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Sex discordance between cell-free DNA (cfDNA) testing and ultrasound examination is
rare but can cause significant patient discomfort and uncertainty. Here, we present two
clinical cases where a closer examination of raw sequencing data allowed us to
anticipate possible discrepancies caused by the insertion of Y-chromosome regions
into the maternal genome. We used Illumina’s VeriSeq NIPT Solution v2 and a
proprietary bioinformatics pipeline to analyze cfDNA in the maternal bloodstream.
Paired-end sequencing data were aligned to the reference genome (hg19). Non-
duplicated aligned reads were aggregated into 100-kb bins, adjusted for CG bias, and
further aggregated into 5-Mb windows. Z-scores were calculated for autosomes, sex
chromosomes, and 5-Mb bins. The two clinical cases were classified as low-risk male
fetuses according to the primary statistics (case A:NCVx =0.3;NCVy =40.6; native fetal
fraction (FFi) = 5.1%, and case B: NCVx = −0.3, NCVy = 40.7, FFi = 10.8%); however, the
Y-chromosome-based FF (FFy) was significantly lower than the default FF estimate (FFy
� 2% in both cases). Plots of X and Y chromosome Z-scores for each 5-Mb bin,
according to genomic position, identified bins with Z-scores significantly higher than
those expected for any pregnancywith amale fetus. The genomic coordinates of these
binsoverlappedwith theamelogenin (AMELY) andprotein kinaseY-linked (PRKY) genes,
respectively. Amplification of these regions in the DNA isolated from the white blood
cells fraction confirmed the presence of Y-chromosome insertions in the maternal
genome. This study highlights a new source of discrepancy in cfDNA testing due to
maternal genomic variations. These findings suggest the need for improvements to
current bioinformatics pipelines to identify and excludepossiblematernal perturbations
from the classification algorithms used for aneuploidy and sex calls.
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Introduction

Cell-free DNA (cfDNA) testing has been established in many countries as the first-line
screening method for major aneuploidies in early pregnancy, given the high level of
sensitivity and specificity compared to traditional first-trimester biochemical screening
(Zhang et al., 2015).
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The ability of cfDNA testing to analyze sex chromosomes as
early as 10 weeks of gestation has contributed to its popularity
among parents desiring early information regarding fetal sex. A
considerable number of patients prioritize fetal sex prediction over
aneuploidy screening when deciding whether to undergo cfDNA
testing (Stevens et al., 2023). Professional guidelines agree that
patients undergoing cfDNA testing should receive pre- and post-
test counseling, which would include a discussion of the possibility
of false positives, sex discrepancies, incidental findings, and the
variable expressivity and penetrance of the conditions screened for
by the test, particularly sex chromosome aneuploidies and rare
autosomal trisomies (Dungan et al., 2023; Wilson et al., 2013;
Rose et al., 2022). This practice ensures the responsible
application of cfDNA testing and enables evidence-based
decision-making capacity for the prospective mother.

Discrepant results between cfDNA testing and ultrasound
findings or other clinical information may originate from
technical limitations and complex biological mechanisms
occurring during the early stages of embryonic development.
Sources of human error include blood sample mislabeling,
laboratory methodological limitations, and suboptimal
visualization of the external genitalia associated with limited
ultrasound imaging performance at early gestational ages.
Biological reasons for discordance include the presence of a
vanishing twin, fetal-placental mosaicism for sex chromosome
aneuploidies, a maternal transplant from a male donor, disorders
of sexual development, or other fetal anomalies associated with
abnormal or ambiguous external genitalia (Dhamankar et al., 2020).

Despite the numerous biological reasons already described, no
scientific literature explicitly addresses cases where the insertion of Y
chromosomal genetic material into the maternal genome represents
the direct cause of a sex discrepancy in the context of cfDNA testing.
This case report describes two instances where this specific
mechanism was responsible for the observed discordance.

Case report

Patient 1 (case A)

A 38-year-old patient (gravida 1) underwent assisted reproductive
treatment at the end of December 2021, in which only one embryo
was transferred. There were no previous abortions and no availability
of preimplantation genetic testing for aneuploidy analysis before the
transfer. At 11 weeks of gestation, the patient opted for cfDNA testing
(NACE 24 test, Igenomix, Valencia, Spain) to screen for aneuploidies
across the 23 pairs of chromosomes and to study copy number
variations (deletions/duplications) larger than 7 Mb. The native
analysis algorithm (Illumina VeriSeq NIPT Solution v2) classified
the pregnancy as low risk for all conditions analyzed. The fetal sex was
classified as male (XY) with an estimated native fetal fraction (FFi) of
5.0%; however, the Y-chromosome-based FF (FFy) was 2.0%. The
normalized chromosome values for the sex chromosomes (NCVx and
NCVy) were 0.3 and 40.6. Given that these values were significantly
lower than that expected for a male fetus with a 5.0% FFi (Figure 1),
the possibility of underlying clinical factors interfering with the result
was discussed with the physician. The prescribing physician reported
none of the previously described factors, such as altered known

maternal karyotype, transfusions or transplants from a male
donor, or the presence of a vanishing twin.

An ultrasound examination at 16 weeks of gestation revealed the
presence of female genitalia in the fetus. To rule out a technical issue,
cfDNA testing was repeated, yielding results consistent with the
initial test (NCVx = 0.2; NCVy = 38.0; FFi = 5.6%; FFy = 1.9%).

To eliminate the possibility of a technical problem associated with
the Illumina platform’s analysis algorithm, informed consent was
obtained from the patient and the prescribing physician to re-analyze
the data using an alternative bioinformatics algorithm based on that
described by Bayindir et al., in 2015 (Bayindir et al., 2015). Paired-end
sequencing data were aligned to the reference genome (hg19). Non-
duplicated aligned reads were aggregated into 100-kb bins, adjusted
for CG bias, and further aggregated into 5-Mb windows. Z-scores
were calculated for autosomes, sex chromosomes, and 5-Mb bins. Sex
was determined by verifying the presence of Y-chromosome-specific
reads. Samples with ≥3 Y-specific bins containing >1 read were
classified as male pregnancies. Two estimators were used for FF:
one estimator based on the SeqFF method (Kim et al., 2015) and
another estimator specific to the Y chromosome.

In the first and second sequencing, the Y chromosome Z-scores
were 30 and 25, respectively, compatible with a male sex
classification but still lower than expected for SeqFF-based
estimated FFs (6.1% and 5.5%) [first seq: ZscoreX = −1.2;
ZscoreY = 30.0; SeqFF = 6.1%; FFy = 3.0%; second seq:
ZscoreX = −0.7; ZscoreY = 25.4; SeqFF = 5.5%; FFy = 2.7%].

An analysis of the distribution of DNA fragments along the Y
chromosome revealed that DNA from this chromosome was not
homogeneously present; Y-DNA fragments were concentrated
solely to the cytogenetic region Yp11,2 covering the genomic
coordinates ChrY:6,400,000_6,900,000 (GRCh37/hg19)
(Figure 2A). A comparison with samples analyzed in the same
set, including 50 fetuses classified as male and 50 as females
without fetal sex discrepancies by ultrasound, revealed that
fetuses classified by the native algorithm as female had no
aligned DNA fragments in this genomic region. In contrast,
fetuses classified as male exhibited a ratio of aligned Y-DNA
fragments to total reads much lower than that found in the case
described in this report (8 fold lower in the general male fetus sample
set vs. case A) (Figure 2B).

The affected genomic location included the amelogenin gene
(AMELY) and part of the Transducing-beta-like 1 (TBL1Y) gene
(exons 1–6). To elucidate whether the overrepresentation of
fragments was caused by an insertion of Y-chromosome genetic
material into the maternal genome, fluorescent PCR was performed
on white blood cell DNA using specifically designed primers. The
amplification results revealed the presence of the expected female
variant AMELX and the unexpected male variant AMELY in the
maternal genome (Figure 2C).

Patient 2 (case B)

A 41-year-old patient (gravida 1) became spontaneously
pregnant at the end of January 2023. No previous abortions or
other clinically relevant information were described in the medical
history. At 14 weeks of gestation, the patient opted for extended
cfDNA testing (NACE 24 test, Igenomix, Valencia, Spain). A low-
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risk result was obtained for all conditions evaluated, and the sex of
the fetus was classified as male (NCVx = −0.3; NCVy = 40.7; FFi =
10.8%; FFy = 2.0%).

As it happened in Case A, an ultrasound examination at
16 weeks of gestation revealed the presence of female genitalia in
the fetus. Based on our experience with case A, we obtained consent
from the physician and the patient to conduct an exploratory
analysis using the alternative bioinformatics pipeline without
performing a second sequencing. This analysis aimed to evaluate
the presence of aligned reads in specific regions of the
Y-chromosome. The Z-score value for the Y chromosome was
40.02 with a SeqFF-based estimated FF of 8.8% and an FFy of
3.5%; however, the Y-DNA fragment distribution analysis revealed
alignment with the cytogenetic region Yp11.2, specifically between
genomic coordinates ChrY: 7,000,000–7,500,000 (GRCh37/hg19)
(Figure 3A). This region contains the pseudogene Protein Kinase
Y-linked (PRKY), located in the Yp12 region. Similarly, the ratio of
the number of Y-DNA readings to total readings in this region was
significantly higher than that identified in a set of 50 samples
classified as male fetuses (4.5 fold lower in the general male fetus
sample set vs. case B) (Figure 3B).

After reporting the incidental findings to the prescribing
physician and the patient, the decision was made to evaluate the
patient for the previously described insertion. Fluorescent PCR on
white blood cell DNA confirmed the insertion of the PRKY-
including region into the patient’s genome (Figure 3C).

Discussion

The prenatal diagnosis of sex discrepancies has historically relied
on identifying ambiguous genitalia during ultrasound evaluations or
observing genotype-phenotype discordance in cases involving
preimplantation genetic diagnosis or invasive prenatal testing. The
advent of cfDNA testing has significantly enhanced our ability to
detect such discrepancies with greater precision. Estimates indicate
that sex discrepancies occur in approximately 1 in every
1,500–2,000 pregnancies (Smet et al., 2020), a figure highlighted by
the widespread adoption of cfDNA testing in modern
prenatal screening.

We report a novel observation: sex discrepancies between cfDNA
testing and ultrasound due to the insertion of Y-chromosome genetic
material into the maternal genome. By analyzing cfDNA sequencing
data and partitioning the Y-chromosome into 100-kb bins aggregated
into 5-Mb windows, we identified a significant overrepresentation of
reads aligned to the Yp11.2 cytoregion in two cases, exceeding typical
male fetal levels by ten-fold.

In the first case, the insertion encompassed Y-chromosome
material containing the AMELY gene and a portion of the coding
region of the TBL1Y gene. AMELY codes for a matrix protein
forming tooth enamel, constituting 90% of the total organic
content (Richard et al., 2007). PCR products generated from
AMELX and AMELY amplification can be discriminated using
primers flanking a 6-base pair deletion in the gene’s first intron

FIGURE 1
Sex chromosomes plot for different fetal fraction ranges. The horizontal axis represents the normalized chromosome value for the X chromosome
(NCVx), and the vertical axis represents the normalized chromosome value for the Y chromosome (NCVy). The dotted lines indicate the normal range for
female and male euploid samples across different fetal fraction (FF) ranges ( ) females with FFs between 2% and 12%; ( ) males with FFs between 2.0%
and 3.0% ( ) males with FFs between 5.0% and 6.0%; ( ) males with FFs between 6.0% and 10.0%; ( ) males with FFs between 10.0% and 12.0%. The
reported cases are shown as gray and black diamonds for the first and second sequencing of case A, respectively, and as a black square for case B. As
observed in both cases, the NCVy:NCVx ratio deviates significantly from that expected for male fetuses with FFs in the 5% and 10% ranges, respectively.

Frontiers in Genetics frontiersin.org03

Balaguer et al. 10.3389/fgene.2024.1502287

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1502287


FIGURE 2
Analysis of the overrepresented genetic material belonging to the Y-chromosome. Case (A). (A) Left: Graphical plot of 5-Mb bin Z-scores across the
X chromosome. Right: Graphical plot of Chr. Y 5-Mb z-scores across the Y chromosome. In all cases, the bin Z-score values have been calculated with
regard to a female reference of normalcy (zscore_fem), or with regard to a male reference of normalcy (zscore_male). Between positions 5–10 Mb, a bin
with a Z-score of approximately 100 is observed, a value 10 times higher than expected for amale fetus with a native fetal fraction (FFi) of around 5%.
(B)Graphical representation of the ratio of Y chromosome reads to total reads within the genomic region of the Y chromosome spanning positions ChrY:

(Continued )
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and differ between the two versions based on sex chromosomes.
Sequence differences between AMELX and AMELY have been used
to differentiate males from females with ambiguous phenotypes or
to establish the gender in biological material for various purposes
(Tozzo et al., 2013; Mannucci et al., 1994; Sullivan et al., 1993). In the
second case, we described an insertion involving the PRKY gene, a
member of the cAMP-dependent serine/threonine protein kinase
gene family that shares homology with PRKX from Xp22.3 (Schiebel
et al., 1997). PRKY and its X-chromosome homolog PRKX
participate in various cellular processes, including signaling
pathways implicated in cell growth and differentiation.

Notably, these insertions into the maternal genome are rare,
with few documented cases in the scientific literature of females with
a 46, XX karyotype harboring such Y-chromosome gene insertions.
Among the few reported cases, Stapleton et al. (2008) identified a
family in which three females carried both the male and female
variants of the AMELY gene, suggesting Mendelian inheritance and
highlighting the problem of using only AMELY as a sex-specific
marker (Stapleton et al., 2008). Cases of AMELY-negative males are
more frequently detected worldwide; the genetic mechanisms
underlying AMELY dropout involve deletions of different sizes,
encompassing the AMELY locus, and mutations in the primer-
binding region of the AMELY allele (Jobling et al., 2007; Butler,
2011). Deletions in the Yp11.2 region, a major cause of the AMELY
null allele, are often combined with the absence of adjacent Y-STR
loci DYS456 and/or DYS458 (Jobling et al., 2007; Cadenas et al.,
2007; Ma et al., 2012; Chen et al., 2014; Chang et al., 2007; Ou et al.,
2012; Kumagai et al., 2008; Turrina et al., 2009; Borovko et al., 2015).

The significance of these findings lies not only in the phenotypic
and clinical implications for carrier patients but also in the potential
to enhance fetal sex prediction in current bioinformatic analysis
pipelines for cfDNA testing. The evolution of bioinformatic
pipelines has led to remarkable improvements in the sensitivity
and specificity of cfDNA testing for fetal sex determination and
aneuploidy detection. Early PCR-based methods displayed
sensitivities and specificities in the range of 95%–98% (Lo et al.,
1998). The advent of massively parallel sequencing and advanced
bioinformatics have improved these metrics to over 99% for fetal sex
determination (Kotsopoulou et al., 2015).

Several methods have been proposed to predict fetal aneuploidies,
typically involving genome binning, normalization techniques, and
Z-score calculations to evaluate variation in the normalized fragment
count in each bin. Comparisons are made with euploid reference
samples (e.g., cn. MOPS (Talevich et al., 2016) and CNVkit
(Klambauer et al., 2012), between sample variations (e.g.,
Wisecondor (Straver et al., 2014) and WisecondorX (Raman et al.,
2019), or through reference-free approaches (e.g., FREEC (Boeva et al.,
2011), QDNAseq (Scheinin et al., 2014), and BIC-seq2 (Xi et al., 2016).
Although these tools facilitate cfDNA testing analysis, they remain
challenging to implement in a clinical setting in many laboratories

worldwide due to intensive data processing and the need for advanced
bioinformatics skills. Additionally, the diversity of technologies and
algorithms employed can prompt significant variability in results, and
we lack a comprehensive quantification of this variation (Duboc et al.,
2022). Because of the inherent differences among methodologies,
clinical laboratories should leverage the bioinformatics available to
help navigate complex cases with clinicians.

Therefore, we must develop a protocol for cases with an
anticipated sex discrepancy, even though reaching a consensus
on the best algorithm or platform for maximum sensitivity and
specificity remains challenging. For prenatally reported fetal sex
discrepancies despite ultrasound examination by an experienced
examiner after 16 weeks of gestation, a complete history and physical
examination always represent the initial steps to guide further
evaluation. In parallel, we must rule out human error by
confirming correct sample labeling.

We recommend conducting a detailed review of existing data
before repeating sequencing on an independent sample to rule out
potential sample errors. This review should focus on identifying
overrepresented Y chromosome regions compared to that expected
for a male fetus. In the case of identifying such overrepresentation,
the prescribing physician must be informed, and the maternal
genome should be investigated for possible insertions of
Y-chromosome genetic material before performing any
unnecessary invasive procedures.

We acknowledge there are some important limitations for the
proposed protocol. The occurrences described in this article are rare,
making generalizing findings to broader populations challenging. The
advanced bioinformatics methods employed may not be readily
accessible in all clinical settings, potentially limiting widespread
adoption of the proposed protocols. And the reliance on cfDNA
testing and bioinformatics could lead tomisinterpretations of results if
not carefully managed, particularly in the absence of confirmatory
tests. Thus, major platforms offering cfDNA testing should
incorporate these considerations into their decision algorithms.
Based on the evidence presented here, the presence of isolated bins
on the Y chromosome with Z-scores elevated to levels not expected in
pregnancies bearing a male fetus should be carefully analyzed when
making a final sex calling. This approach would prevent undesirable
situations and alleviate the anxiety of the expectant mother
concerning potential clinical issues for her or the fetus.

If none of the aforementioned conditions are confirmed, the
physician should discuss the case within the context of a
multidisciplinary team. This team should be aware of all
developments and findings to prepare a comprehensive care
pathway for the family. Based on this, a protocol of action could be
defined, including a series of tests such as 1) direct assessment of the
fetal sex chromosome distribution (ploidy, copy number variations, or
mosaicism) through amniocentesis accompanied by a genetic
counseling interview; 2) further investigation for Y-chromosome-

FIGURE 2 (Continued)

6,400,000–7400,000 (GRCh37/hg19) for (from left to right): CASE A, a set of 50 samples from pregnant patients with female fetuses (FFs between
5% and 12%), and a set of 50 samples from pregnant patients with male fetuses (FFs between 5% and 12%). In case A, the ratio exceeds by more than ten-
fold the number of reads aligned to the Y chromosome in samples from patients with fetuses classified by the analysis algorithm as XY. (C) PCR
amplification of the amelogenin (green peak) containing regions and fragment analysis of PCR products by capillary electrophoresis on AB3500
(ThermoFisher) and GeneMapper (rr). Top: patient; Middle: female reference; Bottom:male reference. The 119 bp peak represents AMELX, and the 124 bp
peak represents AMELY. The marker under each allele peak represents the number of repeats.
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FIGURE 3
Analysis of the overrepresented genetic material belonging to the Y-chromosome. Case (B). (A) Left: Graphical plot of 5-Mb bin Z-scores across the
X chromosome; right: Graphical plot of Chr. Y-5 Mb Z-scores across the Y chromosome. In all cases, the bin Z-score values have been calculated with
regard to a female reference of normalcy (zscore_fem), or with regard to a male reference of normalcy (zscore_male). Between positions 5–10 Mb, a bin
with a Z-score of approximately 125 is observed, a value 10 times higher than expected for amale fetus with a native fetal fraction (FFi) of around 11%.
(B)Graphical representation of the ratio of Y chromosome reads to total reads within the genomic region of the Y chromosome spanning positions ChrY:

(Continued )
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specific material using an SRY probe which may help in evaluating sex
chromosome anomalies, including translocation to the X chromosome
or autosomes in XX individuals or mosaicism; and/or 3) analysis for
single-gene conditions causing disorders of sexual differentiations, such
as congenital adrenal hyperplasia or androgen insensitivity and a wide
range of genetic syndromes that impact external genitalia.

Conclusion

These findings underscore the complexity of prenatal sex
determination and the potential of genetic anomalies in
influencing cfDNA testing results. By incorporating detailed
bioinformatic reviews and considering maternal genomic
contributions, we can improve the accuracy of fetal sex prediction
and minimize unnecessary invasive procedures, ultimately enhancing
prenatal care and reducing anxiety for expectant mothers.
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FIGURE 3 (Continued)

6,400,000–7400,000 (GRCh37/hg19) for (from left to right): CASE B, a set of 50 samples from pregnant patients with female fetuses (FFs between
5% and 12%), and a set of 50 samples from pregnant patients with male fetuses (FFs between 5% and 12%). In case B, the ratio exceeds by more than ten-
fold the number of reads aligned to the Y chromosome in samples from patients with fetuses classified by the analysis algorithm as XY. (C) PCR
amplification of amelogenin and PRKY and the Y:7,350,250–7,350,345 containing regions and fragment analysis of PCR products by capillary
electrophoresis on AB3500 (ThermoFisher) and GeneMapper (rr): C_1 and C_4: patient; C_2 and C_5: female reference; C_3 and C_6: male reference.
Green peak: The 119 bp peak represents AMELX, and the 124 bp peak represents AMELY. The blue peak at 208 bp represents PRKY and the blue peak at
96 bp is a region in chromosome Y at Y:7,350,241–7,350,341.
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