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Objective: To investigate the association of specific genetic polymorphisms
(rs2371597 in STON2, rs11720822 in PDIA5, rs387907358 in WNT1, and
rs77542162 in ABCA6) in a Saudi cohort of keratoconus (KC) patients
compared to controls.

Methods: A retrospective case-control genetic association study was conducted.
The study included 99 KC patients and 193 healthy controls. Genotyping was
performed using real-time PCR with TaqMan assays. Associations between
genetic polymorphisms and KC were assessed using various genetic models
and binary logistic regression analysis.

Results: None of the tested polymorphisms showed an overall association with
KC risk. Specifically, the rs2371597 polymorphism in STON2 did not demonstrate
a significant association with KC risk across different genetic models. However, a
gender-specific effect of rs2371597 was noted: in men, the C/G genotype was
associated with a higher risk of KC, particularly in the dominant model, while no
significant association was observed in women. Age and sex were identified as
significant predictors of KC risk, but rs2371597 did not significantly affect KC risk in
regression analysis.

Conclusion: Preliminary evidence suggests a gender-specific effect of the
rs2371597 polymorphism in STON2, with an increased KC risk associated with
C/G-C/C genotypes in men which was age-dependent. This result highlights the
importance of considering population-specific genetic factors and the potential
gender-specific effects on KC susceptibility. However, these findings need
further validation with larger age- and sex-matched samples of diverse
populations.
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Introduction

Keratoconus (KC) is a progressive eye condition characterized
by the gradual thinning and protrusion of the cornea, which distorts
its normally round shape into a cone-like structure. This
deformation leads to significant visual disturbances, including
blurred vision, increased sensitivity to glare, and irregular
astigmatism (Rabinowitz, 1998). Globally, KC affects
approximately 1 in 2,000 individuals. However, prevalence rates
can vary based on geographic and demographic factors. In Saudi
Arabia, KC is relatively common, with estimates suggesting that it
affects between 1 in 375 and 1 in 1,000 people manifesting between
the early teenage years and young adulthood in most studies (Torres
Netto et al., 2018; Alzahrani et al., 2021; Gordon-Shaag et al., 2015;
Godefrooij et al., 2017). This higher prevalence might be attributed
to specific genetic and environmental influences in the region.

The exact etiology of KC is not fully understood, but it is
believed to involve a combination of environmental, biochemical
and genetic factors highlighting the complex multifactorial nature of
KC (Ferrari and Rama, 2020). Environmental influences such as sun
exposure andmechanical stress (e.g., eye rubbing) are also associated
with KC (Gordon-Shaag et al., 2015). Sex hormones have been
implicated in KC and it has been noted that KC develops earlier and
progresses more rapidly in men than women (Fink et al., 2005),
potentially interacting with genetic predispositions to influence
disease risk (Meng and Ren, 2024). There is significant interest in
the genetic basis of KC because it is innate in families, indicating a
hereditary component. Several genomic studies have highlighted the
potential role of genetic mutations and polymorphisms in
contributing to disease susceptibility and the pathogenesis of KC
(Hao et al., 2021; Bykhovskaya and Rabinowitz, 2021; Song et al.,
2024; Wonneberger et al., 2024; Khashim Alswailmi et al., 2023).
Despite extensive research, the precise genetic determinants of KC
remain elusive, making it a subject of considerable scientific interest.
Investigating the genetic variants in KC is crucial to enhance our
understanding of the molecular mechanisms underlying the disease
and for developing potential genetic markers for early diagnosis and
targeted therapeutic strategies.

Stonin 2 (STON2) gene encodes a protein crucial for
intracellular transport processes, including clathrin-mediated
endocytosis and vesicular trafficking. Though mainly recognized
for its role in cellular transport, alterations in STON2 function can
potentially contribute to neurodegenerative disorders (Luan et al.,
2011; Ma et al., 2024; Mahapatra et al., 2023; Xu et al., 2018) and
cancer (Mahapatra et al., 2023; Xu et al., 2018). Studies have found
that the SNP rs2371597 in the STON2 gene is associated with an
increased risk of developing KC and might influence cellular
functions relevant to corneal structure and integrity. The
polymorphism rs2371597 has been strongly associated with CCT
and KC development in the Japanese and Han Chinese population
(Hosoda et al., 2020; Zhang et al., 2021). Still, it has not been
investigated in other ethnicities, including the Arabs of Saudi origin.

The rs11720822 polymorphism in the PDIA5 gene is associated
with glaucoma due to its role in the unfolded protein response
(UPR) and endoplasmic reticulum (ER) stress (Carbone et al., 2011;
Ayub et al., 2014). The PDIA5 gene, encoding protein disulfide
isomerase family A, member 5, is involved in protein folding and
maintenance of cellular homeostasis (Villani et al., 2012). Given the

overlap in pathophysiological mechanisms between glaucoma and
keratoconus, including cellular stress and matrix integrity, this
genetic variant might impact KC by affecting similar underlying
processes. There are no studies directly linking the
rs11720822 PDIA5 polymorphism to KC.

The WNT1 gene is a critical component of the Wnt signaling
pathway, which regulates cell proliferation, differentiation, and
migration (Yu et al., 2024). Disruptions in the Wnt pathway
have been associated with various ocular diseases (Nguyen et al.,
2022; Karolak et al., 2020a; Wang et al., 2024). Karolack et al.
reported an accumulation of sequence variants in the Wnt signaling
pathway and identified a missense variant rs387907358 (c.1063G >
T, p.(V355F)) in the WNT1 gene in corneal tissue of Polish KC
patients suggesting a potential role in KC (Karolak et al., 2020b). In
addition, the ABCA6 gene, involved in lipid transport and
metabolism, has been associated with various metabolic disorders
(Kaminski et al., 2001; van Leeuwen et al., 2015). The
rs77542162 variant in ABCA6 was reported to be associated with
corneal biochemical properties and KC in the Europeans, suggesting
its potential role in altering corneal biomechanics and structure and,
thereby, in KC development (Khawaja et al., 2019).

Since the genetic etiology of KC is heterogeneous with multiple
genes underlying its pathogenesis, the study aimed to investigate the
association of these specific genetic polymorphisms (rs2371597 in
STON2, rs11720822 in PDIA5, rs387907358 in WNT1, and
rs77542162 in ABCA6) with KC in a cohort of Saudi patients. By
focusing onMiddle Eastern Arabs of Saudi origin, this study seeks to
provide insights into the genetic basis of KC in a demographic with a
unique genetic background, potentially revealing genetic risk factors
and contributing to understanding this complex ocular disease in
this ethnicity.

Materials and methods

Study population and design

Our retrospective case-control genetic association study adhered
to the Declaration of Helsinki guidelines. We obtained written
informed consent from all participants, and ethical approval
from the College of Medicine Institutional Review Board
(proposal number #09–659) at King Saud University in Riyadh,
Saudi Arabia.

Participants included (n = 99) patients diagnosed with
Keratoconus (KC) at the anterior segment clinic of King
Abdulaziz University Hospital, Riyadh (Abu-Amero et al., 2014).
The diagnosis was confirmed based on established clinical criteria: a
Schimpff-flow-based elevationmap demonstrating posterior corneal
elevation within the central 5 mm of ≥ +20 μm, an inferior-to-
superior (I-S) dioptric asymmetry value exceeding 1.2 diopters (D),
and a steepest keratometry measurement more significant than
47 D. All participants were unrelated. Individuals were excluded
if they had secondary KC resulting from trauma, surgery, Ehlers-
Danlos syndrome, osteogenesis imperfecta, pellucid marginal
degeneration, or if they had undergone laser-assisted in situ
keratomileusis (LASIK) resulting in ectasia. Healthy control
subjects (n = 193) were selected from the general ophthalmology
clinic, all of the Saudi nationality, and bore no ocular diseases or
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history of ophthalmic surgeries. Each control participant’s corneas
were clear upon examination, and their Schimpff-flow-based
elevation maps displayed normal findings. Control subjects who
opted not to participate were also excluded from the study (Abu-
Amero et al., 2014).

DNA preparation and genotyping

Peripheral EDTA blood was used for DNA extraction using the
QIAamp DNAMini Kit as per the manufacturer’s instructions (Cat.
No. 51306, Qiagen, Hilden, Germany). For genotyping,
commercially available TaqMan® genotyping assay mix (Cat. No.:
4331349; Applied Biosystems Inc., Foster City, CA, USA) was
used–rs2371597 in STON2 (Assay ID: C___2791741_10),
rs11720822 in PDIA5 (C__11238237_10), rs387907358 in WNT1
(C_322377343_10), and rs77542162 in ABCA6 (C_102267712_10)
according to the manufacturer’s protocol for real-time PCR (ABI-
7500, Applied Biosystems) as described previously (Kondkar et al.,
2022). Genotype calling was performed using the allele
discrimination software version 2.0.5 in ABI-7500. Polymorphism
details are shown in Table 1.

Statistical analysis

For the current study, continuous variables were analyzed using
the Mann–Whitney U-test following normality assessments by the
Kolmogorov–Smirnov test. The Hardy–Weinberg equilibrium
(HWE) deviation and genetic associations with KC was tested
using Chi-square and Fisher’s exact tests as appropriate. The
influence of risk factors—including age, sex, and genotype—on
KC was assessed through binary logistic regression analysis. All
statistical analyses were conducted using SPSS software, version 25
(IBM Inc., Chicago, IL, USA) and SNPStats online version 1.0,
accessible at SNPStats (https://www.snpstats.net/start.htm accessed
on 14 August 2024). Power calculation was performed using the
stand-alone PS program version 3.1.6. A significant threshold
p-value was set at less than 0.05. Risk estimates were reported as
odds ratios (OR) with 95% confidence intervals (CI).

Results

The demographic analysis revealed a notable age difference
between the control and KC patient groups, with controls being
significantly older, ranging from 35 to 75 years (average age
59.0 years) compared to younger KC patients ranging from 12 to

45 years (average age 25.9 years), as indicated by a p-value of <0.001
(Table 2). In contrast, the gender distribution between the two study
groups was similar and showed no significant difference (p =
0.3142) (Table 2).

Regarding the minor allele frequencies (MAFs) and their
association with KC, none of the tested polymorphisms showed
an allelic connection to the disease (Table 2). The allele frequency for
rs2371597 [C] in STON2 was similar between controls (0.38) and
KC patients (0.39), and the odds ratio (1.05) with a p-value of
0.7643 suggests no significant association with KC. The
rs11720822 [T] variant in PDIA5 showed a low frequency in
controls (0.02) and was absent in KC patients with a p-value of
0.1013, indicating no potential association with KC. Also,
rs387907358 [T] and rs77542162 [G] variants in WNT1 and
ABCA6 were absent in either group. Hence, further statistical
analysis was performed only for rs2371597 STON2
polymorphism. Overall, these results imply that the allele
frequency of the studied polymorphisms is not associated with KC.

The overall genotype analysis of the rs2371597 polymorphism in
the STON2 gene showed that this genetic variant is not significantly
associated with KC risk across different genetic models (Table 3). In
the codominant model, the odds ratios for genotypes G/G, C/G, and
C/C were close to 1, indicating no notable difference in KC risk
compared to the wild-type G/G genotype. Similarly, the dominant
model (G/G vs C/G-C/C) and recessive model (G/G-C/G vs C/C)
also showed no significant associations, with p-values greater than
the significant threshold of 0.05.

In contrast, gender-specific genotype analyses revealed an
interesting finding. In men, the C/G genotype was associated
with a significantly increased risk of KC, particularly evident in
the dominant model (OR 2.05, p = 0.042), suggesting a potential
gender-specific effect (Table 3). However, women showed no
association between rs2371597 and KC risk across any genetic
model. However, there were non-significant trends towards
decreased risk with the C/G genotype in the codominant and
dominant models. These results imply that while rs2371597 may
not broadly impact KC risk, it could have a gender-specific influence
in men, warranting further investigation.

The binary logistic regression analysis (Table 4) showed that age
was a significant predictor of KC risk. Age was inversely related to
KC risk, with each additional year of age associated with a 19%
decrease in risk, as indicated by an odds ratio of 0.81 and a highly
significant p-value of 0.000. However, it is noteworthy that since KC
typically manifests during puberty or early adulthood, the KC
participants were significantly younger than the controls.
Likewise, sex was also a significant predictor of KC, with females
having about 75% lower odds of developing KC compared to males,
as reflected in the odds ratio of 0.25 and a p-value of 0.035. In

TABLE 1 Details of the polymorphisms investigated in this study.

SNP ID Gene Location on Build GRCh38 SNP context sequence [VIC/FAM]

rs2371597 STON2 Chr.14:81407033 ACTCCAGCTGACCACACTGCAGTCA[C/G]GAAACTCTTCCCTGGAAAAGAGCCA

rs11720822 PDIA5 Chr.3:123150194 GATTTCCTTGCCCATCTAAAAATCT[C/T]TCCTTATGGCTGCCTC

rs387907358 WNT1 Chr.12:48981590 CTGCACCTTCCACTGGTGCTGCCAC[G/T]TCAGCTGCCGCAACTGCACGCACAC

rs77542162 ABCA6 Chr.17:69085137 GGCCACAGCACGTTCTCTTGAGGGC[A/G]GTACCCCAGGTGGCCCAAAACTGAA
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contrast, the rs2371597 polymorphism showed no significant
association with KC risk in the codominant or dominant models.
The OR for the C/G and C/C genotypes and the combined model of
C/G + C/C versus G/G were close to 1 with non-significant p-values

of 0.455, 0.678, and 0.451 respectively. This finding suggests
that the variant rs2371597 does not significantly influence the
risk of KC and the observed gender-effect of the polymorphism
in men is likely to be dependent on age. Thus, an age- and sex-

TABLE 2 Demographic characteristics and distribution of minor allele frequency of investigated polymorphisms in Keratoconus patient and control
participants.

Characteristics Controls (n = 193) KC (n = 99) Odds ratio (95% confidence interval) p-value HWE p-value

Age in years (SD) 59.0 (10.3) 25.9 (9.1) — <0.001a —

Male/Female, n 119/74 55/44 — 0.314b —

Minor Allele Frequency

rs2371597 [C] 0.38 0.39 1.05 (0.74–1.50) 0.764c 0.270b

rs11720822 [T] 0.02 0 — 0.101c 1.000b

rs387907358 [T] 0 0 — — —

rs77542162 [G] 0 0 — — —

aMann-Whitney U-test.
bChi-square test.
cFisher Exact Probability Test, HWE, Hardy-Weinberg Equilibrium.

TABLE 3 Genotype association analysis of polymorphisms rs2371597 in STON2 with the risk of keratoconus compared to controls under different genetic
models and according to gender.

SNP
rs2371597

Genetic
model

Genotype* Control
n (%)

KC
n (%)

Odds ratio (95% confidence
interval)

p-value§ p-value§†

Overall Codominant G/G 78 (40.4) 37 (37.4) 1.00 0.84 0.74

C/G 83 (43) 46 (46.5) 1.17 (0.69–1.99)

C/C 32 (16.6) 16 (16.2) 1.05 (0.51–2.16)

Dominant G/G 78 (40.4) 37 (37.4) 1.00 0.61 0.45

C/G-C/C 115 (59.6) 62 (62.6) 1.14 (0.69–1.87)

Recessive G/G-C/G 161 (83.4) 83 (83.8) 1.00 0.93 0.88

C/C 32 (16.6) 16 (16.2) 0.97 (0.50–1.87)

Men Codominant G/G 49 (41.2) 14 (25.4) 1.00 0.093 0.72

C/G 50 (42) 32 (58.2) 2.24 (1.07–4.70)‡

C/C 20 (16.8) 9 (16.4) 1.57 (0.59–4.22)

Dominant G/G 49 (41.2) 14 (25.4) 1.00 0.042 0.49

C/G-C/C 70 (58.8) 41 (74.5) 2.05 (1.01–4.16)

Recessive G/G-C/G 99 (83.2) 46 (83.6) 1.00 0.94 0.87

C/C 20 (16.8) 9 (16.4) 0.97 (0.41–2.29)

Women Codominant G/G 29 (39.2) 23 (52.3) 1.00 0.33 0.12

C/G 33 (44.6) 14 (31.8) 0.53 (0.23–1.23)

C/C 12 (16.2) 7 (15.9) 0.74 (0.25–2.17)

Dominant G/G 29 (39.2) 23 (52.3) 1.00 0.17 0.06

C/G-C/C 45 (60.8) 21 (47.7) 0.59 (0.28–1.25)

Recessive G/G-C/G 62 (83.8) 37 (84.1) 1.00 0.96 0.91

C/C 12 (16.2) 7 (15.9) 0.98 (0.35–2.70)

* Tested by SNPStat;‡G/G vs C/G p-value was significant (Chi-square = 4.64, df = 1, p = 0.031); § Chi-square analysis; † p-value adjusted for age and sex in overall and for age in men and women

groups.
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matched case-control study in a large cohort would be needed to
confirm these findings.

Discussion

This study investigated the association of specific genetic
polymorphisms in the STON2, PDIA5, WNT1, and ABCA6 genes
with KC in a Saudi cohort. While our findings did not reveal strong
overall associations between these polymorphisms and KC risk, we
identified a noteworthy gender-specific effect linked to the
rs2371597 polymorphism in STON2.

KC, characterized by progressive corneal thinning and
distortion, poses significant visual impairment challenges. The
heterogeneous nature of its etiology suggests that genetic factors
may vary widely across populations (Hao et al., 2021; Bykhovskaya
and Rabinowitz, 2021). Previous studies, particularly in Japanese
and Han Chinese cohorts, reported a strong association between the
STON2 rs2371597 polymorphism and KC (Hosoda et al., 2020;
Zhang et al., 2021). Our findings, however, highlight a different
dynamic in the Saudi population. The MAF of rs2371597(C) in the
KC Saudi cohort (0.39) was slightly higher than the Japanese (0.30)
and Han Chinese (0.35). Although we did not observe a general
association with KC across the cohort, the gender-specific result in
men indicates that this polymorphism may contribute to
susceptibility in specific subgroups. Specifically, men with the
C/G genotype exhibited a significantly higher risk of developing
KC, suggesting potential interactions between genetic and hormonal
factors that influence disease manifestation. For example, androgens
have been shown to impact corneal healing and epithelial integrity,
which may render males more susceptible to developing KC when
coupled with genetic predispositions (McKay et al., 2022; Nuzzi and
Caselgrandi, 2022). Furthermore, lifestyle factors and environmental
exposures may differ by sex, potentially affecting the manifestation
of genetic risk factors.

The rs2371597 polymorphism in STON2 may influence KC
through several biological mechanisms. STON2 is involved in
intracellular transport processes, including clathrin-mediated
endocytosis and vesicular trafficking (Willox and Royle, 2012;
Jung et al., 2007). Disruption in these processes could affect
cellular homeostasis and corneal cell function. Notably, the
involvement of microRNA (miRNA), miRNA-875-3p, in
regulating STON2 expression could also play a crucial role
(Wang et al., 2020). MiRNAs can modulate gene expression post-

transcriptionally, potentially affecting corneal integrity and
susceptibility to KC (Zhang et al., 2022). For instance, the altered
expression of STON2, potentially influenced by both genetic factors
like the rs2371597 polymorphism and regulatory miRNAs such as
miRNA-875-3p, might lead to impaired endocytic processes,
exacerbating corneal cell stress and contribute to KC
pathogenesis (Hao et al., 2021).

Additionally, STON2 interacts with various signaling pathways,
including those related to cellular stress responses (Ma et al., 2024;
Mahapatra et al., 2023; Xu et al., 2018). Given the shared
pathological features between KC and other ocular conditions,
alterations in STON2 could intersect with signaling pathways
involved in keratocyte apoptosis and extracellular matrix
remodeling, which are pivotal in KC development (Hao et al.,
2021). Given the complex etiology of KC, it is possible that
different environmental factors might interact with genetic
predispositions and increase KC risk (Bykhovskaya and
Rabinowitz, 2021). Accordingly, it can be speculated that
abnormal collagen synthesis due to hormonal influence (McKay
et al., 2022; Zhao et al., 2022), disruption of corneal extracellular
matrix homeostasis or intracellular protein trafficking plausibly
through miRNA due to rs2371597 polymorphism in STON2 gene
(Hosoda et al., 2020; Zhang et al., 2022) combined with age factor
may help explain why the young males in our KC cohort are more
susceptible to KC, highlighting the complex interplay of different
biological and genetic factors may work together to affect the
risk of KC.

Although STON2 can be hypothesized to have an indirect role in
KC development or progression through the speculated
mechanism(s) discussed above, however, our study does not
provide any functional or mechanistic evidence and future
studies are needed to explore the consequences of the STON2
rs2371597 polymorphism in KC pathogenesis. Besides, future
research should also explore potential epistatic and gene-
environment interactions to better understand how these
polymorphisms influence KC risk in different settings.

The low allele frequency or absence of the rs11720822 [T]
variant in PDIA5 and the rs387907358 [T] and rs77542162 [G]
variants in WNT1 and ABCA6, respectively, among KC patients of
Saudi origin suggests that these particular variants might not be
significant risk factors for KC in Saudi individuals. Several factors
might be attributed to the lack of significant associations for the
polymorphisms rs11720822 in PDIA5, rs387907358 in WNT1, and
rs77542162 in ABCA6. One key factor is population-specific genetic

TABLE 4 Binary logistic regression analysis to determine the effect of age, sex, and polymorphisms rs2371597 in codominant and dominant models on the
risk of keratoconus.

Group variables B SE Wald Odds ratio (95% confidence interval) p-value

Age −0.207 0.027 60.900 0.81 (0.77–0.85) 0.000

Sex −1.361 0.646 4.438 0.25 (0.07–0.91) 0.035

rs2371597 0.580 0.748

C/G −0.484 0.647 0.558 0.61 (0.17–0.22) 0.455

C/C −0.382 0.922 0.172 0.68 (0.11–4.15) 0.678

C/G + C/C −0.459 0.610 0.568 0.63 (0.19–2.08) 0.451
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variability, where genetic variants can differ in frequency across
populations due to historical and evolutionary influences. The
results imply that these variants may be rare or absent in the
Saudi population due to unique genetic drift or founder effects.
As a result, the allelic frequencies and functional impacts of these
polymorphisms might vary in the Saudi population compared to
those observed in previous studies involving European or Asian
cohorts (Ayub et al., 2014; Karolak et al., 2020b; Khawaja et al.,
2019). This finding highlights the importance of considering
population diversity when assessing genetic risk factors for
diseases like KC.

The study has few limitations and the results require a cautious
interpretation. The sample size examined in this study is relatively
small, with even fewer numbers in subgroup analyses, particularly in
the gender-stratified analysis. Nonetheless, our study exhibited
power of 0.8 to detect significant associations between KC and
rs2371597 STON2 polymorphism for an OR of 2.0 and α (Type I
error) of 0.05. Also, since ours is a tertiary care center there could be
a referral or selection bias in the study and may not reflect the
general Saudi population. Besides, the study lacks any mechanistic
evidence to demonstrate the role of STON2 polymorphism
rs2371597 in KC. Therefore, further multi-center genetic research
with larger and more diverse cohorts is essential to elucidate the
genetic underpinnings of KC.

In conclusion, this study did not find strong associations
between the investigated genetic polymorphisms and KC risk in
the Saudi cohort. However, there is some evidence to suggest a
gender-specific effect of rs2371597 polymorphism in the STON2
towards increased risk of KC, particularly in men, indicating that
genetic predispositions may interact with hormonal and/or
environmental factors in this population. But, these findings are
preliminary, and future research is needed to replicate these
findings in large age- and sex-matched independent cohorts
and diverse populations to elucidate the biological mechanisms
through which this polymorphism might influence KC risk,
particularly its gender-specific effects. Further investigation of
the mechanisms underlying the complex interplay between age,
genetics, and gender may help elucidate the overall disease risk
profile. Finally, this study adds to the growing body of literature on
the genetic basis of KC that may aid in developing targeted
prevention and treatment strategies.
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