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Background: Triple-negative breast cancer (TNBC) is a heterogeneous disease
with a worse prognosis. Despite ongoing efforts, existing therapeutic approaches
show limited success in improving early recurrence and survival outcomes for
TNBC patients. Therefore, there is an urgent need to discover novel and targeted
therapeutic strategies, particularly those focusing on the immune infiltrate in
TNBC, to enhance diagnosis and prognosis for affected individuals.

Methods: The gene co-expression network and gene ontology analyses were
used to identify the differential modules and their functions based on the GEO
dataset of GSE76275. The Weighted Gene Co-Expression Network Analysis
(WGCNA) was used to describe the correlation patterns among genes across
multiple samples. Subsequently, we identified key genes in TNBC by assessing
genes with an absolute correlation coefficient greater than 0.80 within the
eigengene of the enriched module that were significantly associated with
breast cancer subtypes. The diagnostic potential of these key genes was
evaluated using receiver operating characteristic (ROC) curve analysis with
three-fold cross-validation. Furthermore, to gain insights into the prognostic
implications of these key genes, we performed relapse-free survival (RFS) analysis
using the Kaplan-Meier plotter online tool. CIBERSORT analysis was used to
characterize the composition of immune cells within complex tissues based on
gene expression data, typically derived from bulk RNA sequencing or microarray
datasets. Therefore, we explored the immune microenvironment differences
between TNBC and non-TNBC by leveraging the CIBERSORT algorithm. This
enabled us to estimate the immune cell compositions in the breast cancer tissue
of the two subtypes. Lastly, we identified key transcription factors involved in
macrophage infiltration and polarization in breast cancer using transcription
factor enrichment analysis integrated with orthogonal omics.
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Results: The gene co-expression network and gene ontology analyses revealed
19 modules identified using the dataset GSE76275. Of these, modules 5, 11, and
12 showed significant differences between in breast cancer tissue between TNBC
and non-TNBC. Notably, module 11 showed significant enrichment in the WNT
signaling pathway, while module 12 demonstrated enrichment in lipid/fatty acid
metabolism pathways. Subsequently, we identified SHC4/KCNK5 and ABCC11/
ABCA12 as key genes in module 11 and module 12, respectively. These key genes
proved to be crucial in accurately distinguishing between TNBC and non-TNBC, as
evidenced by the promising average AUC value of 0.963 obtained from the logistic
regression model based on their combinations. Furthermore, we found compelling
evidence indicating the prognostic significance of three key genes, KCNK5,
ABCC11, and ABCA12, in TNBC. Finally, we also identified the immune cell
compositions in breast cancer tissue between TNBC and non-TNBC. Our
findings revealed a notable increase in M0 and M1 macrophages in TNBC
compared to non-TNBC, while M2 macrophages exhibited a significant
reduction in TNBC. Particularly intriguing discovery emerged with respect to the
transcription factor FOXM1, which demonstrated a significant regulatory role in
genes positively correlated with the proportions of M0 and M1macrophages, while
displaying a negative correlation with the proportion of M2 macrophages in breast
cancer tissue.

Conclusion: Our research provides new insight into the biomarkers and immune
infiltration of TNBC, which could be useful for clinical diagnosis of TNBC.
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Introduction

Breast cancer (BC) is the most prevalent malignancy affecting
women globally and remains a significant contributor to cancer-
related deaths. Over 3 million new cases of breast cancer and
1 million deaths will occur each year worldwide by the year 2040
(Arnold et al., 2022). TNBC constitutes a particularly aggressive and
invasive subtype characterized by the absence of estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) expression (Agarwal et al., 2016). TNBC
occurs in about 15%–20% of all breast cancer, which are different
from non-TNBC with prognosis and therapeutic targets. Compared
with other breast cancer subtypes, TNBC is always related to worse
prognosis and lower overall survival rate (Dietze et al., 2015). The
lack of hormone receptors and HER2 expression can make it more
difficult to cure so that making therapeutic targeting difficult and
combination therapy is needed (Wang Y. et al., 2019; Dong et al.,
2018). The current main treatment of TNBC is still chemotherapy,
but a significant number of patients are drug resistant, leading to
poor therapeutic effect, which was not satisfactory (Hu et al., 2023;
Yang et al., 2021). Consequently, the identification of novel
therapeutic targets holds paramount importance in augmenting
the prognosis and treatment efficacy of TNBC (Zhu et al., 2023).

Weighted gene co-expression network analysis (WGCNA) has
demonstrated wide-ranging applications in biomarker discovery,
including, but not limited to, laryngeal cancer (Liu et al., 2019), lung
cancer (Wang S. et al., 2023) and advanced gastric cancer (Wang
W-J. et al., 2019). Previous studies have revealed that AMD1, EN1,
and VGLL1 are likely to contribute to breast cancer progression and
an unfavorable prognosis (Yang et al., 2021). Additionally, IL6ST,

HMGA1, FOXM1, and MYBL2 have been identified as potentially
playing an important role in TNBC progression using the TNBC
gene expression dataset GSE76275 (Jia et al., 2021; Fiscon et al.,
2021). Despite this progress, the potential biomarkers and their
mechanisms involved in breast cancer subtypes have not been fully
elucidated. Furthermore, the involvement of these potential marker
genes in tumor-associated macrophages (TAMs) has not been
reported. TAMs, one of the main cell types in the tumor
immune microenvironment, play a pivotal role in cancer
progression (Wang XQ. et al., 2023; Chen et al., 2023). TAMs
are innate immune effector cells that are recruited to tumor
tissues, contributing to tumor growth and metastasis by
promoting angiogenesis and suppressing adaptive immunity (Niu
et al., 2016). TAMs represent a heterogeneous and plastic
population, within which polarized TAMs can be identified as
M1-and M2-like macrophages (Gordon and Taylor, 2005).
Recently, some clinical and experimental research has discovered
that M1-like macrophages release proinflammatory cytokines and
chemokines, such as tumor necrosis factor (TNF-α), interleukin (IL-
1β), and CXCL10, exerting antitumor activity (Pe et al., 2022). In
contrast, M2-like macrophages produce a high number of anti-
inflammatory factors, which may lead to the immune escape of
tumor cells and contribute to breast cancer progression (Zhang et al.,
2024). The immunosuppressive role of M2 macrophages in TNBC
indicates their potential as therapeutic biomarkers (Zhang et al.,
2024). However, differences between M1-and M2-like macrophages
in TNBC and non-TNBC, especially the biomarkers of M1-and M2-
like macrophages in TNBC, are rarely reported. Consequently, a
comprehensive characterization of the immune infiltrate in TNBC
holds significant promise for identifying patients most likely to
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benefit from immunotherapy and identifying resistance factors that
could serve as potential therapeutic targets.

In this study, we conducted a comprehensive investigation
aimed at elucidating the molecular characteristics and immune
microenvironment of breast cancer subtypes, with a particular
focus on TNBC and non-TNBC. To begin, we employed the
gene co-expression network and gene ontology analyses to
identify the differential modules and the function of these
modules based on the GEO dataset of GSE76275. Next, we
identified key genes associated with these subtypes and evaluated
their potential as diagnostic biomarkers through ROC curve
analysis. Furthermore, we performed relapse-free survival (RFS)
analysis on these key genes using the Kaplan-Meier plotter online
tool to determine their prognostic value and clinical relevance.
Additionally, we estimated the immune cell compositions in
breast cancer tissue between TNBC and non-TNBC using the
CIBERSORT algorithm. Finally, we identified key transcription
factors involved in macrophage infiltration and polarization in
breast cancer through transcription factor enrichment analysis by
integrating orthogonal omics data.

Materials and methods

Data collection and processing

The GSE76275 dataset was retrieved from the GEO database and
comprises 198 triple-negative breast cancer tissue samples and
67 non-triple-negative breast cancer tissue samples (Burstein
et al., 2015). To ensure complete and high-quality data for
subsequent analyses, a filtering procedure was carefully
conducted to exclude entries lacking age and BMI information.
This rigorous filtering step ensured that only samples with the
necessary clinical attributes were retained for further
investigation, thereby enhancing the reliability and robustness of
our analysis.

Weighted gene co-expression network
analysis (WGCNA)

Weighted gene co-expression network Analysis (WGCNA) for
microarray data was constructed and analyzed using the WGCNA
package in R (Zhang and Horvath, 2005). In this study, we utilized
20,529 genes to construct the gene co-expression network.
Confounding factors, including age and BMI, were adjusted for in
the construction of the gene co-expression network. A power
threshold of 8 was selected to calculate the weighted adjacency
matrix, with the thresholding parameter defined using a scale-free
topology with a cutoff R2 = 0.8. This cutoff was chosen to be the closest
to or slightly above 0.8 to establish a biologicallymeaningful and stable
network for further analysis. We identified gene modules using the
‘hybrid’ method with parameters mergeCutHeight = 0.25 and
minModuleSize = 40. Modules were identified as branches in the
dendrogram using the Dynamic Tree Cut algorithm (Rezaie et al.,
2023). Subsequently, we used topological overlap measures (TOM) to
reveal the interconnectedness and functional relationships among
genes within the network (Li and Horvath, 2007).

Evaluation of immune cells between TNBC
and Non-TNBC

To identify the different immune cell compositions of breast
cancer tissue between TNBC and non-TNBC, we employed the
CIBERSORT algorithm, using the leukocyte signature matrix
(LM22) as the reference gene expression signatures (Newman
et al., 2015). CIBERSORT is an algorithm that utilizes a reference
gene expression signature matrix (LM22), representing
22 immune cell types, to deconvolve complex tissue
expression data into estimated immune cell fractions
(Newman et al., 2015). It employs support vector regression
to minimize errors in predicting cell type fractions, even when
cell types have highly similar gene expression profiles. We
obtained bulk-RNA sequencing data from breast cancer tissue
for TNBC and non-TNBC from the GSE76275 dataset for our
analysis. Using R software, we fully analyzed and visualized the
abundance and proportion of immune cell members among
different groups.

GO and KEGG enrichment analyses

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
genomes (KEGG) pathway enrichment analysis were performed
using “clusterProfile” package in R software (Yu et al., 2012). The
Benjamin-Hochberg approach was used to correct multiple tests and
select the significant terms and pathways. The adjusted
p-value <0.05 was used as a threshold of significance for the
enriched terms and pathways for target genes.

Transcription factor enrichment analysis by
orthogonal omics integration

To obtain the key transcription factors of genes that associated
with macrophage infiltration and polarization in breast cancer, we
performed transcription factor enrichment analysis by orthogonal
omics integration following Chip-X Enrichment Analysis Version 3
(ChEA3) (Keenan et al., 2019). TF enrichment analysis (TFEA)
prioritizes transcription factors based on the overlap between given
lists of differentially expressed genes, and previously annotated TF
targets assembled from multiple resources. The multiple resources
including ChIP-seq experiments from ENCODE, ReMap, and
individual publications; co-expression of TFs with other genes
based on processed RNA-seq from GTEx and ARCHS4; co-
occurrence of TFs with other genes by examining thousands of
gene lists submitted to the tool Enrichr; and gene signatures
resulting from single TF perturbations followed by genome-wide
gene expression experiments.

Prognostic analysis of triple negative
breast cancer

A Kaplan Meier plotter (https://kmplot.com) database,
discovery based on meta-analysis, and validation of online
survival biomarker tools were used to study the survival of
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TNBC in GEO, the European Archives of Genomic Phenomena
(EGA), TCGA, and METRIC databases.

Protein-protein interaction network analysis

The search tool for retrieving interacting genes is a database of
known and predicted protein-protein interactions that can be used to
predict and track the protein–protein interactions network. This study
used the STRINGdatabase to construct the PPI network ofmacrophage
infiltration and polarization related genes in breast cancer.

Statistical analysis

Data statistical analysis and visualization were performed using
R software. The correlation among different continuous variables
were obtained by Spearman’s correlation coefficient. Multiple
comparisons between categorical variables using ANOVA
analysis, and t.test were applied for statistical analysis between

different groups. The p-value <0.05 was considered as
significantly statistical difference in this study.

Results

Preprocessing of data and descriptive
statistics analysis

To obtain more complete clinical information on TNBC and
non-TNBC, we removed samples with incomplete age and BMI
data. A total of 201 samples, comprising 149 TNBC and 52 non-
TNBC samples, were retained for subsequent analyses. All the
samples were recorded age (average: 56.5, range: 26-87) and BMI
(average: 28.1, range: 16-56) (Figure 1A; Supplementary Table S1).
To assess any potential disparities in age and BMI between TNBC
and non-TNBC breast cancer tissues, we conducted a comparative
analysis, which indicated no significant differences in age or BMI
distribution between the two subtypes (Figure 1B). To control for
the effect of age and BMI on gene expression, we used a linear mixed

FIGURE 1
The detail information of breast cancer tissue between TNBC and non-TNBC. (A) The distribution of age and BMI in TNBC and non-TNBC. (B)
Boxplot of age and BMI between TNBC and non-TNBC. The “ns” represents there is no significant difference between Non-TNBC and TNBC group. (C)
Scatter plot of the first two principal component vectors of the gene expression profiles of samples from TNBC and non-TNBC, which are highlighted
using different colors. Red represents TNBC, blue represents non-TNBC.
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model to correct for confounding factors, including age and BMI.
After correction, age and BMI had minimal effect on gene
expression, thus preserving the integrity of our downstream gene
expression analysis (Supplementary Figure S1). Lastly, to examine
global gene expression patterns between TNBC and non-TNBC, we

conducted principal component analysis (PCA) on the
GSE76275 dataset comprising 20,529 genes (Figure 1C). The
PCA revealed distinct clustering of TNBC and non-TNBC breast
cancer tissue, underscoring substantial differences in gene
expression profiles between these two breast cancer subtypes.

FIGURE 2
Weighted gene co-expression network constructed in breast cancer tissue between TNBC and non-TNBC. (A) Gene co-expression network
module in breast cancer tissue between TNBC and non-TNBC. (B) The numbers of modules and genes in weighted gene co-expression network
modules based on the dataset of GSE76275. (C) A heatmap of the correlations between 19module principal components (PCs) and 3 cancer-related traits
including tumor grade, tumor size and the subtypes of breast cancer.
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Identification of the TNBC related gene co-
expression modules

To elucidate the potential functions and underlying mechanisms
of key genes in breast cancer tissue between TNBC and non-TNBC,
we constructed a weighted gene co-expression network using the
GSE76275 dataset. For creating a robust co-expression network, we
applied a R2 cutoff of 0.80 and set the soft-threshold power (β) to 8.

Consequently, we constructed adjacency matrices to capture
comprehensive co-expression information across the network.
This analysis successfully derived 19 gene modules, each
containing more than 40 genes (Figures 2A, B). Subsequently, we
built additional co-expression networks associated with tumor
grade, tumor size, and breast cancer subtypes by employing the
Pearson correlation coefficient within these 19 gene modules
through WGCNA analysis. Our results revealed that modules 5,

FIGURE 3
Function annotation and key genes of TNBC related modules. (A, B) The top 10 enrichment pathways of genes in module11 and module12. (C, D)
Venn diagrams showing common genes between genes A and genes B in module 11 and module 12, respectively. Genes A represents with exhibit an
absolute correlation coefficient >0.80 within the eigengene of the enriched module and significantly correlated with the subtypes of breast cancer, and
Genes B represents top 10 genes significantly associated with the subtypes of breast cancer. (E) The ROC curve of four essential gene combinations
is based on the logistic regression model.
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11, and 12 displayed significant correlations with the breast cancer
subtypes, as evidenced by correlation coefficients greater than
0.5 and adjusted p-values less than 0.05 (Supplementary Table
S2). Notably, module 11 also exhibited a significant negative
correlation with tumor grade. However, no significant
correlations were observed between the gene modules and tumor
size (Figure 2C). These findings indicate the potential functional
relevance of the identified gene modules in breast cancer
pathogenesis and further underscore the importance of these
genes in distinguishing between TNBC and non-TNBC subtypes.

Function annotation and key genes of TNBC
related modules

Next, we performed bioinformatics analysis of breast cancer-
related modules using clusterProfiler package in R software. The
results highlighted two distinct modules, module 11 and module 12,
each associated with specific biological processes (Figure 3A;
Supplementary Table S3). Genes within module 11 were found to
be involved in the regulation of canonical Wnt signaling, tube
formation, and epithelium development, while those in module
12 were primarily associated with fatty acid metabolic processes,
small molecule catabolic processes, and organic acid catabolic
processes. (Figure 3B; Supplementary Table S3). These results
indicated that these pathways are essential to involve in the
progression of TNBC. Moreover, we identified 9 genes within the
enriched modules by selecting those with module membership
(MM) absolute correlation coefficients greater than 0.80, and
significant correlations with breast cancer subtypes in module 11.
The overlapping genes between these 9 genes and the top 10 genes
with significant correlation with breast cancer subtypes were
considered as key genes in module 11. The identification process
for the 2 key genes in module 12 is consistent with that used for
identifying key genes in module 11. Specifically, SHC4 and
KCNK5 were identified as crucial key genes in module 11, while
ABCC11 and ABCA12 were identified as crucial key genes in
module 12 (Figures 3C, D). Notably, SHC4 and
KCNK5 exhibited significantly higher gene expression levels in
TNBC compared to non-TNBC (Supplementary Figure S2), while
ABCC11 and ABCA12 displayed lower expression levels in TNBC
(Supplementary Figure S3). Finally, we evaluated the diagnostic
potential of these key genes using receiver operating characteristic
(ROC) curve analysis with three-fold cross-validation. The results
showed that the AUC of the three verification sets in the logistic
model constructed by the 3-fold cross-validation method was 0.973,
0.937 and 0.978 with an average AUC of 0.963 (Figure 3E). Taken
together, these results suggest that these four key genes play key roles
in the progression of TNBC which may contribute potential targets
for the diagnosis, treatment, and prognosis assessment of TNBC.

The association between key targets and
prognosis of TNBC

To elucidate the prognostic implications of the four identified
genes in TNBC, we performed a comprehensive prognostic analysis
using the Kaplan-Meier plotter online tool. The results indicated

that three out of the four genes significantly impact TNBC
prognosis, as shown in Figure 4. Specifically, KCNK5, ABCC11,
and ABCA12 emerged as key prognostic markers with substantial
implications for clinical management and treatment decisions in
TNBC (Figure 4). These findings underscore the potential clinical
relevance of these three target genes in predicting patient outcomes
and highlight their utility as prognostic indicators in TNBC.

Identification of the immune cell
compositions between TNBC and
Non-TNBC

The CIBERSORT deconvolution algorithm was exploited to
access the immune cell compositions in breast cancer tissue
between TNBC and non-TNBC. We summarized the results
obtained from the remaining 201 breast cancer tissue between
TNBC and non-TNBC in Figure 5A. Compared to breast cancer
tissue of non-TNBC, the breast cancer tissue in TNBC exhibited
higher infiltration of M0 and M1 macrophages, lower infiltration of
M2 macrophages. In addition to macrophages, there were seven
immune cell types also exhibiting significantly differential
proportions in breast cancer tissue between TNBC and non-
TNBC including plasma cells, T cells CD8, T cells CD4 memory
activated, NK cells resting, mast cells resting, eosinophils and
neutrophils (Figure 5B). Nonetheless, none of these immune cell
types exhibited proportions greater than those of macrophages,
suggesting that the infiltration and polarization of tumor-related
macrophages are crucial distinguishing features in breast cancer
tissue between TNBC and non-TNBC. Additionally, we calculated
the Pearson correlation coefficient between different macrophages
and found predominantly negative and significant correlations in
breast cancer tissue between TNBC and non-TNBC (Figure 5C).
Finally, we depicted the distribution of different macrophage types
in TNBC and non-TNBC breast cancer tissues (Figure 5D). On
average, TNBC samples showed higher proportions of
M0 macrophages (20.5%) and M1 macrophages (12.1%)
compared to non-TNBC, where M0 and M1 macrophages
averaged 15.9% and 9.79%, respectively. Conversely, the average
proportion of M2 macrophages in TNBC (13.0%) was notably lower
than in non-TNBC (18.6%). Together, these findings highlight
macrophage infiltration and polarization as crucial differentiating
features between TNBC and non-TNBC breast cancer tissue.

Identification of transcription factors
associated with immune infiltration

To identify transcription factors that affect macrophage
infiltration and polarization in breast cancer tissue, we first
identified 179 genes displaying a positive correlation with the
proportions of M0 and M1 macrophages, while concurrently
exhibiting a negative correlation with the proportion of
M2 macrophages. Notably, 47 of these genes demonstrated
significant differential expression between TNBC and non-TNBC
samples (Figure 6A). Subsequently, a Protein-Protein Interaction
(PPI) network analysis was conducted to explore the interaction
patterns among the 47 differentially expressed genes, resulting in the
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identification of 24 genes exhibiting substantial connectivity degrees
based on the STRING database (Figure 6B). These results indicated
that these 24 genes were considered potentially crucial elements in
the network associated with tumor-associated macrophages (TAMs)
in breast cancer tissues, specifically distinguishing between TNBC
and non-TNBC. Further investigations focused on transcription
factor enrichment analysis, which unveiled the top 10 transcription
factors governing the expression of the 24 identified genes. Among
these, FOXM1 stood out due to its significant differential expression
in breast cancer tissues between TNBC and non-TNBC, being
notably upregulated in TNBC samples (Figure 6C;
Supplementary Figure S4). Finally, we conducted functional
enrichment analysis on the genes regulated by FOXM1 and
found that they were significantly enriched in the nuclear

division, organelle fission, and chromosome segregation pathway
(Figure 6E). Notably, a substantial positive correlation emerged
between the proportion of FOXM1 and M1 macrophages, while
conversely, a significant negative correlation was observed with the
proportion of M2 macrophages (Figures 6F, G). These results
emphasized the crucial role of FOXM1 in the progression of
TNBC, modulating genes significantly associated with
macrophage infiltration and polarization.

Discussion

The subtypes of breast cancer not only have different clinical
manifestations, but also have different prognostic significance.

FIGURE 4
The KM plotter online cancer survival analysis tool (http://kmplot.com/analysis/) to evaluate the Relapse-free survival (RFS) in six key genes. (A)
SHC4, (B) KCNK5, (C) ABCC11 and (D) ABCA12 in samples with TNBC on Kaplan Meier plotter analysis.
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Among these subtypes, triple-negative breast cancer (TNBC) has
garnered significant attention in both clinical and experimental
research. Due to its high-risk biological features and limited
specific treatment options. Consequently, there is a pressing
need to gain a deeper understanding of TNBC biology to
identify potential therapeutic targets. In this study, we aimed to
recognize meaningful prognostic biomarkers for TNBC by
analyzing the GSE76267 dataset using bioinformatic methods.
Firstly, we constructed weighted gene co-expression networks
based on gene expression profiles of breast cancer tissue,
considering 149 TNBC and 52 non-TNBC cases. By identifying
key genes and modules within these networks, we sought to
pinpoint specific genes associated with TNBC prognosis. The
prognostic significance of these key targets was validated using
the Kaplan-Meier tool, providing valuable insights into their
potential clinical relevance. Furthermore, we also investigated
the immune cell composition of breast cancer tissue between
TNBC and non-TNBC. Additionally, we conducted an in-depth
analysis to identify the transcription factors responsible for
regulating genes associated with macrophage infiltration and
polarization in breast cancer tissue.

Utilizing WGCNA, we diligently investigated the associations
between gene modules and subtypes of TNBC. Our analysis
revealed a substantial correlation between modules 5, 11, and
12 and the specific TNBC subtypes, as evidenced by correlation
coefficients exceeding 0.5 and adjusted p-values below 0.05. These

compelling findings indicate that the genes encompassed within
these modules play pivotal roles in the intricate progression of
TNBC. Of particular interest, module 11 emerged as an enriched
hub of biological processes, encompassing the regulation of
canonical Wnt signaling, tube formation, and epithelium
development. Notably, each of these processes has been
extensively implicated in the pathogenesis of TNBC. For
instance, Wnt signaling regulates a variety of cellular processes,
including cell fate, differentiation, proliferation, and stem cell
pluripotency. Perturbations in Wnt signaling have been
implicated in the progression of TNBC, signifying its functional
relevance in this aggressive breast cancer subtype (Pohl et al., 2017).
In previous studies, it has been reported that tube-formation assay
disclosed the function of PCAT6 on angiogenesis (Dong et al.,
2020). These results indicated that tube formation mediated
angiogenesis is involved in the progression of TNBC.
Concurrently, module 12 emerged as a vital repository of genes
primarily involved in fatty acid metabolic processes, small molecule
catabolic processes, and organic acid catabolic processes. The
results demonstrated that fatty acid metabolic process might be
potential differential pathways in breast cancer tissue between non-
TNBC and TNBC. Fatty acid synthesis and fatty acid oxidation are
generally viewed as counterparts in metabolic reprogramming of
tumor cells (Ma et al., 2018). In previous reported that inhibition of
fatty acid oxidation as a therapy for MYC-overexpressing triple-
negative breast cancer. In summary, our rigorous WGCNA analysis

FIGURE 5
The immune cell compositions in breast cancer tissue between TNBC and non-TNBC. (A) The fraction of 22 subsets of immune cells in breast
cancer tissue between TNBC and non-TNBC. (B) The violin graph shows the difference of immune infiltration between TNBC and non-TNBCs. Red
represents TNBC, Blue represents non-TNBC. (C) Pearson correlation coefficient between the different macrophages in breast cancer tissue. Red
represents positive correlation. Blue represents negative correlation. (D) The proportion of distribution of different macrophages in breast
cancer tissue.
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unraveled distinct gene modules significantly correlated with
specific TNBC subtypes, thereby illuminating key biological
processes pertinent to the intricate landscape of TNBC

progression. The identification of these critical pathways and
their potential therapeutic implications may inform the
development of targeted treatments and precision medicine

FIGURE 6
The key transcription of macrophage infiltration and polarization in breast cancer tissue. (A) The intersection of DEGs and TAMs-related genes in
breast cancer tissue. DEGs: the differential expression genes in breast cancer tissue between TNBC and non-TNBC. (B) PPI analysis of the intersection
genes of DEGs and TAMs-related genes. (C) The top 10 transcription factors of 24 genes with high connectivity. (D) Visualization of FOXM1 and their
corresponding target gene networks. (E) The top 10 enrichment pathways of target genes of FOXM1. (F) The correlation between FOXM1 and the
proportion of M1 macrophages. (G) The correlation between FOXM1 and the proportion of M2 macrophages.
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approaches, thus holding promise for improving clinical outcomes
in TNBC patients.

Our analysis pinpointed SHC4 and KCNK5 as essential genes
within module 11, exhibiting significant correlations with the
subtypes of breast cancer. These findings strongly suggested that
SHC4 and KCNK5 play crucial roles in the progression of TNBC.
The Src homology and collagen (SHC) family is one of the most
studied adaptor protein families consisting of four members, SHC1,
SHC2, SHC3, and SHC4 (Ahmed and Prigent, 2017). SCH4 could
promote tumor proliferation and metastasis by activating
STAT3 signaling in hepatocellular carcinoma (Zhang et al.,
2022). While SHC4 has been implicated in promoting tumor
proliferation and metastasis by activating STAT3 signaling in
hepatocellular carcinoma, its specific involvement in TNBC
remains relatively unexplored, prompting our investigation into
its potential role in regulating tumor proliferation and metastasis
in TNBC progression. Furthermore, KCNK channels (also known as
K2P, for two-pore-domain potassium channels) are potassium-
selective channels that tend to be constitutively open (Goldstein
et al., 1996). KCNKs may regulate breast cancer progression via
modulating immune response which can serve as ideal prognostic
biomarkers for breast cancer (Zou et al., 2022). Our results further
supported that KCNKs as potential biomarker in triple negative
breast cancer. In addition to SHC4 and KCNK5, we also identified
ABCC11 and ABCA12 genes as key players associated with the
progression of TNBC. ATP-binding cassette (ABC) transporters are
membrane proteins that efflux various compounds from cells,
including chemotherapeutic agents, and are known to affect
multidrug resistance (Locher, 2016). ABC family may be a useful
tool in determining personalized TNBC treatment (Makuch-Kocka
et al., 2023; Park et al., 2006). In our study further supported ABC
family including ABCC11 and ABCA12 genes plays an important
role in the progression of TNBC.

To evaluate the discriminative power of the four-gene
combination (SHC4, KCNK5, ABCC11, and ABCA12), we
utilized the receiver operating characteristic (ROC) curve in a
logistic model constructed through 3-fold cross-validation. The
resulting average area under the curve (AUC) of
0.963 underscores the potential of these genes as effective
discriminators between TNBC and non-TNBC. Moreover,
through prognostic analysis using these key markers, we found
that KCNK5, ABCC11, and ABCA12 significantly impact the
prognosis of TNBC. Importantly, previous studies have already
reported KCNK5 and ABCC11 as prognostic signatures in breast
cancer. Specifically, high expression levels of ABCC11 were
associated with worse disease-free survival in patients with
HER2+ and triple-negative tumor subtypes (Yamada et al., 2013).
Additionally, KCNK genes have been identified as prognostic
signatures for breast cancer, including TNBC (Zou et al., 2022).
ABCA12 is a highly expressed gene in cancer tissues and cells and
has been identified as a key gene related to the prognosis of TNBC
for the first time in our study. These results demonstrated that these
four genes might be potential biomarkers for clinical diagnosis of
TNBC. Our findings highlight the potential significance of SHC4,
KCNK5, ABCC11, and ABCA12 as potential biomarkers for the
clinical diagnosis and prognosis assessment of TNBC. These
discoveries contribute to a deeper understanding of TNBC
biology and hold promise for the development of targeted

therapeutic approaches and precision medicine strategies aimed
at improving outcomes in TNBC patients.

Growing evidence underscores the role of tumor-infiltrating
lymphocytes in this subtype of breast cancer (García-Teijido et al.,
2016). Among these immune cells, tumor-associated macrophages
(TAMs), derived from blood monocytes, hold significant
prominence as they constitute a substantial portion of tumor-
infiltrating immune cells and are influenced by factors secreted
by both tumor cells and the tumor stroma (Niu et al., 2016). The
presence of TAMs has been linked to unfavorable prognosis and
aggressive tumor characteristics (Zhang et al., 2016; Zhao et al.,
2017). As the tumor microenvironment emerges as a critical target
for cancer immunotherapies, comprehending the immune cell
composition in TNBC and its implications is of paramount
importance. In this study, We observed that TAMs were the
predominant immune cell population in both subtypes, a finding
consistent with previous research (Huang et al., 2022).
M1 macrophages are recognized for their tumor-killing functions,
mediated through cancer cell recognition, phagocytosis, and
proinflammatory cytokine production (Choi et al., 2018; Yang
et al., 2020). Conversely, M2 macrophages have been associated
with promoting tumor cell invasion, metastasis, angiogenesis, and
facilitating immune system evasion (Yu and Di, 2017; Linde et al.,
2018). However, intriguingly, we noted a distinct pattern of
macrophage infiltration and polarization between TNBC and
non-TNBC. Specifically, TNBC exhibited significantly higher
levels of macrophage infiltration and M1 macrophage
polarization, whereas M2 macrophage polarization was lower in
TNBC compared to non-TNBC. Our findings align with previous
studies indicating that M1 macrophage marker genes are
significantly increased in TNBC compared to non-TNBC (Pe
et al., 2022). This increase may be attributed to the typically high
inflammatory state of TNBC, which promotes M1 macrophage
polarization via pro-inflammatory cytokines such as TNF-α, IL-6,
and IFN-γ. Additionally, TNBC often presents with elevated levels
of tumor antigens, which can stimulate the host immune system and
recruit M1 macrophages (Li Y. et al., 2022). This immune response
can result in a more pro-inflammatory tumor microenvironment,
enhancing M1 macrophage infiltration. M2 tumor-associated
macrophages are enriched in the TNBC microenvironment,
secreting anti-inflammatory factors that inhibit T cell activity,
promote immune escape, and support tumor growth (Chang
et al., 2024). TAMs are predominant immune infiltrating cells in
both TNBC and non-TNBC. Thus, targeting TAMs, particularly by
maintaining the balance between M1 and M2 macrophages, is
crucial for inhibiting tumor progression and immune evasion. In
TNBC, reducing the number of M2 macrophages, hindering the
immune escape of tumor cells, and inhibiting tumor progression are
potential therapeutic strategies. In this study, we observed that
M2 macrophages were significantly more abundant in non-
TNBC than in TNBC. This suggests that the higher presence of
M2 macrophages in non-TNBC could lead to greater immune
evasion compared to TNBC. In non-TNBC, hormone receptor
signaling pathways, such as those involving ER or PR, may
facilitate M2 macrophage polarization. In contrast, TNBC, which
lacks these signals, exhibits a relatively lower proportion of
M2 macrophages. Therefore, the immune suppressive
environment in non-TNBC, characterized by higher
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M2 macrophage levels, presents an opportunity for treatments
aimed at depleting M2 macrophages or blocking tumor immune
escape as a potential targeting strategy. These findings highlight the
importance of understanding the macrophage polarization between
M1 and M2 macrophages in TNBC and non-TNBC, as it holds
significant potential for advancing targeted immunotherapies and
personalized treatment approaches.

Following transcription factor enrichment analysis, we
identified FOXM1 as a key transcription factor significantly
associated with immune cell infiltration in breast cancer.
FOXM1 is the sole member of the FOXM subfamily, which is a
critical transcription factor for both the G1-S and the G2-M cell
cycle transition (Kalathil et al., 2021). Notably, FOXM1 has been
implicated in various aspects of cancer initiation and progression,
playing crucial roles in tumor angiogenesis, proliferation, migration,
invasion, epithelial–mesenchymal transition, metastasis, prevention
of premature cellular senescence, and chemotherapeutic drug
resistance (Halasi and Gartel, 2013). The oncogenic role of
FOXM1 in inducing cell proliferation, motility, invasion, and
tumor growth in TNBC tumor models has been established
(Hamurcu et al., 2019). The mechanisms by which
FOXM1 promotes tumor growth in TNBC mainly include its
regulation of the expression and activity of focal adhesion kinase
(FAK) in TNBC cells (Hamurcu et al., 2017), and its direct binding
to the promoter of the KIF23 gene to promote its transcription and
accelerate TNBC progression via the Wnt/β-catenin pathway (Li Z.
et al., 2022). Because the upregulation of FOXM1 to high levels is
particularly common in TNBC, there is potential for reducing TNBC
aggressiveness and metastasis by inhibiting FOXM1 activity.
Compounds that inhibit FOXM1 have been shown to suppress
TNBC progression and tumor metastasis (Dey et al., 2020). New
inhibitors of FOXM1 have been highlighted as an attractive target
for controlling drug-resistant and difficult-to-treat breast cancers
(Dey et al., 2020). In previous studies, the macrophage-specific
deletion of FOXM1 was found to reduce the expression of iNOS,
IL-1β, and IL-6 (Balli et al., 2012). Additionally, FOXM1 inhibition
in diabetic mouse models was shown to reduce neutrophil and
macrophage recruitment to diabetic wounds in vivo (Sawaya et al.,
2020). These findings indicated that FOXM1 activation could
increase the expression of pro-inflammatory cytokines, driving
macrophages toward an M1-like polarization. Our study provides
additional support for the involvement of FOXM1 in macrophage
infiltration and polarization in the context of breast cancer,
particularly between TNBC and non-TNBC. By reducing
FOXM1 expression, there is a potential decrease in the
proportion of M1 macrophages and an increase in the
proportion of M2 macrophages. These results suggests that in the
future research on FOXM1 inhibitors, we also need to consider the
ratio of M1 and M2 macrophages in vivo to maintain the balance of
TAMs in the tumor microenvironment, which may help develop an
attractive drug for controlling drug-resistant and difficult-to-
suppress breast cancers.

In summary, this study offers a comprehensive view of immune
infiltration differences between non-TNBC and TNBC. However,
our study has several limitations. Firstly, the data used is sourced
from the GSE76275, which contains a limited number of datasets,
potentially leading to bias. Secondly, there may be unaccounted
confounding factors, such as age, sex, or treatment history, in the

prognostic analysis. Thirdly, the potential biomarkers identified
should be validated in vitro. Further validation of the biomarkers’
mechanisms may facilitate their application in predictive
diagnostics, patient stratification, targeted prevention, and the
personalization of medical services for breast cancer.

Conclusions

Our results indicated that gene co-expression modules 5, 11 and
12 are most significantly associated with the subtypes of breast
cancer. We found that modules 5, 11, and 12 exhibited strong
associations with the subtypes of breast cancer, with modules 11 and
12 being notably enriched in the WNT signaling pathway and lipid/
fatty acid metabolism pathway, respectively. Within these modules,
SHC4, KCNK5, ABCC11, and ABCA12 emerged as key genes with
significant relevance to the progression of TNBC. These key genes
proved to be crucial in accurately distinguishing between TNBC and
non-TNBC, as evidenced by the promising average AUC value of
0.963. Of these key genes, KCNK5, ABCC11 and ABCA12 genes
have a significant impact the prognosis of TNBC. Moreover, we
observed distinctive immune cell compositions between TNBC and
non-TNBC, characterized by higher proportions of M0 and
M1 macrophages in TNBC and lower proportions of
M2 macrophages compared to non-TNBC. A notable discovery
from our study was the identification of FOXM1 as a crucial
transcription factor significantly associated with macrophage
infiltration and polarization in TNBC progression. In the future,
we could develop new FOXM1 inhibitors to inhibit the progression
of TNBC from the aspects of FOXM1 inhibition and M1 and
M2 macrophage balance. We also plan to collect clinical triple-
negative breast cancer data for subsequent validation of these
specific markers. These findings provide valuable insights into the
molecular and immunological aspects of TNBC, potentially serving
as a basis for the development of new therapeutic strategies.
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