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Backfat thickness (BFT) and feed conversion ratio (FCR) are important
commercial traits in the pig industry. With the increasing demand for human
health and meat production, identifying functional genomic regions and genes
associated with these commercial traits is critical for enhancing production
efficiency. In this research, we conducted a genome-wide association study
(GWAS) on a Landrace population comprising 4,295 individuals with chip data for
BFT and FCR. Our analysis revealed a total of 118 genome-wide significant signals
located on chromosomes SSC1, SSC2, SSC7, SSC12, and SSC13, respectively.
Furthermore, we identified 10 potential regions associated with the two traits and
annotated the genes within these regions. In addition, enrichment analysis was
also performed. Notably, candidate genes such as SHANK2, KCNQ1, and ABL1
were found to be associated with BFT, whereas NAP1L4, LSP1, and PPFIA1 genes
were related to the FCR. Our findings provide valuable insights into the genetic
architecture of these two traits and offer guidance for future pig breeding efforts.
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Introduction

The increasing demand for human health and food nutrition has become a challenge
due to the rapid growth of global population. Consequently, enhancing the production
efficiency of livestock products has become vital for the livestock industry and sustainable
development (Mehrabi et al., 2020). Swine is one of the most important economic livestock
in the world, providing a diverse range of products to meet human needs. The rapid
development of breeding methods, such as genomic selection, has effectively reduced the
genetic interval between pig generations and significantly improved the performance of
commercial pig breeds by increasing prediction accuracy (Knol et al., 2016). As consumers’
demand for healthier meat products increases, pigs have been bred for lower fat content and
higher lean meat. Previous research uncovered that daily energy intake is related to whole-
body fat composition in male pigs (Liu et al., 2021), and leaner pigs tend to exhibit higher
feed efficiency. Therefore, understanding the genetic architecture of these commercial traits
is essential.

Feed conversion ratio (FCR) and backfat thickness (BFT) are primary commercial
phenotypes in the pig industry and have been extensively analyzed by numerous
researchers. Candidate genes, such as phospholipase A2 group IB (PLA2G1B), have
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been reported to be associated with feed efficiency by influencing
lipid catabolism (Fu L. et al., 2020; Hollie and Hui, 2011).
Additionally, the members of the insulin-like growth factor
family, such as IGF1 and IGF2, have been found to affect the
growth rate and feed conversion efficiency (Zhu et al., 2014).
Backfat thickness is another important trait in pig production as
it impacts lean meat yield and the popularity of pork meat (Hoa
et al., 2021). Many loci on SSC1, SSC5, SSC6, SSC7, and SSC12, as
well as candidate genes such asMC4R, IGF2, and LEPR, were found
to be related to backfat thickness (Gozalo-Marcilla et al., 2021; FuM.
et al., 2023).

Over the past 15 years, genome-wide association studies
(GWASs) have been employed to investigate the linkage between
genomic markers and records of various traits (Abdellaoui et al.,
2023). This approach has facilitated the identification of numerous
quantitative trait nucleotides (QTNs) and candidate genes
associated with FCR and BFT (Li W. et al., 2022; Delpuech et al.,
2021; Ding et al., 2022; Miao et al., 2023), which provided deep
insights into these commercial traits and improved the quality of
meat production. To date, about 55,688 quantitative trait loci
(QTLs) have been released by pig QTLdb (Hu et al., 2005).
However, due to the complexity of these quantitative traits, many
QTLs remain unknown.

Using a Landrace population with genomic chip data, a total of
4,295 individuals with two important commercial traits, including
BFT at 100 kg and FCR, were analyzed in this study. Related variants
with annotated candidate genes within candidate regions were
detected using a mixed-effects linear model in a genome-wide
association study. Furthermore, linkage disequilibrium (LD)
block analysis with candidate regions and enrichment analysis of
candidate genes were also performed. The main objectives of this
research were to identify the associated genomic regions and
candidate genes of BFT and FCR within our population. In
addition, we also used a multi-omics swine database (Fu Y. et al.,
2020) to prioritize the candidate genes in order to provide an
understanding of the majority of candidate genes.

Results

Summary of phenotype and genotype data

In this research, we used a Landrace population consisting of
4,295 individuals with chip-level genotype data derived from a
functional SNP lipid chip. Summary statistics, including the
sample size, mean of phenotype values, standard deviation of
phenotypes, and coefficient of variation, are provided in Table 1.
Additionally, phenotype distribution plots are shown in
Supplementary Figure 1. The mean values for BFT (100 kg) and

FCR in our population are 10.22 and 2.3 with standard deviations of
1.99 and 0.22 and the coefficients of variation are 0.2 and 0.09,
respectively. According to Table 1 and Supplementary Figure 1, both
traits can be used for further analysis. Quality control was performed
on the genomic data. After imputation and filtering, 100,235 SNPs
on autosomes remained for the association study, excluding those
with a minor allele frequency (MAF) less than 0.01. The marker
density on each chromosome is shown in Figure 1A. LD decay
analysis was also conducted using PopLDdecay (Zhang et al., 2019),
and the results are shown in Figure 1B.

Genome-wide association studies

Genome-wide association studies were performed through a
mixed-effects linear model in the rMVP package (Yin et al., 2021).
Sex, farms, and the first three principle components were included as
fixed effects, whereas the additive genetic effects were considered the
random effects variable. A Bonferroni cutoff of 0.05/N was used as a
significant threshold, where N represents the number of SNPs. The
details of quality control and genotype data are described in
Methods. A total of 69 significant SNPs distributed on SSC1,
SSC2, SSC7, and SSC12 were identified to be associated with
backfat thickness. The details of these SNPs are shown in
Supplementary Table 1. Manhattan and quantile–quantile (QQ)
plots for BFT (100 kg) are shown in Figure 2, with a lambda value of
0.93 indicating minimal population inflation in GWAS. Based on
the LD decay results, a distance of 300 kb was determined to define
the candidate regions around each significant signal, and the
candidate regions are shown in Table 2. Regions with
overlapping areas were merged into one region, and a total of
244 genes were annotated within these candidate regions. After
annotation, the genes were prioritized by a multi-omics database
called ISwine (Fu Y. et al., 2020). Further details are provided in
Supplementary Table 3.

A total of 49 significant markers located on SSC1, SSC2, and
SSC13, respectively, were found to be related to the FCR. Manhattan
and QQ plots of FCR GWAS results are presented in Figure 3, where
the lambda value was 0.96 for FCR GWAS results. The candidate
regions and genes for the FCR are provided in Table 2, and the
details of gene annotation in the candidate regions are displayed in
Supplementary Table 4.

Gene ontology annotation analysis and
enrichment results

The candidate genes were annotated with Gene Ontology (GO)
and the Kyoto Encyclopedia for Genes and Genomes (KEGG)
database using IAnimal (Fu Y. et al., 2023). The details for the
gene annotation results of BFT are shown in Supplementary Figure 2
and Supplementary Table 5. A total of 161 GO terms were
significantly enriched, comprising 94 biological processes (BPs),
21 cellular components (CCs), and 46 molecular functions (MFs).
Notably, several significant GO terms were associated with backfat
thickness, such as positive regulation of insulin secretion (P = 0.019),
intermembrane lipid transfer (P = 0.028), and lipid transfer activity
(P = 0.041). Significant pathways, such as the MAPK signaling

TABLE 1 Summary statistics of phenotypes.

Phenotype Number Mean SDa CVb

BFT100 kg 4,295 10.22 1.99 0.2

FCR 4,295 2.3 0.22 0.09

aSD, standard deviation of each phenotype.
bCV, coefficient of variation for each phenotype.
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FIGURE 1
Density plot of genome variants and LD decay plot. (A) Genotype density plot of whole genome variants. The SNPs were counted using a 1-Mb
window size, and the legend shows different colors representing the number of SNPs. (B) LD decay plot of the Landrace population.

FIGURE 2
GWAS results of BFT (100 kg). (A) In the Manhattan plot of backfat thickness, the red line represents the Bonferroni cutoff, which was 0.05/N, and N
represents the number of variants used in the analysis. (B)QQ plot for the GWAS of backfat thickness. The x-axis represents the expected −log10(P), and
the y-axis represents the observed −log10(P).

TABLE 2 Summary of the identified candidate regions and genes of phenotypes.

Phenotype Chr Candidate region Candidate gene

BFT100 kg 1 160,473,437–161,073,437 MC4R

1 270,269,333–270,926,968 ABL1 and FIBCD1

2 0–2,457,364 ENSSSCG00000035293, SLC22A18, PTDSS2, HRAS, PNPLA2, TALDO1, BRSK2, and DUSP8

2 2,758,419–3,644,831 ANO1, FGF19, FGF3, FGF4, SHANK2, KCNQ1, and INS

7 97,275,068–98,039,684 AREL1 and VRTN

12 50,709,260–53,168,040 ARRB2, GLTPD2, TNFSF12, SLC16A13, and TP53

FCR 1 262,745,504–263,345,504 ENSSSCG00000035556, ENSSSCG00000031416

2 133,461–733,461 RNH1, TSPAN4, AP2A2, and RASSF7

2 945,702–3,644,831 KCNQ1, ANO1, SHANK2, LSP1, PPFIA1, NAP1L4, IFITM10, TNNI2, PRR33, TNNT3, MOB2, INS, SYT8, ASCL2,
CTSD, TH, and DUSP8

13 44,899,972–45,499,972 SYNPR
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pathway (P = 3.49 × 10−3), were also found in KEGG results. Genes
such as anoctamin 1 (ANO1), glycolipid transfer protein domain
containing 2 (GLTPD2), TNF superfamily member 12 (TNFSF12),
fibroblast growth factor 19 (FGF19), fibroblast growth factor 3
(FGF3), fibroblast growth factor 4 (FGF4), and
ENSSSCG00000035293 were involved in these significant terms
and pathways.

Enrichment results for the FCR are shown in Supplementary
Figure 3 and Supplementary Table 6. A total of 37 KEGG pathways
were significantly enriched (P < 0.05). We also found 132 significant

GO terms, including 94 BPs, 12 CCs, and 26 MFs. The positive
regulation of insulin secretion, involved in the cellular response to
glucose stimuli, is associated with nutrient absorption and energy
metabolism, which were significantly enriched (P = 0.0057), and
anoctamin 1 (ANO1) was involved in this process. Furthermore,
some digestion-related pathways, such as protein digestion and
absorption, were detected with suggestive P-values. Potassium
voltage-gated channel subfamily Q member 1 (KCNQ1) was
involved in this pathway and has been reported to be related to
pig feed efficiency (Xiang et al., 2024).

FIGURE 3
GWAS results of the FCR. (A) In the Manhattan plot of the feed conversion ratio, the red line represents the Bonferroni cutoff, which was 0.05/N, and
N represents the number of variants used in the analysis. (B) QQ plot for the GWAS of the FCR. The x-axis represents the expected −log10(P), and the
y-axis represents the observed −log10(P).

FIGURE 4
Linkage disequilibrium plot for SNPs within the most significant candidate regions. (A) Linkage disequilibrium plot for SNPs within Chr2:
2,758,419–3,644,831, which is the candidate region for BTF (100 kg). The red line represents the Bonferroni cutoff, whichwas 0.05/N, whereN represents
the number of variants used in the analysis. The legend on the right side represents the different R2 values of SNPs around the regions of peak SNP
detection. (B) Linkage disequilibrium plot for SNPs within Chr2: 945,702–3,644,831, which is the candidate region for BTF (100 kg); the red line
represents the Bonferroni cutoff, which was 0.05/N, where N represents the number of variants used in the analysis. The legend on the right side
represents the different R2 values of SNPs around the regions of peak SNP detection.
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Linkage disequilibrium block analysis

The LD blocks around the peak signals were analyzed and
plotted using LDBlockShow (Dong et al., 2020). These plots are
shown in Figure 4, Supplementary Figure 4, and Supplementary
Figure 5. Figure 4 highlights the most significant regions of GWAS
results for the two traits. Multiple LD blocks were observed around
the top signals, with an overlapping region between BFT and FCR
results, spanning from 2.76 to 3.64 Mb on SSC2, indicating that this
region may have an influence on both FCR and BFT.

Discussion

In our research, the GWAS approach was used to identify related
genomic regions and candidate genes for backfat thickness and feed
conversion ratio; a total of 4,295 Landraces were involved and
analyzed. Our results showed 10 candidate regions on the
genome for two commercial traits, and among the identified
candidate genes, we found many reported genes that should be
related to these two traits.

There were 46 overlapping signals between the GWAS results
for BFT and FCR, suggesting that these variants may have influences
on both traits. Some genes in these candidate regions were found to
be related to both backfat thickness and feed conversion ratio. For
example, as a member of the SHANK protein family, SHANK2
(SH3 and multiple ankyrin repeat domains 2) was reported to be
associated with childhood obesity (Comuzzie et al., 2012). It was
strongly highlighted as a candidate gene for backfat thickness in an
association study based on imputed whole-genome data from a
multi-breed population (Li J. et al., 2022). Interestingly, SHANK2
was found to be associated with average daily gain and the meat-to-
fat ratio in pooled F2-designed pigs (Falker-Gieske et al., 2019).
Since SHANK2 was also found as a candidate gene for the FCR, it
may play an important role in both backfat thickness and feed
conversion ratio.

The MAPK signaling pathway was significantly enriched in the
KEGG analysis results for backfat thickness (P = 3.49 × 10−3), which
was reported to be essential for adipogenesis as it can regulate
porcine fat deposition (Aouadi et al., 2006; Zhang et al., 2021; Wang
et al., 2022). A total of nine genes, namely, FGF3, FGF4, FGF19,
ARRB2, INS,HRAS,DUSP8, TP53, and ENSSSCG00000035293, were
involved in this pathway. Many of these genes have been reported in
previous studies. For example, INSwas identified as a candidate gene
for porcine backfat thickness (Gozalo-Marcilla et al., 2021). It has
been reported that the blood glucose level is regulated by insulin,
which is encoded by the INS gene; it can also promote cell fat storage
and affect lipid metabolism (Saltiel and Kahn, 2001). Additionally,
DUSP8 was found to be related to ham weight loss, and HRAS was
reported to be associated with backfat in pigs. Other genes related to
fat metabolism, such as PTDSS2, TALDO1, and BRSK2, have been
identified in recent studies (Gozalo-Marcilla et al., 2021; Faggion
et al., 2024; Blaj et al., 2018). ABL1 was detected as a candidate gene
for backfat traits in Yorkshire and Duroc populations (Ma et al.,
2019; Li et al., 2021). It was also found to be related to themeat-to-fat
ratio in pigs (Falker-Gieske et al., 2019). A recent GWAS in the
Yorkshire population also confirmed that ABL1 was associated with
the average daily gain (Park, 2024). The QTL on SSC1 (270 Mb) was

similar to the FIBCD1 gene, which was also found in a Swiss Large
White pig population and associated with the body mass index in
humans (Nosková et al., 2022; Pulit et al., 2019). SLC16A13 and
PNPLA2were found in the candidate region on SSC2. SLC16A13 is a
candidate gene for diabetes in mice, and its deletion will attenuate
lipid accumulation and insulin resistance (Schumann et al., 2021).
SLC22A18 is also related to lipids; knocking down SLC22A18 in mice
will reduce hepatic lipid accumulation, revealing its positive effects
on lipid accumulation (Yamamoto et al., 2024). PNPLA2 promoted
lipid accumulation in an adipogenesis test in pigs (Wang
et al., 2018).

MC4R is a major gene influencing fatness in pigs. It is also
involved in the regulation of feeding behavior and body weight in
mice and humans. A missense mutation in this gene leads to
increased fat accumulation in pigs (Ovilo et al., 2006). MC4R has
also been shown to affect growth, feed intake, and backfat thickness
in pigs, according to previous studies by Gozalo-Marcilla et al.
(2021), Lee et al. (2020), Galve et al. (2012), and Piórkowska et al.
(2010). We also found that AREL1 and VRTN on SSC7, which have
previously been associated with body length, teat number, and
intramuscular fat content (Hong et al., 2021; Park et al., 2023;
Hirose et al., 2013; Yang et al., 2016), are also associated with meat
production traits, thus influencing backfat.

Pigs are known for their outstanding olfactory abilities, which are
attributed to their abundant functional olfactory receptors (Groenen
et al., 2012). Odors affect pig reproduction and also have an influence on
early food preferences (Brunjes et al., 2016). In the region of
262,745,504–263,345,504 on SSC1, we detected ENSSSCG00000035556
and ENSSSCG00000031416 to be associated with the FCR. These genes
were enriched in anMF term of olfactory receptor activity (P = 0.015). In
addition to these two genes, nine other genes (ENSSSCG00000036003,
ENSSSCG00000032805, ENSSSCG00000032825, ENSSSCG00000027589,
ENSSSCG00000037454, ENSSSCG00000027732, ENSSSCG00000031516,
ENSSSCG00000026287, and ENSSSCG00000035439) were also enriched
in this term and may be related. However, based on the prioritization
results, ENSSSCG00000035556 and ENSSSCG00000031416 had higher
scores, suggesting that these two genes may have a more significant
impact on the FCR. The KEGG pathway analysis also identified
significant enrichment in an olfactory-related pathway, namely,
olfactory transduction (P = 0.046). ANO1 (anoctamin 1) was part of
this pathway, along with 11 other genes enriched for olfactory receptor
activity, as mentioned earlier. Olfactory receptors can perceive odor,
transform biochemical signaling events into electrical impulses, and send
them to the brain (Ma, 2007). This pathway was also found to be
significantly enriched and related to residual feed intake (Do et al., 2014).
Therefore,ANO1may affect the FCR through olfactory-related pathways.
ANO1 also affects fat deposition in pigs (Shi et al., 2022).

Feed efficiency can be largely influenced by energy metabolism
and digestion. KCNQ1 (potassium voltage-gated channel subfamily
Q member 1) was the most significantly related gene among these
candidate genes. It plays an important role in fetal development in
mice and humans, and it was reported to be associated with
development. KCNQ1 is an imprinted gene expressed paternally
in pigs (Wu et al., 2020) that influences nutrient absorption by
regulating gastric acid secretion, as well as salt and glucose
homeostasis (Sun and MacKinnon, 2020). It is also found to be
involved in a related KEGG pathway that facilitates the digestion
and absorption of proteins. In a recent multi-omics study, KCNQ1,
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along with SYT8, TNNI2, ASCL2, MOB2, DUSP8, TH, PRR33,
TNNT3, IFITM10, CTSD, and INS, was identified as a candidate
gene for the FCR in Large White boars (Xiang et al., 2024). These
genes were also observed in our results. Interestingly, KCNQ1 was
investigated in an association study as one of the candidate genes in
the backfat thickness of pigs (Lee et al., 2018). The LSP1 gene has
been reported to be associated with weight loss after dry-curing of
hams (Faggion et al., 2024). Additionally, it can stimulate myogenic
factors and influence skeletal muscle development in pigs
(Albuquerque et al., 2021). Since skeletal muscle plays a key role
in energy storage and consumption and is closely linked to energy
metabolism, LSP1 may impact muscle development, thereby
affecting pig growth and FCR. TSPAN4 and AP2A2 were also
reported to be associated with growth in pigs with LSP1 (Faggion
et al., 2024). In addition to LSP1, PPF1A1 was found to be differently
expressed in the top three canonical pathways (Liu et al., 2015). In an
epigenome-wide skeletal muscle study, NAP1L4 was detected to
have CpG positions hypermethylated within its promoters
(Ponsuksili et al., 2019). RASSF7 is a candidate gene for the FCR
and a member of the N-terminal Ras association domain family.
Studies have shown that knocking down RASSF7 restricts cell
growth (Recino et al., 2010), and a deficiency in lysine negatively
impacts the expression of RASSF7 (Wang et al., 2017). A
mitochondrial protein, RNH1, was found to be associated with
angiogenesis in porcine corpus luteum (Likszo et al., 2021).
Synaptoporin (SYNPR) is one of the tetratransmembrane
transport vesicle proteins, which is distributed in the digestive
system (Liu et al., 2022). It has been found to be genome-wide
associated with autoimmune hepatitis (AIH) in humans (Li Y. et al.,
2022). We identified SYNPR as one of the significant candidate
genes on SSC13. Therefore, it may affect feed efficiency
through digestion.

In conclusion, we performed a GWAS based on a Landrace
population to investigate two commercial traits. Our analysis
identified 118 significant signals, from which 10 candidate
regions were selected. Candidate genes within these regions were
annotated and further analyzed using GO and KEGG pathways.
Among the identified candidate genes, MC4R, SLC22A13, and
INS were associated with backfat thickness, whereas
ENSSSCG00000035556, SHANK2, KCNQ1, and LSP1 were related
to the feed conversion ratio. Overall, our research provides deeper
insights into the genetic basis of these traits and could inform future
pig breeding efforts.

Materials and methods

Collection of Landrace population and
phenotypes

A total of 4,295 Landrace individuals were used in this
research, collected from three different great-grandparent
farms of COFCO Joycome Foods Co., Ltd. All the pigs were
raised under uniform feeding and management standards during
the measurement period. Original records, including daily feed
intake and weight for each pig, were automatically collected using
the Pig Performance Testing System (Nedap, Groenlo,
Netherlands). Outliers in these records were removed. The

start and end dates of the test, along with the initial and final
weights, weight gain, and total feed consumed during the test,
were recorded. The FCR was then calculated as the total feed
intake divided by the weight gain. The backfat thickness was
measured using living B-ultrasonography at the end of the test,
and the measured traits were then adjusted to a body weight of
100 kg. Details and distribution of phenotypes are shown in
Table 1 and Supplementary Figure 1.

Genotyping, imputation, and quality control

Genomic DNA was extracted from ear tissue samples using
the Tecan Freedom EVO NGS Workstation and the MagPure
Tissue DNA KF Kit (MD5112-02), with a concentration
of ≥40 ng/µL and a quantity of ≥1 µg. After that, the samples
were genotyped using the Porcine 80K functional SNP
genotyping chip by Wuhan Yingzi Gene Co., Ltd., using target
capture sequencing technology. A total of 187,255 variants were
included in the original genotype data. Quality control was
performed using PLINK 1.90 (Purcell et al., 2007). Markers
with a call rate <90% and MAF < 0.01 and variants on the sex
chromosomes were excluded. This resulted in the retention of
100,240 variants, with a total genotyping rate of 0.99. Beagle 5.4
(Browning et al., 2018) was applied to impute genotype data.
After imputation, quality control was performed again to remove
markers with MAF < 0.01. A total of 100,235 SNPs and
4,295 individuals were left for further analysis at last.

Genome-wide association study

GWAS analysis was performed by fitting a mixed-effects linear
model using the following equation in the rMVP (Yin et al.,
2021) package:

y � Xβ + Vα + Zu + e,

where y represents the phenotypic values for FCR and BFT
(100 kg); β represents the fixed effects, including the first
three principal components, sex, and farm; α represents the
SNP vector being tested; u ~ N(0, Gσ2u) represents the vector
of random effects; and e ~ N(0, σ2e) represents the vector of
residual errors. In this study, the additive genetic relationship
matrix is imputed by the genomic relationship matrix G, derived
from all SNP variants used in the association test (VanRaden,
2008), and X, V, and Z are the incidence matrices for β, α, and u,
respectively. A significant threshold of 0.05/N was confirmed by a
Bonferroni correction, where N represents the number of SNPs.
Manhattan and QQ plots were constructed in the R
environment using rMVP.

Identification of candidate regions, genes,
and enrichment analysis

LD decay analysis was performed to detect the size of the
candidate region using PopLDdecay (Zhang et al., 2019). A
window size of 300 kb was determined based on the LD decay
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results. Significant SNPs were then annotated to nearby genes within
a 300 kb upstream or downstream range and prioritized using the
multi-omics swine knowledgebase ISwine (Fu Y. et al., 2020). The
candidate regions were uploaded in the section “Search by Region”
on ISwine to obtain a candidate gene list. Then, we used “Prioritize”
in the tool section to prioritize the candidate genes for each
commercial trait and downloaded the results. Enrichment
analyses, including GO and KEGG pathway analyses, were
performed using enrichment tools from the IAnimal database
(Fu Y. et al., 2023). The LD blocks around the top QTN plot
were generated by LDBlockShow (Dong et al., 2020).
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