent bone
marrow transplant from either wild-type (WT) or AR knockout
(ARKO) donors (n = 11–13 per group). Mice were fed a high-fat diet
(60% fat) for 16 weeks. At baseline, 8 and 16 weeks, glucose and
insulin tolerance tests were performed, and body composition was
analyzed with fat-water imaging by MRI. No differences in body
weight were observed between mice transplanted with WT bone
marrow [WT (WTbm)] or ARKO bone marrow [WT (ARKObm)]
prior to initiation of the high-fat diet. After 8 weeks of high-fat
feeding, WT (ARKObm) mice exhibited significantly more visceral
and total fat mass than WT (WTbm) animals. Resultant data
indicate that AR signaling in hematopoietic cells influences body
fat distribution in male mice, and the absence of hematopoietic AR
plays a permissive role in visceral fat accumulation. These findings
demonstrate a metabolic role for AR signaling in marrow-derived
cells and suggest a novel mechanism by which androgen deficiency
in men might promote increased adiposity (Rubinow et al., 2015).
Kim et al. also discovered that blocking AR can decreases the
expression of CPTI (one of long-chain fatty acid (LCFA)
transport proteins) in the skeletal muscle, which reduces fat
metabolism. Thus, reducing sex hormones or suppressing the
sensitivity of AR can inhibit energy efficiency and fat metabolism
by suppressing CPTI (Kim et al., 2019). However, the effect of AR
gene on fat deposition in sheep is rarely reported. In our study, AR
was identified as a promising candidate gene of sheep tail phenotype,
and the same results were found in two Iranian thin- and fat-tailed
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sheep Breeds (Moradi et al., 2022). Combined with the above
studies, we speculate that AR may promote energy efficiency and
fat metabolism of sheep, thereby inhibit fat deposition in tail.

Fibroblast growth factor 9 (FGF9) is a protein-coding gene that
plays an important role in the regulation of embryonic development,
cell proliferation, cell differentiation, and cell migration (Moioli et al.,
2015). FGF9 expressed not only in white adipose tissue (WAT) of
human, but also in brown adipose tissue (BAT) while exposed to cold,
regulating the development of adipose tissue (Mejhert et al., 2010;
Grefhorst et al., 2015). Inmammals,WAT stores fat and BAT dissipates
fat to produce heat. FGF9 was selected as a candidate gene associated
with tail phenotype in both our and a recent study (Moioli et al., 2015),
indicating that FGF9may plays a role in fat deposition and metabolism
of sheep, but the mechanism underlying it is unclear.

In addition to fat deposition, the number of caudal vertebrae also
affects tail phenotype by affecting the length of sheep tail. It has been
reported that Vertnin (VRTN) gene is a key candidate gene
associated with the variation of vertebral number in sheep and
pigs (Duan et al., 2018; Zhang et al., 2017). As a transcriptional
inhibitor, VRTN independently regulates the expression of BMP2
gene in the dorsoventral axis through combination with its
regulatory sequence, thereby enabling normal development of
embryos along the dorsoventral axis (Shao et al., 2017). In a
study of genome-wide scan of selection signatures of sheep tail
phenotype, Mastrangelo et al. identified VRTN as a key candidate
gene; and the tail of the five fat-tailed sheep breeds where this
signature was detected was definitively longer than the tail of the
thin-tailed breeds (Mastrangelo et al., 2019). The same results were
also found in Moioli et al., Zhu et al., and our study. In the current
study, the tail length of Bamei Mutton sheep is longer than that of
Mongolian sheep, with the caudal vertebrae number is 20–30 and
10–14, respectively. These results indicated that VRTN may be an
important gene involved in regulating the development of sheep
caudal vertebrae, and affect the tail phenotype of sheep by affecting
the tail length.

Except for above mentioned genes, the rest of the candidate genes
may also play important roles in regulating sheep tail phenotype, although
there was not enough evidence at presence based on publicly available
information. Therefore, further studies and experiments are needed to
confirm the soles and mechanisms of these genes in formation of sheep
tail phenotype. In conclusion, our results provide a strong foundation for
studying the regulation of tail phenotype in sheep and do offer hope that
the causal mutations and themode of inheritance of this trait will soon be
discovered by further experimentation.
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