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An increasing number of ecotoxicological studies have used omics-data to
understand the dose-response patterns of environmental stressors. However,
very few have investigated complex non-monotonic dose-response patterns with
multi-omics data. In the present study, we developed a novel semi-supervised
network analysis workflow as an alternative to benchmark dose (BMD) modelling.
We utilised a previously published multi-omics dataset generated from Daphnia
magna after chronic gamma radiation exposure to obtain novel knowledge on the
dose-dependent effects of radiation. Our approach combines 1) unsupervised co-
expression network analysis to group genes with similar dose responses into
modules; 2) supervised classification of these modules by relevant response
patterns; 3) reconstruction of regulatory networks based on transcription factor
bindingmotifs to reveal the mechanistic underpinning of themodules; 4) differential
co-expression network analysis to compare the discovered modules across two
datasets with different exposure periods; and 5) pathway enrichment analysis to
integrate transcriptomics andmetabolomics data. Ourmethod unveiled both known
and novel effects of gamma radiation, provide insight into shifts in responses from
low to high dose rates, and can be used as an alternative approach for multi-omics
dose-response analysis in future. The workflow SOLA (Semi-supervised Omics
Landscape Analysis) is available at https://gitlab.com/wanxin.lai/SOLA.git.
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Introduction

High-throughput analyses of biological effects, such as omics-analysis (e.g., genomics,
transcriptomics, proteomics, metabolomics), play a key role in providing in-depth
mechanistic knowledge, classification of a stressor’s mode of action (MoA), and
biomarker discovery in ecotoxicological research (Brockmeier et al., 2017). Recent

OPEN ACCESS

EDITED BY

Mohamed Diwan M. AbdulHameed,
Biotechnology HPC Software Applications
Institute (BHSAI), United States

REVIEWED BY

Pu Xia,
University of Birmingham, United Kingdom
Archana Hari,
Biotechnology HPC Software Applications
Institute (BHSAI), United States

*CORRESPONDENCE

Wanxin Lai,
wanxin.lai@nmbu.no

Torgeir R. Hvidsten,
torgeir.r.hvidsten@nmbu.no

RECEIVED 09 October 2024
ACCEPTED 12 November 2024
PUBLISHED 02 December 2024

CITATION

Lai W, Song Y, Tollefsen KE and Hvidsten TR
(2024) SOLA: dissecting dose-response
patterns in multi-omics data using a semi-
supervised workflow.
Front. Genet. 15:1508521.
doi: 10.3389/fgene.2024.1508521

COPYRIGHT

©2024 Lai, Song, Tollefsen and Hvidsten. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Abbreviations: SOLA, Semi-supervised Landscapes Analysis; MOA, Mode of Action; POD, Point of
Departure; AOP, Adverse outcome pathways; WGCNA, Weighted Gene Co-expression Analysis; GO,
Gene Ontology; DiCE, Differential Co-expresssion Analysis; DEGs, Differentially expressed genes; DMs,
Differential metabolites; ReactomePA, Reactome Pathway Enrichment Analysis; ROS, Reactive oxygen
species; TFBS, Transcription factor binding sites; CNV, Central Nervous System; ECM, Extracellular
matrix; GSH, Glutathione; O-GlcNAc, O-linked glycan.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 02 December 2024
DOI 10.3389/fgene.2024.1508521

https://www.frontiersin.org/articles/10.3389/fgene.2024.1508521/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1508521/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1508521/full
https://gitlab.com/wanxin.lai/SOLA.git
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1508521&domain=pdf&date_stamp=2024-12-02
mailto:wanxin.lai@nmbu.no
mailto:wanxin.lai@nmbu.no
mailto:torgeir.r.hvidsten@nmbu.no
mailto:torgeir.r.hvidsten@nmbu.no
https://doi.org/10.3389/fgene.2024.1508521
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1508521


advances in deriving point of departure (POD) values from omics
data as references for setting exposure/toxicity thresholds of
environmental stressors (Thomas et al., 2012; Reynolds et al.,
2020; Xia et al., 2020; Song et al., 2020; Alcaraz et al., 2022) also
represent a promising application of omics-data to support hazard
assessments of environmental stressors. Such targeted approaches
can facilitate the collection of empirical support for established
adverse outcome pathways (AOPs) (Song et al., 2023; Gomes et al.,
2018; Song et al., 2020; Xia et al., 2020) and the identification of new
AOPs (Brockmeier et al., 2017). Nonetheless, these approaches fit
data with predefined statistical models and have missed the
discovery of novel dose-response relationships.

Most methods for analysing omics data in field of toxicology
start from established adverse outcome pathways (AOPs) with a set
of predefined genes or pathways (Song et al., 2020), and can
therefore be characterised as targeted and supervised. An
alternative is unsupervised methods, such as weighted gene co-
expression network analysis (WGCNA) (Langfelder and Horvath,
2008), that has been used to identify important pathways without
prior knowledge. There is a lack of method that can start out
explorative (unsupervised), and at the same time allow
incorporation of prior knowledge about the specific experiment
(e.g., molecular endpoints) or affected pathways (e.g., AOPs) when
appropriate. Moreover, methods typically do not include approaches
for comparing models (e.g., co-expression networks) across test
conditions (e.g., dose-response patterns or temporal responses) nor
do they allow the integration of other omics data (multi-omics)
(Langfelder and Horvath, 2008; Jeremias et al., 2018).

In the present study, we re-analysed a previously published
multi-omics (transcriptomics and metabolomics) dataset on the
chronic effects of gamma radiation on the freshwater crustacean
Daphnia magna (Song et al., 2023). We took advantage of previous
advancements in the field to demonstrate how a semi-supervised
analyses of multi-omics data can generate new insights into dose-
and time-dependent responses in D. magna exposed to radiation.
The main aims of this study were to: 1) Establish a novel data
analytical workflow for dealing with complex multi-omics data inD.
magna; 2) Demonstrate the usefulness of the new analytical pipeline
for understanding complex dose-response patterns; and 3) Identify
new pathways to support the expansion of the AOP network
for radiation.

Methods and materials

Experiment

We analysed a multi-omics dataset consisting of both
transcriptomics and metabolomics measurements from D. magna
exposed to gamma radiation. In brief, groups of 10 animals were
exposed to seven different dose rates of gamma radiation (0
(control), 0.4, 1, 4, 10, 40, 100 mGy/h) for a period of either four
or 8 days. The radiation exposure period of 8 days covers the
transitional stage of daphnids from juvenile to adulthood (visible
and unreleased embryo) while the 4 days exposure period only
covers the temporal change in the juvenile stage. Omics profiling was
performed on replicated, pooled, groups resulting in three datasets
of 28 samples (seven dose rates x 4 replicates): transcriptomics after

4 days of exposure, and transcriptomics and metabolomics after
8 days of exposure.

Data

The GEO accession ID for the transcriptome datasets is
GSE207246, uploaded by the Norwegian Institute of Water
Research (Oslo, Norway). The same team also provided the
metabolome data.

Data analysis pipeline

The data analysis workflow described in this study is available at
https://gitlab.com/wanxin.lai/SOLA.git and DiCE is available at
https://gitlab.com/hvidsten-lab/DiCE. All data figures and
statistical analysis were generated in R studio using R version
x64 4.4.1. A schematic of the workflow is presented in
Supplementary Figure S1.

Data pre-processing

Raw counts from transcriptomics were normalised using
Variance Stabilizing Transformation (vst) from DESeq2 (Love
et al., 2014).

Module identification

Gene modules were identified using WGCNA (Langfelder and
Horvath, 2008). RNA-seq data from 4- and 8-days of exposure were
processed using the function blockwiseModules with networkType =
“signed” and TOMType = “signed.” The 4-day transcriptomics data
required a soft threshold (β) of 9 to achieve scale-free topology (R2 =
0.98, mean connectivity = 94, Supplementary Figure S2). For the 8-day
data, β = 25 was used (R2 = 0.909, mean connectivity = 9.87).

Differentially expressed genes (DEGs)

DESeq2 was used to identify DEGs (adjusted p < 0.05) by fitting
a linear model to the data, contrasting low and high dose-rate
responses (0 vs. 1 and 1 vs. 100 mGy/h).

Significant modules

Significant modules were selected based on the enrichment of
DEGs in each module, using the Fisher Exact test.

Mapping and annotation

Blast2GO (v4.1) was used for mapping and sequence annotation
between D. magna and D. melanogaster (Conesa and Götz, 2008).
Transcripts were converted to Entrez IDs.
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Pathway enrichment analysis

Entrez IDs from each module were loaded into ReactomePA
(v1.38) for pathway enrichment analysis, with pathways considered
significant at p < 0.05 (Croft et al., 2010; Yu and He, 2016).

GO enrichment analysis

GO enrichment analysis of significant modules was done using
the R package clusterProfiler, with significance set at p < 0.05 (Yu
and Petyuk, 2012).

Significant modules were also analysed using BiNGO in Cytoscape
(Maere et al., 2005; Shannon et al., 2003), with enriched GO terms (BH-
FDR <0.05) visualised using EnrichmentMap (Merico et al., 2010), and
annotated with AutoAnnotate (Kucera et al., 2016).

TF motif enrichment analysis

Expressed transcripts from D. magna were converted to gene
sequences using the command line tool: NCBI datasets
(Coordinators, 2015). The 2000bp upstream region of each
coding sequences were extracted with the unix package bedops
S6 (v2.4.40) (Neph et al., 2012). The selected sequences were
piped to the AME (Analysis of Motif Enrichment) algorithm
(Buske et al., 2010) in the MEME suite (Bailey et al., 2015),
which uses several fly motif database for motif predictions. Genes
that did not belong to the selected modules were used as background
for the statistical test. The D. melanogaster protein sequence of the
transcription factor binding the over-represented motifs were
searched against NCBI to find the ortholog sequences in D.
magna. . The search was done using the software package
OrthoFinder v2.3.3 (Emms and Kelly, 2019), with DIAMOND
(v0.9.24) and the setting ‘ultra-sensitivity’.

Differential metabolites

PCA was used to assess metabolome data quality. The R package
limma was used to identify differential metabolites (adjusted p <
0.05) (Ritchie et al., 2015).

DiCE

Differential co-expression was quantified using the following
formula (Voigt et al., 2017):

• Conserved: abs(Cexp 1+Cexp 2)
2

• Specific: (abs(abs(Cexp 1) − abs(Cexp 2))
• Differentiated: (abs(Cexp 1)+abs(Cexp 2)−abs(Cexp 1+Cexp 2))

2

where C is the correlation matrix, and exp1 and exp2 refers to
the 4-day and 8-day data, respectively. Correlation thresholds for
including links in the differential co-expression network was set to
0.9, 0.7 and 0.5 for conserved, specific and differentiated co-
expression, respectively.

Integrated multi-omics pathway
enrichment analysis

D. magna was selected as the model organism in Paintomics4,
using NCBI accession IDs for transcriptomics data and KEGG
compound names for metabolomics data (Liu et al., 2022). Input
entries consisted of significant modules corresponding to low-, high-,
and linear dose-rate responsive groups, combined with DiCE genes
(conserved, specific, and differentiated correlation).

Results

Multi-omics data analysis workflow

An overview of the experiment, the data and the data analysis
workflow is presented in Figure 1 (details in Supplementary Figure
S1). Co-expression network analysis (WGCNA) was used to group
genes into modules based on similarities in their expression profiles
across dose rates (dose response curves). These modules were then
filtered based on statistically significant changes in gene expression
(DEseq2) and functionally characterised (Gene Ontology (GO),
Gene Ontology 2015; Reactome Pathway). To identify the
regulatory mechanism driving the radiation responses, we
reconstructed regulatory networks of the modules using
transcription factor motifs from related species (MEME and
OrthoFinder). To compare the transcriptional response to
gamma radiation between 4-day exposure and 8-day exposure,
we used differential co-expression analysis (DiCE). The
metabolomics data was used to identify metabolites with
statistically significant changes in abundance across dose rates
(limma). Differential metabolites and genes were then integrated
to identify metabolic pathways affected by gamma radiation
(Paintomics4). The code is freely available at SOLA (Semi-
supervised Landscapes Analysis). Taken together, this multi-
omics workflow comprehensively describes and contrasts the
molecular responses of D. magna to gamma radiation. Co-
expression modules reveal diverse types of dose response
relationships.

To describe the transcriptional changes in D. magna in response
to different dose rates of gamma radiation, we used network analysis
to group genes into modules based on similar expression profiles
(co-expression). In total, out of 23,570 transcripts (21,549 genes),
this analysis identified 38 modules containing 9,116 expressed genes
after 4 days of exposure and 36 modules containing 8,309 expressed
genes after 8 days of exposure (Supplementary Figure S2). To
separate modules describing novel dose-rate dependent responses
to radiation from those describing spurious variation in expression,
differentially expressed genes (DEGs) were identified based on three
types of DEG response patterns: genes with a monotonic increase or
decrease in expression, genes with a low dose-rate response (0 vs.
1 mGy/h), and genes with a high dose-rate response (1 vs. 100 mGy/
h) (Supplementary Table S1, Supplementary Figure S3). The gamma
radiation dose rates of 1 and 100 mGy/h were used as the molecular
endpoints (lowest dose rates that triggered molecular changes such
as reactive oxygen species (ROS) formation) based on the
preliminary discoveries by Song et al. (2020) and Gomes et al.
(2018). They found that distinct mechanisms were triggered at
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varying dose rates, contributing to varying degrees of reduced
fecundity in D. magna. Particularly, reproduction was delayed at
the low dose rate (1 mGy/h), whereas at the high dose rate
(100 mGy/h) the reproduction cycle was accelerated leading to
smaller brood sizes and consequently reduced numbers of
progenies. We classified modules as “significantly radiation
responsive” if they were enriched in at least one type of DEG
response pattern (Supplementary Figure S4). From this analysis,
9 and 13 modules from the 4 days and 8 days datasets were classified
as significant, respectively (Figure 2; Supplementary Figures S4, S5).
To functionally characterise the modules, we performed Reactome
pathway enrichment (Reactome PA) and Gene Ontology (GO)

analysis. 23% and 36% of the modules were enriched for at least
one pathway in the 4- and 8-day exposure datasets, respectively
(Supplementary Figure S6).

The modules found in the 4 and 8 days expose data reflected a
wide range of expression patterns in response to increasing doses
of gamma radiation (Figure 2). While the enriched pathways in
the 4 days modules mostly were also enriched in the 8 days
modules, the 8 days data revealed many pathways exclusive
to long exposure time (GO analysis also supported this
observation).

In the 4 days exposure data, the most distinct expression pattern
was that of the blue.4d module, which contained genes that

FIGURE 1
Workflowoverview for themulti-omics data analysis. After normalization, co-expression network analysis (WGCNA)was used to organise genes into
modules based on similarities in their expression profiles across dose-rates (dose response curves). These modules were then filtered based on
statistically significant changes in gene expression (DESeq2) and functionally characterised (Gene Ontology and Reactome Pathway). To identify the
regulatory mechanism driving the radiation responses, we reconstructed regulatory networks of the modules using transcription factor motifs from
related species (using the MEME suite with the fly motifs in the FLY (Drosophila melanogaster) database; OrthoFinder was used to map transcription
factors with motifs to D. magna). To compare the transcriptional response to gamma radiation between 4-day exposure and 8-day exposure, we used
differential co-expression analysis (DiCE). The metabolomics data was used to identify metabolites with statistically significant changes in abundance
across dose rates (limma). Differential metabolites and genes were then integrated to identify metabolic pathways affected by gamma radiation
(Paintomics 4).
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responded very specifically to high dose rates (100 mGy/h). This
module was enriched for pathways involved in growth and
development such as metabolism of RNA and translational
regulation. In the 8 days exposure data, one of the most distinct
patterns was the steady downregulation of genes in the green.8d
module with increasing dose rates. This module was enriched for
pathways such as DNA repair, “TP53 regulates metabolic genes”
(key regulator of autophagy and apoptosis). These patterns
indicate that various dose rates induce different cellular stress
responses. At low to moderate dose rates, cells activate
mechanisms aimed at repairing damage and maintaining
cellular integrity. However, at higher doses, where damage
exceeds the cell’s repair capacity, upregulation of genes involved
in growth and development might ensure the production of
essential proteins necessary for survival and recovery.
Consistent with this interpretation, TP53, which is known to
inhibit cell growth, is downregulated at high dose rates.

Taken together, these findings indicate that longer exposure to
gamma radiation affected a greater range of molecular transport,
cellular and developmental processes than shorter exposure
(Supplementary Figure S6).

Regulatory networks describe transcription
factors mediating the transcriptional
response to radiation

To gain insight into the regulatory mechanisms underlying the
transcriptional responses captured by the modules, regulatory
networks were predicted by transferring transcription factor
binding site (TFBS) information from related species. Briefly, if
the DNA sequence pattern (motif) of the TFBSs of a specific TF was
described in a related species, we searched for this pattern in the
promoters ofD. magna genes and predicted thematches to be bound

FIGURE 2
A few examples of significant modules from the (A) 4-day and (B) 8-day gamma radiation exposure data and their corresponding enriched
Reactome pathways. Each module is represented by its eigengene (the first principal component of the module); y-axis showing the normalised
eigengene value.
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by the D. magna ortholog of that TF (Supplementary Tables S2, S3).
To describe regulatory mechanisms relevant to radiation response,
the analysis was limited to significant modules and to TFs belonging

to one of these modules (activated TFs). We predicted that the TF
regulated a module if its motif was enriched in the promoters of
genes belonging to that module (Figure 3).

FIGURE 3
Regulatory networks showing transcription factors (TFs, labels on directed edges) located in significant module regulating genes in other significant
module (where the TF’smotif is enriched) for 4 days (A) and 8 days (B) exposure data. The size of the nodes corresponds to the number of enrichedmotifs
in that module. The expression profiles (eigengenes) of modules across dose rates. Three types of module patterns were identified based on overlap with
the DEGs: monotonic (M) increase/decrease, low dose responsive (L) and high dose responsive (H).
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For the 4 days exposure data, 21 activated TFs were identified of
which 11 had enriched motifs in five significant modules
(Figure 3A). For the 8 days exposure data, 39 activated TFs were
identified of which 20 had enriched motifs in seven
modules (Figure 3B).

Examining regulatory network A, the pink.4d, brown.4d,
turquoise.4d and salmon.4d modules are all predicted to contain
TFs regulating genes in the blue.4dmodule. Noticeably, the genes in
the blue.4d module are distinctly responsive to high dose rates
(100 mGy/h), while the regulators typically are in modules activated
by low dose rates. This suggests that regulators such as
haematopoietically expressed homeobox (HHEX) in the
brown.4d module inhibits the expression of genes in the blue.4d
module. Interestingly, the GATA factor Pannier (Pnr) in the
pink.4d module is also recognised as a haematopoietic regulator.
Pnr plays a role in the formation of cardiac cells and the maturation
of haemocytes in the lymph gland during the embryonic stage
(Minakhina et al., 2011). As discussed earlier, the blue.4d
module is enriched for pathways related to growth and
development, which implies a shift towards survival and recovery
at high dose rates. The regulatory network indicates that the
activation of hematopoietic regulators may play a role in the
underlying reprogramming of the transcriptome.

In the regulatory network B, a larger array of TF encoding genes
were activated (Figure 3B). One interesting example is the activation of
the TF encoding gene Lola at low dose rates (brown.8dmodule). The
regulatory network predicts that Lola regulates genes in the black.8d
module. These genes are enriched for pathways related to the nervous
system and axon guidance and gradually increase in expression with
rising dose rates (Figure 2). Supporting this prediction, ectopic
expression of Lola has demonstrated a role in axon guidance and
in preventing neurodegeneration (Dinges et al., 2017).

Taken together, our analysis of regulatory mechanism shows
that longer exposure to radiation results in considerable
reprogramming of the transcriptome mediated by TFs implicated
in regeneration and damage repair.

Differential network analysis reveals
temporal response patterns

Our modules revealed that short- and long-term exposure affect
the regulation of many of the same pathways, but with the long-term
exposure activating a wider range of pathways. We wanted to
compare the co-expression structures (modules) discovered in the
4- and 8-days data to identify similarities and dissimilarities. To this
end, we performed a differential co-expression (DiCE) analysis. All
gene-pairs were classified into three categories (or otherwise
remained unclassified): co-expressed at both exposure periods
(conserved co-expression, Figure 4A), co-expressed only at one
period (specific co-expression, Figure 4B) or positively co-
expressed in one period and negatively co-expressed in the other
(differentiated co-expression, Figure 4C). We then identified hubs
in the differential network constructed by connecting gene-pairs
with co-expression classified into one of these three categories. In
total, this network contained 609 genes with 5417 conserved
connection, 1100 specific connections and 138 differentiated
connections (Figure 4D).

The differential network is dominated by genes with conserved
co-expression in both exposure periods reflecting the similarities in
our functional characterization of the modules. The different
conserved subnetworks also highlight module-pairs from the two
exposure periods with overlapping gene content. Indeed, a detailed
analysis of all module-pairs revealed that 22 of the 38 4-day modules
(58%) and 22 of the 36 8-day modules (61%) overlapped strongly
(p < 1e-5) between the two exposure periods (Supplementary Figure
S7A). An example of a gene that is co-expressed with many genes in
both exposure periods (i.e., conserved hub) is the putative cuticular
protein (LOC116920760), which belongs to the turquoise.4d and
the brown.8d (Figure 4). This gene is central in the high degree of
overlap observed between these two modules. The importance of
this gene in response to environmental perturbations and predator
cues was previously demonstrated in insects such asD. melanogaster
and Daphnia spp (Orsini et al., 2018; Brown et al., 2014).

To understand the differences in transcriptional response
between the two exposure periods, we examined hub genes that
were specifically or differentially co-expressed in the differential co-
expression network. These included 133 genes co-expressed only
after 4 days (Supplementary Figure S7B) and 196 genes only co-
expressed after 8 days exposure to radiation (Supplementary Figure
S7C). Although these genes belong to a wide variety of modules, they
share the property that their co-expression pattern changed between
4 days and 8 days. Interestingly, these genes were found to largely be
enriched in the same functional categories (Supplementary Figure
S8), thus showing that the two exposure periods activated the same
processes through different genes.

One subnetwork of the differential network is dominated by
genes specifically co-expressed in the 8 days data. While most of
these genes reside in the turquoise.8d module, they belong to a
myriad of 4 days-modules. These genes are enriched for processes
related to the formation of heme, crucial for producing haemoglobin
(Supplementary Figures S8C, D). One example is the two highly
interconnected di (heme)-domain haemoglobin genes (Dhb1),
which specifically co-expressed with over 60 genes. Another
example is vitellogenin (Vtg2), which belong to the grey.4d and
two vitellogenin fused superoxide dismutase proteins, which
associated with reproductive strategies. Interestingly, these two
VTG-SOD genes are assigned to different modules: red.8d
containing the Br TF and putative homolog of ecdysteroid
regulated 16 kDa protein (ESR16), and yellow.8d containing
SOD1. In Bombyx mori, Br is crucial for the oocyte formation
and regulates the TFs of vitellogenin (Nojima et al., 2019), whereas
ESR16, downregulated by ecdysteroid (a regulator of Vtg2) thereby
triggering pupal diapause through lipid metabolism (Liu et al.,
2023). Collectively, these specifically co-expressed genes may
implicitly link the underlying cellular ROS defence mechanism to
accelerated oocyte maturation.

Multi-omics integration of transcriptomics
and metabolomics data

To gain further insights into the biological consequences of the
transcriptional responses to radiation, we next integrated the
transcriptomics data with metabolomics data from an 8-days
exposure experiment (Figure 5). Of 195 identified and quantified
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metabolites, we detected differential metabolites (DM) based on the
dose rates responses: 123 metabolites with a monotonic increase or
decrease in abundance, 51 metabolites with low dose-rate response
(0 vs. 1 mGy/h) and 93 metabolites with high dose-rate response
(1 vs. 100 mGy/h) (Supplementary Figure S9). Using these
differential metabolites as well as genes from the differential co-

expression network and the significant modules, we identified
133 pathways of which 50 pathways were significantly enriched:
34 were associated with low dose-rate responses, 7 with high dose
responses and 9 with monotonic increases/decreases (Figure 5A),
revealing enrichment multi-omics pathways highly relevant to our
DiCE network.

FIGURE 4
Differential co-expression analysis (DiCE) analysis. (A–C) Examples of the three types of differential co-expression described by the DiCE network:
conserved (A), specific (B) and differential (C). (D) The differential co-expression network. Every node represents a gene, the inner part of the node is
coloured according to its 4-day module, while the outer rim is coloured according to its 8-day module. Gene-pairs can be: positively correlated in both
exposure periods (Conserved + ve), positively correlated in one period and negative in the other (Differentiated) or correlated only in 4 days exposure
(Specific_4d) or only in 8 days (Specific_8d). The NCBI gene IDs for the focused DiCE genes are listed in Supplementary Table S4.
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Pathways with a monotonic response to radiation were dominated
by developmental signalling (Notch signalling pathway) pathways
related to genetic information processing such as protein translations,
mRNA syntheses and DNA repair, as well as transport between the
nuclei and the cytoplasm. The pathways “glycosaminoglycan (keratan
sulphate) biosynthesis” (high and monotonic) and “amino sugar and
nucleotide sugar metabolism” (high, monotonic and low) were linked to
multiple dose responses. Keratan sulphate typed glycosaminoglycan are
components of the ECM synthesised by the ER and Golgi in the central

nervous system, it plays a vital role in developmental and glial scar
formation after tissue injury (Zhang et al., 2006). Amino sugar and
nucleotide sugar metabolism are essential for chitin and chitosan
structure, with derivatives exhibiting free-radical scavenging,
neuroprotective and anti-inflammation characteristics as part of the
innate immune system of crustacean against oxidative damage.

Pathways associated with low dose-rate response (0–1 mGy/h)
were dominated by metabolic pathways related to energy homeostasis.
A surge of pyruvate (Figure 5B) and the accumulation of OXPHOS

FIGURE 5
(A) 50 enriched KEGG pathways grouped according to the differential abundance type: high dose-rate responsive genes/metabolites,
monotonically increasing/decreasing or low dose-rate responsive. Pathwaywith “*” did not pass the combined p < 0.05 cutoff but were enriched in either
the transcriptomics ormetabolomics data. (B)Dose-rate responsive metabolites in pathways related to reprogramming of energy metabolism during the
increase of intracellular ROS: Tricarboxylic acid (TCA) cycle, glutathione (GSH) metabolism, and other GSH precursors. Detailed biological
interpretation of the integrated multi-omics pathways (A), (B) along with differential metabolites were documented in the supplements.
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intermediate substrates (elevated NADH/NAD+ and FADH2/FAD)
were observed, indicating mitochondrial uptake inhibition and a shift
towards anaerobic and aerobic glycolysis (Warburg effect) rather than
oxidative phosphorylation (OXPHOS) (Yang et al., 2014; Liemburg-
Apers et al., 2015; Navas and Carnero, 2021). The enrichment of the
glutathione (GSH) synthesis pathway in carbon metabolism was
enriched, mediating repair mechanisms and promoting cell
survival upon ionizing radiation exposure (Estrela et al., 2006;
Pujari et al., 2009). However, the non-monotonic elevation of GSH
precursors (Figure 5B), suggests that the enrichment of fatty acid
metabolism triggered by accumulating GSH as another major source
of energy to replace glucose, promoting fatty acid beta oxidation
(Aledo, 2004).

High dose-rate responsive pathways were associated with the
remodelling of cell-bound factors within the extracellular matrix
(ECM), substrate recycling, and redox signalling (modification of
glycosphingolipid and glycosaminoglycan biosynthesis at the cell
membrane). Additionally, the enriched TGF-beta related signalling
pathways indicated alterations in gene expression of ECM synthesis
and degradation, cell differentiation during embryogenesis, and
immune system signalling during cellular injury and healing
(Patterson and Padgett, 2000; Verrecchia and Mauviel, 2002).

Taken together, different dose-response patterns in genes and
metabolites revealed distinct pathways and mechanisms of radiation
response in D. magna, suggesting a method to dissect this response
into more manageable components (see Discussion).

Discussion

In this study, we developed a semi-supervised workflow to
analyse dose-response patterns in multi-omics data and
demonstrated its utility on a previously published dataset from
D. magna exposed to gamma radiation. The workflow integrates
several methods that, although not novel in themselves, were shown
to generate novel insights. For example, our workflow was able to
predict that reproduction-relevant delay was likely caused by
disruption in haematopoiesis. This was not reported in the
previous studies, but was consistent with their bioassays.

Although co-expression network analysis is unsupervised by
nature (i.e., discovers natural groups – modules – in data with no
prior knowledge of these groups), the workflow is semi-supervised
because it facilitates the use of prior knowledge about radiation
responses to select relevant modules (in this study: low and high
dose-rate-responsive genes as well as genes with a monotonic
response). Thus, the approach starts out by performing an
explorative analysis (unsupervised), but then allows the user to
perform targeted module selection (supervised). This supervised
step is not mandatory and can be bypassed to keep the workflow
purely exploratory. The modules are also characterised using gene
function enrichment and transcriptional regulators are predicted
using transcription factor motif enrichment analysis. Finally,
pathway analysis is used to integrate metabolomics data. Taken
together, this workflow allowed us to leverage expression patterns,
metabolites, gene function, pathway information, and regulators to
dissect the molecular radiation responses of D. magna. To our
knowledge, no other method in the field of toxicology assessment
combines these elements in one user-friendly workflow.

The workflow also includes an implementation of differential
co-expression network analysis (DiCE). This method identifies
genes (hubs) that change their co-expression relationships with
many other genes between data sets and can therefore be used to
compare different experiments. In this study, we used differential
network analysis to systematically compare the modules from short-
and long-term exposure (4- and 8-days) to identify genes that were
assigned to a module in one exposure period but not in the other. For
example, the turquoise.8d module contained several hub genes
specifically co-expressed in the 8-days exposure data (Figure 4).
These genes included key players of mitochondrial heme
(porphyrin) production, such as uroporphyrinogen decarboxylase
(HemE) and coproporphyrinogen oxidase (HemF) (Ogun et al.,
2019) as well as two di (heme)-domain haemoglobin genes (Dhb1)
(Supplementary Figure S10I: 4-days and 8-days). Multiple studies
have shown an increase in the mRNA levels of Dhb1 in D. magna as
an adaptation to adverse environments, promoting high oxygen
affinity and supply to tissues and organs (Kato et al., 2001; Gorr
et al., 2004; Gerke et al., 2011). However, dysregulation of
mitochondrial heme production may result in an excess of
intracellular heme. Free heme has been associated with various
toxic effects including lysis (cell death) through lipid
peroxidation (Chiabrando et al., 2018). The specific co-expression
of HemE, HemF and Dhb1 in adult D. magna (8-days), but not in
juvenile individuals (4 days), indicate adult-specific regulation of
heme availability during radiation exposure. One candidate for this
adult-specific regulation of heme availability is the haemocytes,
which are responsible for the precursor uptake in the heme
biosynthetic pathway (Fredrick and Ravichandran, 2012).

Differential co-expression networks may also be used to identify
genes that respond robustly to radiation (biomarkers). Indeed,
previously discovered biomarkers such as Sod, Nat, and Vtg
(Song et al., 2020) were co-expressed with many other genes in
both exposure periods in our differential network (conserved hubs).
Hence, conserved hubs allow us to identify potentially novel
biomarkers with similar putative functions. Some such examples
include DNA directed RNA polymerase II Rbp1 subunits, glucose
dehydrogenase FAD, cAMP-dependent protein kinase catalytic
subunit (Campk), sodium/potassium-transporting ATPase
subunit beta subunit 1 (Atp1b1) and chorion peroxidase. (Kato
et al., 2001; Gorr et al., 2004; Gerke et al., 2011; Chiabrando et al.,
2018; Fredrick and Ravichandran, 2012; Song et al., 2020; Viant
et al., 2019). The distinct radiation response mechanisms revealed by
multi-omics pathway analysis of different dose-response patterns
suggested using our workflow to first select pathways (Figure 5A),
and then interpret these by leveraging modules and module
annotation, differential co-expression and the regulatory network.
Below, we provide examples demonstrating how this method can
yield new insights into the gamma radiation response in D. magna.

Monotonic response linked to genetic
information processing

The Notch signalling pathway was enriched in genes and
metabolites with a monotonic dose rate response in the multi-omics
pathway analysis (Figures 5A, Supplementary Figure S10B). This
pathway is known for its diverse roles in cell differentiation,
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ecdysteroid production, moulting and ROS homeostasis, and has also
been reported to promote radio-resistance under hypoxic conditions,
sharing signalling pathways with both intrinsic (initiated by
mitochondrial membrane receptors) and extrinsic (initiated by
plasma membrane receptors) apoptotic factors (Yahyanejad et al.,
2016). As the over-represented multi-omics pathways, which include
protein translations (ribosomal biosynthesis in eukaryotes), mRNA
syntheses (mRNA surveillance pathway, RNA degradation) and
DNA repair mechanisms (Fanconi Anaemia pathway, mismatch
repair), are similar to the module enrichment analysis
(Supplementary Figure S10N). This suggests that the interplay
between these pathways is likely controlled by Notch signalling.

In the 4-day regulatory networks (Figure 3), the downregulation
of the TF homolog HHEX from the monotonic blue module may
indicate decreased signalling activity of Rho GTPase cycle. The
downregulation of TF homolog HHEX from the blue.4d module of
regulatory network (Figure 3) has been previously implicated in
contributing to early stages of diapause phenotypes, including
arrested cell cycle, development, and an increase in metabolic
reserve in alfalfa leaf cutting bees (Yocum et al., 2018). These
findings coincide with observations from a previous study (Song
et al., 2020), in which an altered reproductive strategy shifted from a
delayed (4 days) to an accelerated reproduction cycle (8 days). In
crustaceans, the haematopoietic system is located close to the
vascular system to transport nutrients, hormones, and immune
cells throughout the body. The blood progenitor cells of
Drosophila are reported to be sensitive to internal and external
stress, coordinating the developmental pathways throughout the life
cycle with the activation of Notch signalling (Banerjee et al., 2019).

Collectively, the monotonic responsive group suggests that
radiation affects the genetic processing and altering the growth
with Notch signalling as the modulator.

Low dose rates responses are linked to
oxidative damage in energy homeostasis

Notch signalling can orchestrate a metabolic switch from
“normal” TCA and oxidative phosphorylation to anaerobic
glycolysis, thus increasing radiation resistance by reducing intrinsic
and extrinsic ROS (Yahyanejad et al., 2016). Interestingly, the
glycolysis pathway was found enriched in genes and metabolites
responding to low dose rate radiation (0 vs. 1 mGy/h) (Figure 5A).
Levels of pyruvate (an intermediate in glycolysis) significantly
increased in low dose-rate irradiated cells (Figure 5B) and, given
that anaerobic glycolysis takes place in the cytosol and not the
mitochondria, this could suggest reduced mitochondrial uptake of
pyruvate as the organism switches to anaerobic glycolysis
(Supplementary Figure S10M). We also found that glutathione
(GSH) and fatty acid metabolism related pathways responded to
low dose radiation (Figures 5A, Supplementary Figure S10C). These
are linked to amino acid metabolism and immune response that
counterbalance damages from cellular ROS, and are part of an energy
compensation strategy to support TCA when glucose-derived carbon
is highly demanded (Yang et al., 2014; Navas and Carnero, 2021).
Indeed, we found elevated abundances of α-ketoglutaric acid and
glutamic acid at low dose rates (Figure 5B). Moreover, the GSH
precursors (glutamine, cysteine, methionine, betaine, 2-oxoproline,

and glycine) are amino acids well known for modulating crustacean
innate immunity (Huang et al., 2020). However, insufficient GSH due
to deprivation of cysteine can trigger ferroptosis, supporting
observations include DiCE genes Dhb1 as disturbed iron
homeostasis, glutathione state, amino sugar and nucleotide sugar
metabolism (Supplementary Figures S10E, D, Q: enriched TCA and
elevated OXPHOS substrate NAD+), and lipid peroxidation in
metabolic pathways (Hao et al., 2018). Despite no metabolite trace
of GSH being found, the enriched pathway (Supplementary Figure
S10G) and constituents suggest an increase in GSH synthesis is one of
the early defences induced by ionizing radiation (Pujari et al., 2009,
Kim et al., 2003; Wang et al., 1997). The reprogramming of energy
metabolism suggested by the multi-omics pathway analysis might fuel
the radio-resistance activities captured by the network modules in
DNA repair, oxidative stress relief and autophagy (Supplementary
Figure S10L). Indeed, several low dose rate responsive modules
(brown.4d, yellow.4d, turquoise.4d, and pink.4d) were enriched
for the pathways “RHOA GTPase cycle” and “signalling by Rho
GTPases”, which are known to be associated with actin cytoskeletal
reorganisation and regulation of highly proliferating cells.

Taken together, low dose response is associated with a
reprogramming of the energy metabolism to combat increased
oxidative stress.

High dose rate response linked to cell
membranes and cell signalling

The multi-omics pathway analysis “glycosaminoglycan (keratan
sulphate) biosynthesis” (high dose and monotonic) orchestrated by
the central nervous system (CNV), is responsible for the synthesis of
ECM components created by the ER and Golgi (Supplementary
Figure S10P). Similarly, amino sugar and nucleotide sugar serve as
essential structural components of chitin and chitosan, indicating
ECM structural modification (Supplementary Figures S10H, Q).
While limited studies linking the effect of radiation with the
enriched “Glycosphingolipids (GSL) biosynthesis,” GSL carried the
hydrophilic glycan epitopes (produced in ER and Golgi) was
responsible for cell surface protein interaction (Satake and
Miyamoto, 2012). Concurrently, significant decrease in glucose
(−0.4 fold, p < 0.012), fructose (−0.08, p-val <0.003) and
verbascose (−0.5 fold, p < 5.4E-10) may also indicate signals of
substrate recycling of glycosaminoglycan and glycan (Figure 5A) in
the ECM to achieve energy homeostasis under high oxidative stress.
Other enriched pathways include the enriched of pyrimidine
metabolism (increase UMP-glucose, p < 0.002, Supplementary
Figure S10J: 8-days) to supply GSL production, TGF-beta related
signalling pathway (Supplementary Figure S10F) which controls the
signalling during ECM synthesis and degradation, and the ECM-
receptor interaction (Patterson and Padgett, 2000; Verrecchia and
Mauviel, 2002). Taken together, the pathways identified by multi-
omics integration analysis suggested that the physiological membrane
concentrations facilitate the crosstalk with ROS through redox
signalling, orchestrated by the central nervous system.

Module based pathway enrichment shows that “Golgi to ER
retro-trafficking,” “ER to Golgi Anterograde Transport,” “COPI-
mediated anterograde transport,” and “COPI-dependent Golgi-to-
ER retrograde trafficking,” along with “O-linked glycosylation”
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(occurs in Golgi) and “N-glycosylation” (occurs in ER) are highly
enriched in the darkred, salmon, and yellowmodules at 4-day data.
Shuttle protein METTL between ER and Golgi belongs to the
methyltransferase-like protein family, a highly conserved DiCE
hub gene in two exposure periods (purple.4d, pink.8d), was
regulated by RhoBTB activity which can be found in significant
modules (black.8d, red.8d, lightyellow.8d and salmon.8d) that
overlapped in both monotonic response and the high dose-rates
responsive group (McKinnon and Mellor, 2017; Qi et al., 2023). A
previous study reported that the METTL protein family is involved
in the RNA modification in Metazoa and performs a variety of
epigenetic functions (Wong and Eirin-Lopez, 2021).

These pathways are known for tracking down misfolded and
misassembled protein from ER to Golgi before glycosylation or
disulfide bond formation (Perez-Linero andMuñiz, 2015). However,
faulty proteins might escape the ER to get to the Golgi. The escaped
proteins are tracked down by coat protein I (COPI) in Golgi and
shipped back to ER through retrograde transport vesicles (Perez-
Linero and Muñiz, 2015). Interestingly, these modules tend to
increase in expression for medium doses (4–40 mGy/h) but then
drop in expression for the highest dose (100 mGy/h). This
observation suggests that protein tracking is triggered by specific
dose rates, but that the emphasis of the cellular defence shifts
towards other responses at very high dose rates.

Noteworthy, while the “O-linked glycosylation” identified through
DiCE analysis in both 4-days and 8-days exposure (Supplementary
Figure S10), is highly relevant to the functionalities of these multi-
omics pathways in triggering ECM and nucleic acid remodelling
through cell signalling (Supplementary Figures S10O, Q), it also
frequently appears among the high dose rate responsive modules in
both radiation exposures (4d: darkred, salmon, yellow, turquoise,
green, tan; 8d: brown, greenyellow, lightcyan, magenta, red,
darkturquoise). This pathway presents in various cellular
compartments (ER, Golgi apparatus, ECM, and cytoplasm) of
eukaryotes, was reported to be involved in diverse protein
modifications, including the O-linking of different glycans to serine
or threonine through mucin core-2 during glycosylation (Kusche-
Gullberg and Kjellén, 2003). In Drosophila, mRNA of O-linked
glycans, particularly mucin type (>90%), with galactosyltransferase
activity, is detected in various tissues, suggesting its significance in
neural development (Lin et al., 2008). Recent findings indicate the
attachment of extracellular O-linked glycan (O-GlcNAc) tomembrane
proteins, particularly epidermal growth factor (EGF) repeats. This
evolutionarily conserved motif plays a role in down-regulating Notch
signalling, influencing pyrimidinemetabolism (Zhang and TenHagen,
2019). O-GlcNAc addition to O-fucose on Notch receptors triggers
fringe, a glycosyltransferase controlling cellular communication by
binding to uracil-diphosphate glucose (UDP). These are thus
examples of the two exposure periods activating the same processes
triggered by high dose-rate of radiation through different genes.

In the 8-days TF regulatory network, several high dose rate
responsive modules predicted to regulate the metabolism of
macromolecules and the organ system (black and green), as well
as the signalling pathway in transmitting the messages of alteration
(salmon). Interestingly, the frequent occurrences of Br TF homologs
(Figure 3B) function as repressors of the blue module at high dose
rates, was reported induced by ecdysone, controlling the hormonal
crosstalk which influences metamorphosis, morphogenesis, and

ovarian development (Jiang et al., 2017). Recent research
indicates the interplay between ecdysteroids and juvenile
hormones can induce haemoglobin-related genes in D. magna
while also activating the male sex determining genes during
oocyte maturation (Gorr et al., 2006). A suppression in the
transcriptional expression of VTG-SOD and isoforms as these
physiological responses were connected by the same juvenoid
pathway. Another study demonstrated the disturbance in mRNA
level of the juvenile hormones and ecdysteroid regulated protein
impairs the transfer of triacylglycerols into the egg yolk (Jordão et al.,
2016). This results in increased lipid storage in the fat cells of
postspawning adult females, consequently reducing the fitness of
maternal daphnids and their offspring (Jordão et al., 2016). These
findings seem aligned with the DiCE pathway enrichment output
(heme metabolism, O-linked glycosylation), GO term (structural
constituent of cuticle, lipid transporter activity, response to oxidative
stress and etc.) and specifically co-expressed genes (Esr16, Sod, Vtg2,
Vtg-Sod, hemEF and Dhb) from the 8 days-DiCE network.

The involvement of O-linked glycosylation-related signalling,
which interacts with the Notch signalling pathways and ecdysteroid-
regulated genes, alongside haemoglobin formation within the 8-day
timeframe, collectively implies that disruptions in haematopoiesis
contribute to the disturbance of sexual maturation, egg production,
and the endocrine system resulting from prolonged radiation exposure.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

Themanuscript presents research on animals that do not require
ethical approval for their study.

Author contributions

WL: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization, Writing–original draft, Writing–review and editing.
YS: Validation, Writing–review and editing. KT: Funding
acquisition, Resources, Validation, Writing–review and editing.
TH: Conceptualization, Project administration, Resources,
Supervision, Validation, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The authors
would like to acknowledge the funding from the Research Council of
Norway’s Centre of Excellence (CoE) project 223268 “Centre for
Environmental Radioactivity (CERAD, www.nmbu.no/en/services/
centers/cerad)” and support from NIVA’s Computational

Frontiers in Genetics frontiersin.org12

Lai et al. 10.3389/fgene.2024.1508521

http://www.nmbu.no/en/services/centers/cerad
http://www.nmbu.no/en/services/centers/cerad
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1508521


Toxicology Program (NCTP, www.niva.no/nctp), Research Council
of Norway project No. 342628.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1508521/
full#supplementary-material

References

Alcaraz, A. J. G., Baraniuk, S., Mikulášek, K., Park, B., Lane, T., Burbridge, C., et al.
(2022). Comparative analysis of transcriptomic points-of-departure (tPODs) and apical
responses in embryo-larval fathead minnows exposed to fluoxetine. Environ. Pollut.
295, 118667. doi:10.1016/j.envpol.2021.118667

Aledo, J. C. (2004). Glutamine breakdown in rapidly dividing cells: waste or
investment?. Bioessays 26 (7), 778–785.

Bailey, T. L., Johnson, J., Grant, C. E., and Noble, W. S. (2015). The MEME suite.
Nucleic acids Res. 43, W39–W49. doi:10.1093/nar/gkv416

Banerjee, U., Girard, J. R., Goins, L. M., and Spratford, C. M. (2019). Drosophila as a
genetic model for hematopoiesis. Genetics 211, 367–417. doi:10.1534/genetics.118.
300223

Brockmeier, E. K., Hodges, G., Hutchinson, T. H., Butler, E., Hecker, M., Tollefsen, K.
E., et al. (2017). The role of omics in the application of adverse outcome pathways for
chemical risk assessment. Toxicol. Sci. 158, 252–262. doi:10.1093/toxsci/kfx097

Brown, J. B., Boley, N., Eisman, R., May, G. E., Stoiber, M. H., Duff, M. O., et al. (2014).
Diversity and dynamics of the Drosophila transcriptome. Nature 512, 393–399. doi:10.
1038/nature12962

Buske, F. A., Bodén, M., Bauer, D. C., and Bailey, T. L. (2010). Assigning roles to DNA
regulatory motifs using comparative genomics. Bioinformatics 26, 860–866. doi:10.
1093/bioinformatics/btq049

Chiabrando, D., Fiorito, V., Petrillo, S., and Tolosano, E. (2018). Unraveling the role
of heme in neurodegeneration. Front. Neurosci. 12, 712. doi:10.3389/fnins.2018.00712

Conesa, A., and Götz, S. (2008). Blast2GO: a comprehensive suite for functional
analysis in plant genomics. Int. J. plant genomics 2008, 619832. doi:10.1155/2008/
619832

Coordinators, N. R. (2015). Database resources of the national center for
biotechnology information. Nucleic acids Res. 43, D6–D17. doi:10.1093/nar/gku1130

Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., et al. (2010).
Reactome: a database of reactions, pathways and biological processes. Nucleic acids Res.
39, D691–D697. doi:10.1093/nar/gkq1018

Dinges, N., Morin, V., Kreim, N., Southall, T. D., and Roignant, J.-Y. (2017).
Comprehensive characterization of the complex lola locus reveals a novel role in the
octopaminergic pathway via tyramine Beta-Hydroxylase regulation. Cell. Rep. 21,
2911–2925. doi:10.1016/j.celrep.2017.11.015

Emms, D. M., and Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for
comparative genomics. Genome Biol. 20, 1–14. doi:10.1186/s13059-019-1832-y

Estrela, J. M., Ortega, A., and Obrador, E. (2006). Glutathione in cancer biology and
therapy. Crit. Rev. Clin. laboratory Sci. 43, 143–181. doi:10.1080/10408360500523878

Fredrick, W. S., and Ravichandran, S. (2012). Hemolymph proteins in marine
crustaceans. Asian Pac. J. Trop. Biomed. 2, 496–502. doi:10.1016/S2221-1691(12)
60084-7

Gerke, P., Börding, C., Zeis, B., and Paul, R. J. (2011). Adaptive haemoglobin gene
control in Daphnia pulex at different oxygen and temperature conditions.
Comp. Biochem. Physiology Part A Mol. and Integr. Physiology 159, 56–65. doi:10.
1016/j.cbpa.2011.01.017

Gomes, T., Song, Y., Brede, D. A., Xie, L., Gutzkow, K. B., Salbu, B., et al. (2018).
Gamma radiation induces dose-dependent oxidative stress and transcriptional
alterations in the freshwater crustacean Daphnia magna. Sci. total Environ. 628,
206–216. doi:10.1016/j.scitotenv.2018.02.039

Gorr, T. A., Cahn, J. D., Yamagata, H., and Bunn, H. F. (2004). Hypoxia-induced
synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia-inducible factor-
dependent. J. Biol. Chem. 279, 36038–36047. doi:10.1074/jbc.M403981200

Gorr, T. A., Rider, C. V., Wang, H. Y., Olmstead, A. W., and Leblanc, G. A. (2006). A
candidate juvenoid hormone receptor cis-element in the Daphnia magna
hb2 hemoglobin gene promoter. Mol. Cell. Endocrinol. 247, 91–102. doi:10.1016/j.
mce.2005.11.022

Hao, S., Liang, B., Huang, Q., Dong, S., Wu, Z., He, W., et al. (2018). Metabolic
networks in ferroptosis. Oncol. Lett. 15, 5405–5411. doi:10.3892/ol.2018.8066

Huang, Z., Aweya, J. J., Zhu, C., Tran, N. T., Hong, Y., Li, S., et al. (2020). Modulation
of crustacean innate immune response by amino acids and their metabolites: inferences
from other species. Front. Immunol. 11, 574721. doi:10.3389/fimmu.2020.574721

Jeremias, G., Barbosa, J., Marques, S. M., De Schamphelaere, K. A., Van
Nieuwerburgh, F., Deforce, D., et al. (2018). Transgenerational inheritance of DNA
hypomethylation in Daphnia magna in response to salinity stress. Environ. Sci. and
Technol. 52, 10114–10123. doi:10.1021/acs.est.8b03225

Jiang, J., Xu, Y., and Lin, X. (2017). Role of Broad-Complex (Br) and Krüppel
homolog 1 (Kr-h1) in the ovary development of Nilaparvata lugens. Front. Physiology 8,
1013. doi:10.3389/fphys.2017.01013

Jordão, R., Campos, B., Piña, B., Tauler, R., Soares, A. M., and Barata, C. (2016).
Mechanisms of action of compounds that enhance storage lipid accumulation in
Daphnia magna. Environ. Sci. and Technol. 50, 13565–13573. doi:10.1021/acs.est.
6b04768

Kato, K., Tokishita, S.-I., Mandokoro, Y., Kimura, S., Ohta, T., Kobayashi, M., et al.
(2001). Two-domain hemoglobin gene of the water flea Moina macrocopa: duplication
in the ancestral Cladocera, diversification, and loss of a bridge intron. Gene 273, 41–50.
doi:10.1016/s0378-1119(01)00569-8

Kim, S. K., Choi, K. H., and Kim, Y. C. (2003). Effect of acute betaine administration
on hepatic metabolism of S-amino acids in rats and mice. Biochem. pharm. 65 (9),
1565–1574.

Kucera, M., Isserlin, R., Arkhangorodsky, A., and Bader, G. D. (2016). AutoAnnotate:
a Cytoscape app for summarizing networks with semantic annotations. F1000Research
5, 1717. doi:10.12688/f1000research.9090.1

Kusche-Gullberg, M., and Kjellén, L. (2003). Sulfotransferases in glycosaminoglycan
biosynthesis. Curr. Opin. Struct. Biol. 13, 605–611. doi:10.1016/j.sbi.2003.08.002

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinforma. 9, 1–13. doi:10.1186/1471-2105-9-559

Liemburg-Apers, D. C., Willems, P. H., Koopman, W. J., and Grefte, S. (2015).
Interactions between mitochondrial reactive oxygen species and cellular glucose
metabolism. Archives Toxicol. 89, 1209–1226. doi:10.1007/s00204-015-1520-y

Lin, Y. R., Reddy, B., and Irvine, K. D. (2008). Requirement for a core
1 galactosyltransferase in the Drosophila nervous system. Dev. Dyn. official Publ.
Am. Assoc. Anatomists 237, 3703–3714. doi:10.1002/dvdy.21775

Liu, T., Salguero, P., Petek, M., Martinez-Mira, C., Balzano-Nogueira, L., Ramšak, Ž.,
et al. (2022). PaintOmics 4: new tools for the integrative analysis of multi-omics datasets
supported by multiple pathway databases. Nucleic Acids Res. 50, W551–W559. doi:10.
1093/nar/gkac352

Liu, X., Zhang, A., Chen, Z., Feng, Y., Wang, D., and Zhu, B. (2023). An ecdysteroid-
regulated 16-kDa protein homolog participates in the immune response of the crayfish

Frontiers in Genetics frontiersin.org13

Lai et al. 10.3389/fgene.2024.1508521

http://www.niva.no/nctp
https://www.frontiersin.org/articles/10.3389/fgene.2024.1508521/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1508521/full#supplementary-material
https://doi.org/10.1016/j.envpol.2021.118667
https://doi.org/10.1093/nar/gkv416
https://doi.org/10.1534/genetics.118.300223
https://doi.org/10.1534/genetics.118.300223
https://doi.org/10.1093/toxsci/kfx097
https://doi.org/10.1038/nature12962
https://doi.org/10.1038/nature12962
https://doi.org/10.1093/bioinformatics/btq049
https://doi.org/10.1093/bioinformatics/btq049
https://doi.org/10.3389/fnins.2018.00712
https://doi.org/10.1155/2008/619832
https://doi.org/10.1155/2008/619832
https://doi.org/10.1093/nar/gku1130
https://doi.org/10.1093/nar/gkq1018
https://doi.org/10.1016/j.celrep.2017.11.015
https://doi.org/10.1186/s13059-019-1832-y
https://doi.org/10.1080/10408360500523878
https://doi.org/10.1016/S2221-1691(12)60084-7
https://doi.org/10.1016/S2221-1691(12)60084-7
https://doi.org/10.1016/j.cbpa.2011.01.017
https://doi.org/10.1016/j.cbpa.2011.01.017
https://doi.org/10.1016/j.scitotenv.2018.02.039
https://doi.org/10.1074/jbc.M403981200
https://doi.org/10.1016/j.mce.2005.11.022
https://doi.org/10.1016/j.mce.2005.11.022
https://doi.org/10.3892/ol.2018.8066
https://doi.org/10.3389/fimmu.2020.574721
https://doi.org/10.1021/acs.est.8b03225
https://doi.org/10.3389/fphys.2017.01013
https://doi.org/10.1021/acs.est.6b04768
https://doi.org/10.1021/acs.est.6b04768
https://doi.org/10.1016/s0378-1119(01)00569-8
https://doi.org/10.12688/f1000research.9090.1
https://doi.org/10.1016/j.sbi.2003.08.002
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1007/s00204-015-1520-y
https://doi.org/10.1002/dvdy.21775
https://doi.org/10.1093/nar/gkac352
https://doi.org/10.1093/nar/gkac352
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1508521


Procambarus clarkii. Fish and Shellfish Immunol. 137, 108750. doi:10.1016/j.fsi.2023.
108750

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21. doi:10.1186/
s13059-014-0550-8

Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess
overrepresentation of gene ontology categories in biological networks. Bioinformatics
21, 3448–3449. doi:10.1093/bioinformatics/bti551

Mckinnon, C. M., and Mellor, H. (2017). The tumor suppressor RhoBTB1 controls
Golgi integrity and breast cancer cell invasion through METTL7B. BMC cancer 17,
145–149. doi:10.1186/s12885-017-3138-3

Merico, D., Isserlin, R., Stueker, O., Emili, A., and Bader, G. D. (2010). Enrichment
map: a network-based method for gene-set enrichment visualization and interpretation.
PloS one 5, e13984. doi:10.1371/journal.pone.0013984

Minakhina, S., Tan, W., and Steward, R. (2011). JAK/STAT and the GATA factor
Pannier control hemocyte maturation and differentiation in Drosophila. Dev. Biol. 352,
308–316. doi:10.1016/j.ydbio.2011.01.035

Navas, L. E., and Carnero, A. (2021). NAD+ metabolism, stemness, the immune
response, and cancer. Signal Transduct. Target. Ther. 6, 2. doi:10.1038/s41392-020-
00354-w

Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., Johnson, A. K.,
et al. (2012). BEDOPS: high-performance genomic feature operations. Bioinformatics
28, 1919–1920. doi:10.1093/bioinformatics/bts277

Nojima, Y., Bono, H., Yokoyama, T., Iwabuchi, K., Sato, R., Arai, K., et al. (2019).
Superoxide dismutase down-regulation and the oxidative stress is required to initiate
pupation in Bombyx mori. Sci. Rep. 9, 14693. doi:10.1038/s41598-019-51163-3

Ogun, A. S., Joy, N. V., and Valentine, M. (2019). Biochemistry, heme synthesis.

Orsini, L., Brown, J. B., Shams Solari, O., Li, D., He, S., Podicheti, R., et al. (2018). Early
transcriptional response pathways in Daphnia magna are coordinated in networks of
crustacean-specific genes. Mol. Ecol. 27, 886–897. doi:10.1111/mec.14261

Patterson, G. I., and Padgett, R. W. (2000). TGFβ-related pathways: roles in
Caenorhabditis elegans development. Trends Genet. 16, 27–33. doi:10.1016/s0168-
9525(99)01916-2

Perez-Linero, A. M., and Muñiz, M. (2015). Membrane trafficking: returning to the
fold (ER). Curr. Biol. 25, R288–R290. doi:10.1016/j.cub.2015.02.007

Pujari, G., Berni, A., Palitti, F., and Chatterjee, A. (2009). Influence of glutathione
levels on radiation-induced chromosomal DNA damage and repair in human
peripheral lymphocytes. Mutat. Research/Genetic Toxicol. Environ. Mutagen. 675,
23–28. doi:10.1016/j.mrgentox.2009.02.001

Qi, Y.-N., Liu, Z., Hong, L.-L., Li, P., and Ling, Z.-Q. (2023). Methyltransferase-like
proteins in cancer biology and potential therapeutic targeting. J. Hematol. and Oncol.
16, 89. doi:10.1186/s13045-023-01477-7

Reynolds, J., Malcomber, S., and White, A. (2020). A Bayesian approach for inferring
global points of departure from transcriptomics data. Comput. Toxicol. 16, 100138.
doi:10.1016/j.comtox.2020.100138

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic acids Res. 43, e47. doi:10.1093/nar/gkv007

Satake, M., and Miyamoto, E. (2012). A group of glycosphingolipids found in an
invertebrate: their structures and biological significance. Proc. Jpn. Acad. Ser. B 88,
509–517. doi:10.2183/pjab.88.509

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003).
Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Res. 13, 2498–2504. doi:10.1101/gr.1239303

Song, Y., Xie, L., Lee, Y., Brede, D. A., Lyne, F., Kassaye, Y., et al. (2020). Integrative
assessment of low-dose gamma radiation effects on Daphnia magna reproduction:
toxicity pathway assembly and AOP development. Sci. Total Environ. 705, 135912.
doi:10.1016/j.scitotenv.2019.135912

Song, Y., Zheng, K., Brede, D. A., Gomes, T., Xie, L., Kassaye, Y., et al. (2023).
Multiomics point of departure (moPOD) modeling supports an adverse outcome
pathway network for ionizing radiation. Environ. Sci. and Technol. 57, 3198–3205.
doi:10.1021/acs.est.2c04917

Thomas, R. S., Clewell III, H. J., Allen, B. C., Yang, L., Healy, E., and Andersen, M. E.
(2012). Integrating pathway-based transcriptomic data into quantitative chemical risk
assessment: a five chemical case study. Mutat. Research/Genetic Toxicol. Environ.
Mutagen. 746, 135–143. doi:10.1016/j.mrgentox.2012.01.007

Verrecchia, F., and Mauviel, A. (2002). Transforming growth factor-beta signaling
through the Smad pathway: role in extracellular matrix gene expression and regulation.
J. investigative dermatology 118, 211–215. doi:10.1046/j.1523-1747.2002.01641.x

Viant, M. R., Ebbels, T. M., Beger, R. D., Ekman, D. R., Epps, D. J., Kamp, H., et al.
(2019). Use cases, best practice and reporting standards for metabolomics in regulatory
toxicology. Nat. Commun. 10, 3041. doi:10.1038/s41467-019-10900-y

Voigt, A., Nowick, K., and Almaas, E. (2017). A composite network of conserved and
tissue specific gene interactions reveals possible genetic interactions in glioma. PLoS
Comput. Biol. 13, e1005739. doi:10.1371/journal.pcbi.1005739

Wang, S. T., Chen, H. W., Sheen, L. Y., and Lii, C. K. (1997). Methionine and cysteine
affect glutathione level, glutathione-related enzyme activities and the expression of
glutathione S-transferase isozymes in rat hepatocytes. J. Nutr. 127 (11), 2135–2141.

Wong, J. M., and Eirin-Lopez, J. M. (2021). Evolution of methyltransferase-like
(METTL) proteins in metazoa: a complex gene family involved in epitranscriptomic
regulation and other epigenetic processes. Mol. Biol. Evol. 38, 5309–5327. doi:10.1093/
molbev/msab267

Xia, P., Zhang, H., Peng, Y., Shi, W., and Zhang, X. (2020). Pathway-based assessment
of single chemicals and mixtures by a high-throughput transcriptomics approach.
Environ. Int. 136, 105455. doi:10.1016/j.envint.2019.105455

Yahyanejad, S., Theys, J., and Vooijs, M. (2016). Targeting Notch to overcome
radiation resistance. Oncotarget 7, 7610–7628. doi:10.18632/oncotarget.6714

Yang, C., Ko, B., Hensley, C. T., Jiang, L., Wasti, A. T., Kim, J., et al. (2014). Glutamine
oxidation maintains the TCA cycle and cell survival during impaired mitochondrial
pyruvate transport. Mol. cell 56, 414–424. doi:10.1016/j.molcel.2014.09.025

Yocum, G. D., Childers, A. K., Rinehart, J. P., Rajamohan, A., Pitts-Singer, T. L.,
Greenlee, K. J., et al. (2018). Environmental history impacts gene expression during
diapause development in the alfalfa leafletting bee, Megachile rotundata. J. Exp. Biol.
221, jeb173443. doi:10.1242/jeb.173443

Yu, G., and He, Q.-Y. (2016). ReactomePA: an R/Bioconductor package for reactor
pathway analysis and visualization.Mol. Biosyst. 12, 477–479. doi:10.1039/c5mb00663e

Yu, G., and Petyuk, V. (2012). ReactomePA: reactome pathway analysis. R. package
version 1.

Zhang, H., Uchimura, K., and Kadomatsu, K. (2006). Brain keratan sulfate and glial
scar formation. Ann. N. Y. Acad. Sci. 1086, 81–90. doi:10.1196/annals.1377.014

Zhang, L., and Ten Hagen, K. G. (2019). O-Linked glycosylation in Drosophila
melanogaster. Curr. Opin. Struct. Biol. 56, 139–145. doi:10.1016/j.sbi.2019.01.014

Frontiers in Genetics frontiersin.org14

Lai et al. 10.3389/fgene.2024.1508521

https://doi.org/10.1016/j.fsi.2023.108750
https://doi.org/10.1016/j.fsi.2023.108750
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/bti551
https://doi.org/10.1186/s12885-017-3138-3
https://doi.org/10.1371/journal.pone.0013984
https://doi.org/10.1016/j.ydbio.2011.01.035
https://doi.org/10.1038/s41392-020-00354-w
https://doi.org/10.1038/s41392-020-00354-w
https://doi.org/10.1093/bioinformatics/bts277
https://doi.org/10.1038/s41598-019-51163-3
https://doi.org/10.1111/mec.14261
https://doi.org/10.1016/s0168-9525(99)01916-2
https://doi.org/10.1016/s0168-9525(99)01916-2
https://doi.org/10.1016/j.cub.2015.02.007
https://doi.org/10.1016/j.mrgentox.2009.02.001
https://doi.org/10.1186/s13045-023-01477-7
https://doi.org/10.1016/j.comtox.2020.100138
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.2183/pjab.88.509
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.scitotenv.2019.135912
https://doi.org/10.1021/acs.est.2c04917
https://doi.org/10.1016/j.mrgentox.2012.01.007
https://doi.org/10.1046/j.1523-1747.2002.01641.x
https://doi.org/10.1038/s41467-019-10900-y
https://doi.org/10.1371/journal.pcbi.1005739
https://doi.org/10.1093/molbev/msab267
https://doi.org/10.1093/molbev/msab267
https://doi.org/10.1016/j.envint.2019.105455
https://doi.org/10.18632/oncotarget.6714
https://doi.org/10.1016/j.molcel.2014.09.025
https://doi.org/10.1242/jeb.173443
https://doi.org/10.1039/c5mb00663e
https://doi.org/10.1196/annals.1377.014
https://doi.org/10.1016/j.sbi.2019.01.014
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1508521

	SOLA: dissecting dose-response patterns in multi-omics data using a semi-supervised workflow
	Introduction
	Methods and materials
	Experiment

	Data
	Data analysis pipeline
	Data pre-processing
	Module identification

	Differentially expressed genes (DEGs)
	Significant modules
	Mapping and annotation
	Pathway enrichment analysis
	GO enrichment analysis
	TF motif enrichment analysis
	Differential metabolites
	DiCE
	Integrated multi-omics pathway enrichment analysis

	Results
	Multi-omics data analysis workflow
	Regulatory networks describe transcription factors mediating the transcriptional response to radiation
	Differential network analysis reveals temporal response patterns
	Multi-omics integration of transcriptomics and metabolomics data

	Discussion
	Monotonic response linked to genetic information processing
	Low dose rates responses are linked to oxidative damage in energy homeostasis
	High dose rate response linked to cell membranes and cell signalling

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


