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Background:Cutaneousmelanoma, characterized by themalignant proliferation
of melanocytes, exhibits high invasiveness and metastatic potential. Thus,
identifying novel prognostic biomarkers and therapeutic targets is essential.

Methods: We utilized single-cell RNA sequencing data (GSE215120) from the
Gene Expression Omnibus (GEO) database, preprocessing it with the Seurat
package. Dimensionality reduction and clustering were executed through
Principal Component Analysis (PCA) and Uniform Manifold Approximation and
Projection (UMAP). Cell types were annotated based on knownmarker genes, and
the AUCell algorithm assessed the enrichment of deubiquitination-related genes.
Cells were categorized into DUB_high and DUB_low groups based on AUCell
scores, followed by differential expression analysis. Importantly, we constructed a
robust prognostic model utilizing various genes, which was evaluated in the
TCGA cohort and an external validation cohort.

Results: Our prognostic model, developed using Random Survival Forest (RSF)
and Ridge Regression methods, demonstrated excellent predictive performance,
evidenced by high C-index and AUC values acrossmultiple cohorts. Furthermore,
analyses of immune cell infiltration and tumormicroenvironment scores revealed
significant differences in immune cell distribution and microenvironment
characteristics between high-risk and low-risk groups. Functional experiments
indicated that TBC1D16 significantly impacts the migration and proliferation of
melanoma cells.

Conclusion: This study highlights the critical role of deubiquitination in
melanoma and presents a novel prognostic model that effectively stratifies
patient risk. The model’s strong predictive ability enhances clinical decision-
making and provides a framework for future studies on the therapeutic potential
of deubiquitinationmechanisms inmelanoma progression. Further validation and
exploration of this model’s applicability in clinical settings are warranted.

KEYWORDS

melanoma, prognostic model, deubiquitination, single-cell RNA sequencing, immune
microenvironment

OPEN ACCESS

EDITED BY

Wencai Liu,
Shanghai Jiao Tong University, China

REVIEWED BY

Zhirui Zeng,
Guizhou Medical University, China
Guichuan Lai,
Chongqing Medical University, China

*CORRESPONDENCE

Xiaohu He,
530336296@qq.com

RECEIVED 10 October 2024
ACCEPTED 19 November 2024
PUBLISHED 05 December 2024

CITATION

Peng S, Xie J and He X (2024) Exploring the
impact of deubiquitination on melanoma
prognosis through single-cell RNA sequencing.
Front. Genet. 15:1509049.
doi: 10.3389/fgene.2024.1509049

COPYRIGHT

© 2024 Peng, Xie and He. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 05 December 2024
DOI 10.3389/fgene.2024.1509049

https://www.frontiersin.org/articles/10.3389/fgene.2024.1509049/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1509049/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1509049/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1509049/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1509049&domain=pdf&date_stamp=2024-12-05
mailto:530336296@qq.com
mailto:530336296@qq.com
https://doi.org/10.3389/fgene.2024.1509049
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1509049


Introduction

Cutaneous melanoma is a malignant tumor characterized by the
abnormal proliferation of melanocytes, the cells responsible for
producing skin pigment (Long et al., 2023; Arnold et al., 2022;
DE Gruijl and Armstrong, 2022). This type of cancer is known for its
high aggressiveness and metastatic potential, typically presenting on
the skin’s surface but also occurring in other areas, such as the eyes
and internal organs (Bertolotto, 2021; Kostaki et al., 2023; Buja et al.,
2022). Over the past few decades, the incidence of melanoma has
significantly increased, particularly among white populations, and is
closely associated with ultraviolet (UV) exposure, such as that from
sunlight (Lopes et al., 2021). Early diagnosis and treatment are
crucial for improving patient prognosis; however, late-stage
melanoma patients often experience low survival rates and
limited treatment options (Carpi et al., 2020; Garbe et al., 2022;
Orzan et al., 2015).

The clinical manifestations of melanoma are diverse, with
common features including irregular moles or skin lesions,
uneven coloration, indistinct borders, and an increase in
diameter (Sergi et al., 2023; Ribeiro Moura Brasil Arnaut et al.,
2021; Everett et al., 2019). Recent advancements in immunotherapy
and targeted therapies have provided new treatment options for
melanoma patients, although responses can vary due to individual
differences, leading some patients to respond poorly to existing
treatments (Leonardi et al., 2020; Hoeijmakers et al., 2023; Xiao
et al., 2024). Consequently, the exploration of novel biomarkers and
therapeutic targets has become a focal point of current research.

Ubiquitination is a critical post-translational modification
process in which a small protein, ubiquitin, is attached to target
proteins (Popovic et al., 2014). This process typically occurs through
a three-step reaction: first, ubiquitin is activated by E1 enzymes
(ubiquitin-activating enzymes) and transferred to E2 enzymes
(ubiquitin-conjugating enzymes); subsequently, E3 enzymes
(ubiquitin ligases) transfer ubiquitin to the target protein
(Cockram et al., 2021; Mansour, 2018; Liu et al., 2024). The
addition of ubiquitin generally marks the target protein for
degradation, playing a key role in the quality control of
intracellular proteins and signal transduction (Ye et al., 2023).
Deubiquitination is the counter-process to ubiquitination,
mediated by deubiquitinating enzymes (DUBs), which are
responsible for removing ubiquitin molecules from target
proteins (Jiang et al., 2023; Wu et al., 2020). This process not
only affects protein stability and degradation but also has far-
reaching implications for key biological processes, including
signal transduction, cell proliferation, and apoptosis (Hu et al.,
2021). Dysregulation of DUB activity is associated with the
progression of various cancers, influencing how cells respond to
environmental stimuli and their sensitivity to treatments (Han
et al., 2022).

In recent years, the role of deubiquitination in melanoma
progression has garnered increasing attention. Numerous studies
have demonstrated that deubiquitinating enzymes (DUBs) in
melanoma can influence cell proliferation, apoptosis, and
metastatic potential by modulating the stability of tumor
suppressor genes and oncogenes. For example, Feng et al.
discovered that USP11 promotes melanoma progression by
stabilizing the protein level of NONO through deubiquitination

(Feng et al., 2021). Furthermore, targeting the USP7/RRM2 axis
induces senescence, sensitizing melanoma cells to HDAC/
LSD1 inhibitors (Granieri et al., 2022). Consequently, targeting
the deubiquitination process is considered a promising approach
for developing new therapies against melanoma. Therefore, a deeper
understanding of the mechanisms of ubiquitination and
deubiquitination is essential for elucidating the biological
characteristics of melanoma and developing effective therapeutic
strategies.

Methods

Data acquisition and preprocessing

Single-cell RNA sequencing data for cutaneous melanoma were
obtained from the Gene Expression Omnibus (GEO) under
accession number GSE215120 (Zhang et al., 2022; Zhang et al.,
2024). Specifically, we extracted three datasets (GSM6622299,
GSM6622300, and GSM6622301), each representing samples
from cutaneous melanoma. The raw count matrices were
downloaded and further processed using the Seurat package in R.
Cells with fewer than 200 expressed genes or with over 10%
mitochondrial content were excluded from subsequent analyses
to ensure data quality. In addition to single-cell RNA sequencing
data, bulk RNA sequencing data were downloaded from The Cancer
Genome Atlas (TCGA) and four additional GEO datasets:
GSE19234, GSE22153, GSE59455, and GSE65904 (Bogunovic
et al., 2009; Jönsson et al., 2010; Budden et al., 2016; Cabrita
et al., 2020). These datasets were selected to provide a
comprehensive view of gene expression across larger patient
cohorts. TCGA data were accessed via the Genomic Data
Commons (GDC) portal, while the GEO datasets were obtained
directly from the GEO database. Each dataset was processed
uniformly to ensure consistency. Briefly, raw count data were
normalized and log-transformed. For each sample, genes with
low expression levels were filtered out based on a minimum
threshold to remove noise. We also used batch correction
methods to minimize technical variation between the datasets.

Dimensionality reduction and clustering

Following normalization and scaling of the data, we performed
principal component analysis (PCA) for dimensionality reduction.
The top 20 principal components were selected based on the Elbow
plot and subjected to Uniform Manifold Approximation and
Projection (UMAP) to visualize the data in a two-dimensional
space. Clustering was conducted using the Louvain algorithm
with a resolution parameter of 0.5, identifying distinct cellular
populations within the melanoma samples.

Cell type annotation

Cluster annotation was performed based on the expression of
known marker genes. These annotations were manually curated to
ensure accurate classification of various cell types.
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FIGURE 1
Single-Cell RNA Sequencing Analysis of Cutaneous Melanoma Microenvironment Single-cell RNA sequencing was conducted on cutaneous
melanoma samples (GSM6622299, GSM6622300, and GSM6622301) to investigate themicroenvironmental landscape. (A, B) The UMAP plot displays the
clustering of 27,163 individual cells into distinct populations, identified through Seurat clusteringmethods and annotated for cell types. These populations
comprise endothelial cells, NKT cells, epithelial cells, B cells, cycling cells, fibroblasts, andmyeloid cells. (C) The proportional distribution of these cell
types across the three samples highlights variability in cellular composition. (D) The expression patterns of selectedmarker genes across various cell types
are shown, with dot size indicating the percentage of expressing cells and color intensity representing average expression levels. This confirms the
successful identification of diverse cell populations. (E) AUCell scoring identifies cells exhibiting high activity of deubiquitination (DUB)-related genes,
color-coded by DUB activity scores, with notable activity in cycling and epithelial cell populations. (F) The average expression levels and prevalence of

(Continued )
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AUCell analysis for deubiquitination gene
enrichment

To assess the activity of deubiquitination-related genes across
different cell populations, we applied the AUCell algorithm. A
predefined gene set associated with deubiquitination was used,
and AUCell scores were calculated for each cell, providing a
measure of gene set enrichment. The resulting scores were
visualized across clusters to identify potential differences in
deubiquitination activity between cell types.

Identification of DUB_high and DUB_
low groups

For determining the AUCell score threshold, we grouped cells
into high-activity and low-activity groups based on the median
score value. Using the median as a threshold allowed us to
effectively capture relative differences in deubiquitination
activity across cell populations, reducing the influence of
outliers on our analysis. We selected AUCell due to its
suitability for single-cell RNA-seq data, as it calculates
enrichment at the single-cell level and effectively handles
variability in expression levels and data sparsity. The AUCell
scores were visualized across clusters to identify cell-type-specific
patterns of deubiquitination activity. Differential expression
analysis was performed between these two groups using the
FindMarkers function in Seurat. Genes with an adjusted
p-value < 0.05 and |log2 fold change| > 0.25 were considered
differentially expressed.

Correlation and gene ranking

Additionally, the top 150 genes most correlated with the AUCell
scores were identified by computing Spearman’s correlation
coefficients between gene expression levels and AUCell scores.
These genes were ranked based on their correlation coefficients
for further analysis.

Cell-cell communication analysis

To explore potential interactions between different cell types
in DUB_high and DUB_low groups, cell-cell communication
analysis was performed using the CellChat package. This
analysis helped identify key signaling pathways and ligand-
receptor interactions that may be altered between the two
groups, providing insights into how deubiquitination activity
impacts the tumor microenvironment and intercellular
communication.

Construction of a prognostic model using
ensemble machine learning algorithms

First, we intersected the differentially expressed genes (DEGs)
identified from single-cell sequencing analysis with the top
150 genes correlated with AUCell scores to derive key genes. In
the TCGA cohort, we initially used the survival R package to screen
for genes with prognostic significance. These candidate genes were
then subjected to further filtration using univariate Cox regression
analysis to assess their prognostic value. The resulting significant
genes were used for the construction of the prognostic model.

The TCGA cohort was designated as the training set, while external
cohorts (GSE19234, GSE22153, GSE59455, and GSE65904) served as
validation sets. To enhance the robustness of the model, we employed
10-fold cross-validation and applied 101 combinations of 10 machine
learning algorithms, including Stepwise Cox regression (StepCox), Lasso,
Ridge, partial least squares regression for Cox (plsRcox), CoxBoost,
Random Survival Forest (RSF), Gradient BoostingModel (GBM), Elastic
Net (Enet), Supervised Principal Components (SuperPC), and Survival
Support Vector Machine (survival-SVM). The objective was to identify
the most valuable prognostic feature, referred to as the Prognostic Index
Score (PIS), characterized by the highest concordance index (C-index).
Themodel with the highest C-index in the validation sets was selected as
the optimal deubiquitination-related signature (DRS).

Model evaluation

After selecting the optimal Random Survival Forest (RSF) +
Ridge prognostic model, we evaluated its performance across
multiple cohorts, including the TCGA cohort (training set) and
four external validation cohorts: GSE19234, GSE22153, GSE59455,
and GSE65904.

Kaplan-Meier survival curves were constructed to compare
overall survival (OS) between high-risk and low-risk groups,
stratified based on the median Prognostic Index Score (PIS) in
each cohort. Statistical significance was assessed using the log-rank
test, with p-values <0.05 considered significant. Hazard ratios (HR)
and 95% confidence intervals (CI) were calculated using Cox
proportional hazards regression models to further quantify the
association between risk scores and patient survival outcomes.

To assess the discriminative power of the RSF + Ridge model,
time-dependent Receiver Operating Characteristic (ROC) curves
were plotted for 1-, 3-, and 5-year overall survival in each cohort.
The area under the ROC curve (AUC) was calculated to measure the
predictive accuracy of the model, with higher AUC values indicating
better prognostic performance. The timeROC R package was used
for ROC curve generation and AUC calculations.

Principal component analysis (PCA) was performed to visualize
the distribution of patients in the high-risk and low-risk groups
based on their gene expression profiles. The top principal

FIGURE 1 (Continued)

DUB-related gene expression across cell types emphasize significant expression in cycling and epithelial cells. (G, H) Cell-cell communication
analysis, conducted using the CellChat tool, compares interaction networks between DUBlow and DUBhigh groups. The DUB_high cells, particularly in
endothelial and fibroblast populations, demonstrate more extensive and stronger intercellular communication activity. (I, J) Specific quantitative analysis
of intercellular communication. (K) Acquisition of the top 150 relevant genes.
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components were calculated using the expression of genes included
in the RSF + Ridge model. PCA plots were generated to show how
well the model separated the two risk groups, with distinct clustering
indicating good separation. This analysis was conducted using the
prcomp function in R, and the resulting plots were visualized using
the ggplot2 package.

By applying survival analysis, ROC curves, and PCA, we
rigorously assessed the robustness and generalizability of the RSF
+ Ridge prognostic model across multiple independent cohorts.

Immune cell infiltration and tumor
microenvironment score analysis

To investigate differences in immune cell infiltration and the
tumor microenvironment (TME) between the high-risk and low-
risk groups defined by the RSF + Ridge prognostic model, we
employed several computational tools.

Immune cell infiltration was quantified using multiple immune
deconvolution algorithms, including CIBERSORT, xCell, and MCP-
counter, to estimate the relative abundance of immune cell types in each
tumor sample. We obtained immune cell infiltration scores for various
immune cell populations, such as CD8+ T cells, macrophages, NK cells,
and B cells. The CIBERSORT algorithmwas executed using the immune
signature matrix, with a threshold of p < 0.05 for significant
deconvolution results. Differences in immune cell infiltration between
the high-risk and low-risk groups were compared using the Wilcoxon
rank-sum test, with p-values < 0.05 considered statistically significant.

The ESTIMATE algorithm was used to calculate stromal and
immune scores, which represent the presence of stromal and
immune components in the tumor microenvironment. These scores
were then combined to derive the ESTIMATE score, an overall measure
of TME composition. We compared the stromal, immune, and
ESTIMATE scores between the high-risk and low-risk groups using
the Wilcoxon rank-sum test to identify significant differences.

To further explore the relationship between the Prognostic
Index Score and immune infiltration or TME scores, Spearman’s
correlation analysis was conducted. Correlation coefficients were
calculated between the PIS and immune cell infiltration levels or
TME scores, with p-values < 0.05 indicating significant
associations.

Gene knockdown and functional assays in
A375 cell line

To explore the functional role of TBC1D16, a key gene identified
in the RSF + Ridge prognostic model, we performed gene
knockdown experiments in the A375 melanoma cell line.
TBC1D16 was silenced using shRNA specific to TBC1D16 (sh-
TBC1D16). A sh-control was used as the negative control.

Colony formation assay

To assess the impact of TBC1D16 knockdown on the long-
term proliferative capacity of A375 cells, a colony formation
assay was performed. Briefly, 500 transfected A375 cells

(shTBC1D16 and shControl) were seeded into 6-well plates
and cultured in complete medium for 10–14 days, allowing
colonies to form. The medium was replaced every 3 days. At
the end of the incubation period, colonies were fixed with 4%
paraformaldehyde for 15 min, stained with 0.1% crystal violet
solution, and then washed with distilled water. The number of
colonies containing at least 50 cells was counted manually under
a light microscope. Colony formation efficiency was compared
between sh-TBC1D16 and sh-Control groups using a two-tailed
Student’s t-test, with p < 0.05 considered significant.

Transwell migration assays

To evaluate the effects of TBC1D16 knockdown on cell
migration, Transwell assays were conducted using 24-well
Transwell chambers (Corning, 8-μm pore size). For the
migration assay, 1 × 105 transfected A375 cells
(shTBC1D16 and shControl) were suspended in 200 µL
serum-free medium and seeded in the upper chamber of the
Transwell insert. The lower chamber was filled with 600 µL of
medium containing 10% fetal bovine serum (FBS) as a
chemoattractant. Cells were allowed to migrate for 24 h at
37°C in a humidified incubator. After incubation, non-
migrated cells on the upper side of the membrane were
removed with a cotton swab, and the cells that had migrated
to the lower surface were fixed with 4% paraformaldehyde and
stained with 0.1% crystal violet.

Statistical analysis

All experiments were performed in triplicate, and data are
presented as mean ± standard deviation (SD). Comparisons
between two groups (shTBC1D16 vs. shControl) were
conducted using a two-tailed Student’s t-test, with p <
0.05 considered statistically significant. For survival analysis,
Kaplan-Meier curves with log-rank tests were applied, and
hazard ratios (HR) were calculated using Cox regression.
Receiver Operating Characteristic (ROC) curves and the area
under the curve (AUC) were used to evaluate model
performance. All analyses were performed using GraphPad
Prism and R software.

Results

Single-cell RNA sequencing analysis of
cutaneous melanoma microenvironment

Single-cell RNA sequencing analysis was performed on
cutaneous melanoma samples (GSM6622299, GSM6622300,
and GSM6622301), as illustrated in Figure 1. The UMAP plots
in Figures 1A, B display the clustering of 27,163 cells into distinct
cell populations based on Seurat clustering and cell type
annotations. These populations include endothelial cells,
NKT cells, epithelial cells, B cells, cycling cells, fibroblasts, and
myeloid cells. Figure 1C shows the proportional distribution of
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these cell types across the three melanoma samples, highlighting
the variability in cell type composition. Figure 1D depicts the
expression patterns of selected marker genes across different cell
types, with dot size representing the percentage of cells
expressing each gene and color intensity reflecting the average
expression level. This confirms the successful identification and
annotation of diverse cell populations. In Figure 1E, AUCell
scoring was employed to identify cells with high activity of
deubiquitination (DUB)-related genes, coloring the cells
according to their DUB activity scores. The highest scores
were predominantly observed in cycling and epithelial cell
populations. Figure 1F illustrates the average expression levels
and percentages of cells expressing DUB-related genes across
various cell types, with significant expression noted in cycling
and epithelial cells. Figures 1G, H present the cell-cell
communication analysis conducted using the CellChat tool,
comparing interaction networks between the DUB_low and
DUB_high groups. DUB_high cells, particularly those in the
endothelial and fibroblast populations, exhibited more
extensive and stronger intercellular communication compared
to DUB_low cells. Figure 1I further quantifies the incoming
and outgoing interaction strengths in the DUB_low and DUB_
high groups, with the DUB_high group displaying
significantly greater interaction strength, as shown in
Figure 1J. The number of inferred interactions and interaction
strength in the DUB_high group was higher and statistically
significant. Finally, Figure 1K shows the correlation between
DUB-related scoring and gene expression ranking, identifying
the top 150 genes most associated with DUB activity. This
correlation analysis reinforces the functional importance of
DUB genes in driving cell interactions and activity within the
tumor microenvironment. This analysis emphasizes the
heterogeneity of the tumor microenvironment in cutaneous
melanoma and highlights the enhanced communication
networks driven by DUB_high cells.

Identification of the optimal
prognostic model

Our analysis revealed that the integrated machine learning
approach successfully identified a set of prognostic genes from
the intersection of differentially expressed genes and the 150 key
genes derived from the single-cell sequencing data. Upon
applying univariate Cox regression analysis within the TCGA
cohort, we discerned several genes with significant
prognostic value.

Utilizing the TCGA cohort as the training set and validating
against multiple datasets (GSE19234, GSE22153, GSE59455, and
GSE65904), we conducted extensive cross-validation using various
machine learning algorithms. Among the 101 combinations tested,
the Random Survival Forest (RSF) combined with Ridge regression
emerged as the optimal model, achieving the highest concordance
index (c-index) in the validation cohort (Figure 2). This model was
designated as the DUB-related signature (DRS), highlighting its
potential as a robust prognostic tool for cutaneous melanoma.
These findings underscore the efficacy of machine learning

FIGURE 2
Identification of the optimal prognostic model. This figure
illustrates the process of identifying a set of prognostic genes through
an integrated machine learning approach. Differentially expressed
genes were combined with the 150 key genes derived from
single-cell sequencing data. Univariate Cox regression analysis
applied to the TCGA cohort revealed several genes with significant
prognostic value. Among 101 tested combinations, the Random
Survival Forest (RSF) combined with Ridge regression was identified as
the optimalmodel, achieving the highest concordance index (c-index)
in the validation cohort. This model is designated as the DUB-related
signature (DRS), indicating its potential as a robust prognostic tool for
cutaneous melanoma.

Frontiers in Genetics frontiersin.org06

Peng et al. 10.3389/fgene.2024.1509049

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1509049


techniques in enhancing prognostic predictions and the relevance
of the identified DUB-related signature in the context of
melanoma prognosis.

Survival analysis and model validation in
multiple cohorts

After establishing the optimal prognostic model using Random
Survival Forest (RSF) combined with Ridge regression, we
performed survival analysis across multiple datasets, including
TCGA, GSE19234, GSE22153, GSE59455, and GSE65904. The
survival curves presented in Figures 3A–E indicate significant
differences in survival probabilities between high- and low-risk
groups across all cohorts, with p-values consistently below 0.05,
confirming the robustness of our model in predicting
patient outcomes.

Furthermore, we evaluated the predictive performance of the
model using Receiver Operating Characteristic (ROC) curves.
Figures 3F–J demonstrate the Area Under the Curve (AUC)
values at various time points, reflecting the model’s accuracy in
distinguishing between high- and low-risk patients. Notably, the
AUC values ranged from 0.52 to 0.85 across the cohorts, with the

TCGA cohort achieving an AUC of 0.75 at the 5-year mark,
indicating strong predictive capability.

To further validate our model, Principal Component Analysis
(PCA) was conducted, as illustrated in Figures 3K–O. The PCA
plots effectively segregated high-risk and low-risk patient groups
based on the first two principal components. This segregation is
further highlighted by the density plots, which depict the
distribution of risk scores within the identified clusters. The
PCA analysis confirms that the prognostic model is not
only effective in predicting survival outcomes but also in
capturing the underlying biological heterogeneity within the
melanoma samples.

Overall, the survival analysis, ROC curves, and PCA results
underscore the validity of the RSF + Ridge model as a powerful
prognostic tool in melanoma research, demonstrating its potential
for clinical application in stratifying patient risk.

Immune infiltration and tumor
microenvironment analysis

To investigate the relationship between our prognostic model
and the tumormicroenvironment (TME), we performed an immune

FIGURE 3
Survival analysis and model validation in multiple cohorts. Survival analysis across multiple datasets, including TCGA, GSE19234, GSE22153,
GSE59455, andGSE65904, is shown in this figure. (A–E) Survival curves demonstrate significant differences in survival probabilities between high-risk and
low-risk groups, with p-values consistently below 0.05, confirming the robustness of the model. (F–J) Receiver Operating Characteristic (ROC) curves
illustrate the Area Under the Curve (AUC) values at various time points, reflecting themodel’s accuracy in distinguishing between high- and low-risk
patients. AUC values range from 0.52 to 0.85, with the TCGA cohort achieving an AUC of 0.75 at 5 years. (K–O) Principal Component Analysis (PCA)
effectively segregates high-risk and low-risk patient groups based on the first two principal components. Density plots highlight the distribution of risk
scores within the identified clusters, reinforcing the prognostic model’s effectiveness in predicting survival outcomes and capturing biological
heterogeneity within melanoma samples.
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infiltration analysis. As shown in Figure 4A, a heatmap displays the
expression levels of various immune cell types across high-risk and
low-risk groups. The patterns of immune cell infiltration indicate a
distinct immune landscape, with significant differences observed
between the two risk categories. High-risk patients exhibit a lower
abundance of several immune cell types, including CD4+ T cells,
regulatory T cells, and macrophages, compared to their low-risk
counterparts.

Furthermore, we conducted correlation analyses to explore
the associations between the risk scores derived from our model
and various TME characteristics, including stromal score,
immune score, ESTIMATE score, and tumor purity. Figure 4B
presents scatter plots illustrating these relationships, with
significant negative correlations observed between risk scores
and both immune scores (r = −0.57, q = 0) and stromal scores
(r = −0.41, q = 0). Additionally, a positive correlation was noted
between risk scores and tumor purity (r = 0.56, q = 0). These
findings indicate that higher risk scores correspond to lower
immune infiltration and stromal content, reflecting a more
tumor-promoting microenvironment.

In summary, our analysis underscores the interplay between the
prognostic risk model and TME characteristics, highlighting the role
of immune infiltration in influencing patient prognosis. The results
suggest that a less immune-active and more tumor-dominant
microenvironment is associated with poorer outcomes in patients
with higher risk scores.

Prognosticmodel and clinical significance of
TBC1D16 in skin melanoma

As illustrated in Figure 5, our prognostic model is composed of
22 genes. Among these, TBC1D16 exhibits the strongest positive
correlation with the model’s risk score, indicating that it is most
closely associated with poor prognosis in patients with skin
melanoma. To further explore the clinical significance of
TBC1D16, we conducted an analysis using the BEST database.

Cox regression analysis revealed that TBC1D16 is consistently
associated with unfavorable prognosis across multiple cohorts
(Figure 6A). Additionally, Kaplan-Meier (K-M) survival curves
demonstrated that high expression levels of TBC1D16 correlate
with worse patient outcomes in the TCGA, GSE19234, and
GSE190113 datasets (Figures 6B–D). Gene Set Enrichment
Analysis (GSEA) further indicated that TBC1D16 is highly
correlated with several cancer-related pathways, including
oxidative phosphorylation and Myc target pathways (Figure 6E).
Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses revealed that
TBC1D16 is associated with various cancer functions and pathways
(Figures 6F, G). Finally, we validated the functional role of
TBC1D16 in the A375 cell line. Our experiments demonstrated
that knockdown of TBC1D16 resulted in a significant decrease in
both proliferation and migration capabilities of skin melanoma cells
(Figures 6H, I).

FIGURE 4
Immune infiltration and tumor microenvironment analysis. This figure investigates the relationship between the prognostic model and the tumor
microenvironment (TME) through immune infiltration analysis. (A) A heatmap displays the expression levels of various immune cell types across high-risk
and low-risk groups, revealing a distinct immune landscape with significant differences. High-risk patients exhibit a lower abundance of immune cell
types, including CD4+ T cells, regulatory T cells, and macrophages, indicating an immunosuppressive TME. (B) Correlation analyses between risk
scores and various TME characteristics are presented as scatter plots, showing significant negative correlations between risk scores and both immune
scores (r = −0.57, q = 0) and stromal scores (r = −0.41, q = 0), alongwith a positive correlation between risk scores and tumor purity (r = 0.56, q = 0). These
findings suggest that higher risk scores are associated with lower immune infiltration and stromal content, reflecting a more tumor-promoting
microenvironment.
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Discussion

Our study presents significant insights into the role of
deubiquitinating enzymes (DUBs) in cutaneous melanoma, revealing
their potential as novel biomarkers and therapeutic targets. The
alarming rise in melanoma incidence underscores the urgency for
effective prognostic tools and treatment strategies. Our analysis of
single-cell RNA sequencing data highlighted the heterogeneity of
melanoma, with distinct cellular populations exhibiting varying
deubiquitination activities. This finding aligns with previous studies
suggesting that DUBs modulate critical signaling pathways that
influence tumor progression and metastasis (Feng et al., 2021).

The construction of our prognostic model using ensemble
machine learning algorithms represents a noteworthy
advancement in melanoma research. By integrating differential
expression data with correlation analyses, we identified a robust
set of biomarkers that accurately stratify patients into high-risk and
low-risk categories. The model’s high concordance index across
multiple cohorts indicates its potential clinical applicability, offering
a reliable tool for guiding therapeutic decision-making.

Our investigation into immune cell infiltration revealed notable
differences in the tumor microenvironment between risk groups,
emphasizing the intricate interplay between DUB activity and
immune modulation. The immune landscape of tumors is critical

FIGURE 5
Composition of the prognostic model. This figure illustrates the composition of the prognostic model, consisting of 22 genes. Among these genes,
TBC1D16 shows the strongest positive correlation with the model’s risk score, indicating its significant association with poor prognosis in patients with
cutaneous melanoma. The construction of this model highlights the importance of these genes in predicting patient outcomes in melanoma.
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FIGURE 6
Validation of key gene TBC1D16 in skin melanoma. This figure presents the validation results for the key gene TBC1D16. Cox regression analysis
revealed that TBC1D16 is significantly associated with unfavorable prognosis across multiple cohorts (A). Kaplan-Meier survival curves demonstrate that
high expression levels of TBC1D16 correlate with worse patient outcomes in the TCGA, GSE19234, and GSE190113 datasets (B–D). Gene Set Enrichment
Analysis (GSEA) further indicates that TBC1D16 is highly correlated with several cancer-related pathways, including oxidative phosphorylation and
Myc target pathways (E). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses reveal that TBC1D16 is
associated with various cancer functions and pathways (F, G). Finally, we validated the functional role of TBC1D16 in the A375 cell line, showing that
knockdown of TBC1D16 resulted in a significant decrease in both proliferation and migration capabilities of skin melanoma cells (H, I).
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for understanding patient outcomes, and our results suggest that
deubiquitination processes may influence immune evasion
mechanisms in melanoma. Future studies should explore the
precise mechanisms by which DUBs alter immune responses, as
targeting these pathways could enhance the effectiveness of
immunotherapies.

Furthermore, our functional assays targeting TBC1D16 provide
compelling evidence for its role in melanoma cell proliferation and
migration. TBC1D16 (TBC1 Domain Family Member 16) is a protein
involved in the regulation of intracellular vesicle trafficking (Vizoso
et al., 2015). In cancer, particularly melanoma, TBC1D16 has been
associated with tumor progression due to its role in promoting cell
proliferation, migration, and invasion. Elevated TBC1D16 expression
has been linked to poor prognosis in melanoma patients, suggesting its
potential as a prognostic biomarker. Studies indicate that silencing
TBC1D16 can reduce melanoma cell migration and proliferation,
highlighting its significance in tumor aggressiveness and as a
potential therapeutic target. This gene’s involvement in key cellular
processes may offer a promising avenue for therapeutic intervention. By
silencing TBC1D16, we demonstrated a significant reduction in the
migratory potential ofmelanoma cells, indicating its potential as a target
for novel therapies aimed at limiting metastasis.

In conclusion, our findings establish a crucial link between
deubiquitinating enzyme (DUB) activity and melanoma progression,
emphasizing the need for continued exploration of deubiquitination
pathways in cancer biology. The prognostic model developed in this
study offers a promising tool for stratifyingmelanoma patients based on
risk, which could improve clinical decision-making and treatment
personalization. However, while the model demonstrates strong
predictive performance in multiple cohorts, several challenges
remain for its clinical implementation. For instance, the integration
of this model into routine clinical practice requires further validation in
larger, independent patient cohorts to confirm its robustness and
generalizability. Additionally, the clinical utility of targeting DUBs as
therapeutic interventions in melanoma needs to be carefully evaluated
through clinical trials, as altering DUB activity could have unintended
consequences on immune response or tumor microenvironment
dynamics. Further investigations are essential to explore the optimal
strategies for targeting these pathways without compromising patient
safety. Moreover, the biological variability across different patient
populations, including tumor heterogeneity and immune landscape
differences, may affect the model’s predictive accuracy. Therefore,
refining the model to account for these factors will be critical in
enhancing its clinical applicability. In summary, while this study
provides a solid foundation for developing DUB-related prognostic
biomarkers and therapies, future research should focus on addressing
these challenges to ensure that such models can be effectively utilized in
clinical settings.
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