The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Genet.
Sec. Genomics of Plants and the Phytoecosystem
Volume 15 - 2024 |
doi: 10.3389/fgene.2024.1502900
Genotypic Variability in Stress Responses of Sorghum bicolor Under Drought and Salinity Conditions
Provisionally accepted- King Abdulaziz University, Jeddah, Saudi Arabia
Sorghum bicolor, widely cultivated in Asia and Africa, faces increasing challenges from climate change, specifically from abiotic stresses like drought and salinity. This study evaluates how different sorghum genotypes respond to separate and combined stresses of drought and salinity. Carried out with three replications using a randomized complete block design, the experiment measured biochemical and physiological parameters, including stomatal conductance, chlorophyll content, and antioxidant enzyme activities. Molecular analysis focused on stress-responsive gene expression. Results indicated enhanced stress responses under combined conditions, with significant variation in antioxidant enzymatic activities among genotypes. Genotype-specific osmotic adjustments were observed through proline and glycine betaine accumulation. Physiological parameters such as chlorophyll content, cell membrane stability, stomatal conductance, and water potential were critical indicators of stress tolerance. Gene expression analysis revealed upregulation of stress-responsive genes, particularly under combined stress conditions. Correlation and principal component analysis analyses highlighted the interdependencies among traits, emphasizing their roles in oxidative stress mitigation. Samsorg-17 exhibited the highest resilience due to consistently high levels of catalase, superoxide dismutase, and glycine betaine, alongside superior physiological attributes. CRS-01 showed moderate resilience with the highest Na/K ratio and notable photosynthesis rate and relative water content, but was less consistent in biochemical markers under stress. Samsorg-42 demonstrated resilience under specific conditions but was generally less robust than Samsorg-17 across most indicators. These findings emphasize the importance of developing stress-resilient sorghum cultivars through targeted breeding programs to enhance tolerance to drought and salinity in sustainable agriculture.
Keywords: Sorghum bicolor, abiotic resilience, Genetic Variation, oxidative stress mitigation, sustainable agriculture, Targeted breeding
Received: 27 Sep 2024; Accepted: 20 Dec 2024.
Copyright: © 2024 ALZAHRANI, ABDULBAKI and Alsamadany. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
ABDULBAKI SHEHU ABDULBAKI, King Abdulaziz University, Jeddah, Saudi Arabia
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.