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Objectives: Unlike other diseases, cancer is not just a genome disease but should
broadly be viewed as a disease of the cellular machinery. Therefore, integrative
multifaceted approaches are crucial to understanding the complex nature of
cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human Bcl-2 gene, is
a critical anti-apoptotic protein that regulates cell death pathways, primarily by
inhibiting apoptosis. It plays a pivotal role in maintaining cellular homeostasis by
preventing premature or excessive cell death. Genetic variations and
dysregulation of Bcl-2 are particularly significant in cancer, as they disrupt the
normal apoptotic machinery, enabling cancer cells to evade programmed cell
death. Single nucleotide polymorphisms (SNPs) are considered viable diagnostic
and therapeutic biomarkers for various cancers. Therefore, this study explores the
association between SNPs in Bcl-2 and the structural, functional, protein-protein
interactions (PPIs), drug binding and dynamic characteristics.

Methods: Comprehensive cross-validated bioinformatics tools and molecular
dynamics (MD) simulations. Multiple sequence, genetic, structural and disease
phenotype analyses were applied in this study.

Results: Analysis revealed that out of 130 mutations, approximately 8.5% of these
mutations were classified as pathogenic. Furthermore, two particular variants,
namely, Bcl-2G101V and Bcl-2F104L, were found to be themost deleterious across all
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analyses. Following 500 ns, MD simulations showed that these mutations caused a
significant distortion in the protein conformational, protein-protein interactions
(PPIs), and drug binding landscape compared to Bcl-2WT.

Conclusion: Despite being a predictive study, the findings presented in this report
would offer a perspective insight for further experimental investigation, rational
drug design, and cancer gene therapy.

KEYWORDS

Bcl-2, nsSNPs, mutations, genomic analyses, molecular dynamics simulations

1 Introduction

The complex nature of cancer biology imposes a major challenge
in cancer research and, consequently, the development of effective
treatment regimes. The World Health Organization (WHO)
estimated that 10 million patients globally died from various
forms of cancer in 2020 alone. Many clinical trials do not
provide significant success despite significant advances in
diagnosis and innovative therapy methods (Karimi et al., 2022).
Even though targeted therapy has been a successful approach in
treating cancer, heterogeneous cancer still has a variety of clinical
profiles and molecular alterations. Certain genetic alterations in
cancer targets can make drugs more effective or, more often, cause
them to become resistant to treatment (Jin et al., 2019). Drug
resistance caused by mutations is a common occurrence in
cancer. Thus, the mutation profile of patient malignancies plays a
major role in determining the effectiveness of targeted therapy.
Accurate molecular and genetic profiling of tumour cells is
becoming a crucial step before implementing targeted therapy in
patients (Jin et al., 2019).

Apoptosis, a programmed cell death process, is critical for
maintaining cellular homeostasis and plays a pivotal role in
preventing cancer development by eliminating defective cells. The
oncoprotein B-cell lymphoma-2 (Bcl-2) family of proteins, comprising
both pro-apoptotic and anti-apoptotic members, regulates the intrinsic
pathway of apoptosis by controlling mitochondrial outer membrane
permeabilization (MOMP) (Adams and Cory, 2017). Dysregulation of
these proteins can lead to apoptosis evasion, a hallmark of cancer,
highlighting their importance in oncogenesis and as potential
therapeutic targets (Czabotar et al., 2014).

Apoptosis is mediated through two main pathways: the intrinsic
(mitochondrial) pathway and the extrinsic (death receptor)
pathway. The intrinsic pathway is regulated by the Bcl-2 family,
where the balance between anti-apoptotic proteins (such as Bcl-2)
and pro-apoptotic proteins (such as Bax and Bak) determines cell
survival or death (Youle and Strasser, 2008). The extrinsic pathway,
triggered by external signals, activates death receptors leading to
caspase activation (Lavrik et al., 2005).

Recent research challenges the traditional view that the Bcl-2
family of proteins directly initiates cancer. Instead, current evidence
suggests a more nuanced role where these proteins intervene in
processes such as tetraploidization-dependent senescence,
contributing indirectly to the cancerous phenotype (Barriuso et
al., 2023). Tetraploidization, the process by which cells double
their genome and typically undergo senescence to prevent
malignant transformation, is intricately regulated by the Bcl-2
family. These proteins are key players in determining cell fate

after tetraploidization, deciding between senescence and further
steps leading to aneuploidy, a hallmark of cancer cells (Barriuso
et al., 2023). Moreover, the initiation of carcinogenesis is
increasingly understood to involve mechanisms that maintain
unicellular genome integrity, such as DNA repair pathways and
responses to hyperpolyploidy (Niculescu V, 2024; Niculescu V. F.,
2024; Niculescu and Niculescu, 2024). These processes are crucial
for cellular survival under stress but can also lead to genomic
instabilities when dysregulated, setting the stage for cancer
development (Chatterjee and Walker, 2017; Conway et al., 2024).
The interplay between the Bcl-2 family proteins and these genomic
maintenance mechanisms offers a potential explanation for their
role in cancer beyond their traditional functions in apoptosis
regulation. In light of these insights, the BCL-2 family’s influence
on cancer appears linked with its impact on cellular responses to
genome duplication errors and subsequent genomic instability. This
perspective aligns with findings that implicate disrupted apoptosis
pathways and aberrant cell survival signals in the broader context of
cellular genome management, rather than direct oncogenic
transformations.

Recent research has also expanded our understanding of
apoptosis, revealing its more nuanced roles beyond the
traditional pathway of programmed cell death. Particularly, the
phenomenon of anastasis, the process by which cells recover
from the brink of apoptosis, has garnered significant attention
(Vasileva et al., 2024). Anastasis provides critical insights into
cellular resilience and has profound implications for cancer
therapy, where the ability of cells to evade death can contribute
to treatment resistance (Mohammed et al., 2022). Anastasis not
only challenges the finality traditionally associated with apoptosis
but also highlights the “dark side” of apoptosis, where apoptotic
processes contribute unexpectedly to cancer progression and other
diseases (Zaitceva et al., 2021). This aspect of apoptosis, often
referred to as its “dark side,” involves mechanisms where sub-
lethal apoptotic signaling promotes adaptive capabilities in cells,
potentially leading to enhanced metastatic properties and
therapeutic resistance (Vasileva et al., 2024). The study of
anastasis has revealed that cells can reverse death processes, a
capability that was previously unrecognized. This reversal is not
merely a return to homeostasis but often results in cells that acquire
new properties or heightened survival strategies, which can include
resistance to anti-cancer drugs. Understanding the signaling
pathways involved in anastasis could open new avenues for
cancer treatment, potentially leading to therapies that prevent the
reversal of apoptosis in malignant cells (McDonald et al., 2021).

Incorporating the concepts of anastasis and the dark side of
apoptosis into the current framework of cancer biology not only
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enhances our understanding of cellular death but also underscores
the complexity of targeting apoptotic pathways in cancer therapy.
These insights emphasize the need for a deeper investigation into the
molecular mechanisms that govern these processes to devise more
effective therapeutic strategies.

In recent years, Bcl-2 family proteins have been widely
recognized for their central role in regulating apoptosis, which is
critical in the context of cancer therapy. High Bcl-2 expression in
solid tumors has often been associated with enhanced
responsiveness to certain anticancer therapies. However, the role
of Bcl-2 is not unequivocally beneficial, as the regulation of apoptosis
in solid tumors presents both opportunities and challenges in
clinical settings (Ichim and Tait, 2016; Kalkavan et al., 2023;
Nano and Montell, 2024). While high Bcl-2 expression can
render some tumor cells more susceptible to apoptosis induction,
it can also contribute to therapy resistance by inhibiting the
apoptotic pathways of specific chemotherapeutic agents or
targeted therapies (Ichim and Tait, 2016; Kalkavan et al., 2023;
Nano and Montell, 2024). These complexities highlight the need to
carefully consider the dual role of Bcl-2 and the broader implications
of apoptosis regulation in therapeutic strategies. Addressing these
challenges requires an integrated understanding of apoptotic and
non-apoptotic pathways and their interplay in solid tumors to
optimize therapeutic outcomes.

Bcl-2 family proteins control apoptosis and are implicated in
various tumour progressions (Rosser et al., 2003; Goff et al., 2013).
This gene was the first to promote prolonged cell survival and

growth rather than boost proliferation, demonstrating the
importance of inhibiting cell death in tumorigenesis (Cory and
Adams, 2002). Bcl-2 inhibits cytochrome c (cyt-c) release from the
mitochondria, preventing caspases involved in apoptosis from
activating (Yin et al., 1994). Bcl-2 overexpression or aberrant
expression has been associated with many cancers’ emergence,
progression, and relapse (Delbridge et al., 2016; Kitada et al.,
2002). Consequently, Bcl-2 activity and protein levels have
emerged as essential measures for determining the success or
failure of clinical treatment and predicting patient outcomes
(Delbridge et al., 2016). The sensitivity of malignant tumor cells
to apoptosis can be efficiently boosted by either lowering Bcl-2
protein levels or suppressing Bcl-2 function (Qian et al., 2022).
Multidrug resistance (MDR) in cancer cells can be overcome by
selectively inhibiting Bcl-2, resulting in cell cycle arrest, senescence,
and eventual cell death in response to radiotherapy and
chemotherapy (Tang et al., 2020; Wang et al., 2020). Therefore,
inhibition of Bcl-2 inactivation has become a highly attractive
strategy in the battle against cancer, and BH3 mimetics are the
main category of promising therapeutic agents (Perini et al., 2018;
Delbridge and Strasser, 2015). BH3 mimetics inhibit Bcl-2 activity
by competing with its physiological ligands, BH3 domain-
containing pro-apoptotic proteins, at the hydrophobic (binding)
groove (Czabotar et al., 2014).

Despite the promising initial clinical effectiveness of
BH3 mimetic agents in various cancers, the mutation is a
common way cancer cells evade therapies (Roberts et al., 2016;

FIGURE 1
Flowchart of the different types of analyses and approaches employed in this study.
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Stilgenbauer et al., 2018). The most common mutation is a change
from glycine to valine at amino acid position 101 (G101V), which
substantially decreases Bcl-2 affinity towards the BH3 mimetics
agent (Venetoclax) and prevents the drug from displacing pro-
apoptotic mediators from Bcl-2 in the cells (Blombery et al., 2019;
Blombery et al., 2020). Most human genetic variations are
attributable to single nucleotide polymorphisms (SNPs) (Dakal
et al., 2017). This genetic variation generated by SNPs in genetic
codons influences the translation outcome, resulting in a mutant
protein with a different structure and function. Nevertheless, not all
SNPs impact protein function and structure; a few are harmful, but
many are not (Kucukkal et al., 2015).

Bioinformatics offers enormous array of databases and
techniques that are necessary for the analysis, integration, and
interpretation of cancer multi-omics data (Jiménez-Santos et al.,
2022). It is noteworthy that in silico techniques have recently
emerged as valuable tool to assess the distinct genomic
alterations and transcriptome profiles of tumors, as well as
understanding the underlying mechanisms of cancer (Yalcin-
Ozkat, 2021; Edelman et al., 2010; Elamin et al., 2024).

The primary goal of this study is to explore the effects of single
nucleotide polymorphisms (SNPs) in the Bcl-2 gene on the
structural, functional, and dynamic properties of the Bcl-2
protein. The specific objectives are to: identify and classify SNPs
in the Bcl-2 gene and assess their pathogenic potential using
bioinformatics and validated computational tools; analyze the
structural and functional impacts of deleterious Bcl-2 mutations
on protein-protein interactions (PPIs) and drug-binding
characteristics; and pinpoint key mutations, such as Bcl-2G101V

and Bcl-2F104L, that significantly affect protein behavior, offering
valuable insights for cancer diagnostics and therapeutic strategies.
By identifying pathogenic SNPs and their effects on Bcl-2, the study
enhances understanding of the molecular mechanisms
underpinning apoptosis resistance in cancer. Moreover, the study
highlights SNPs with diagnostic and therapeutic potential, offering a
foundation for the development of biomarkers for cancer diagnosis
and prognosis.

To achieve the objectives of this study, a combination of in
silico methods, bioinformatics approaches, and molecular
dynamics simulations was utilized to comprehensively
investigate the genomic and proteomic alterations in Bcl-2
(Figure 1) and their potential roles in carcinogenesis. To
ensure cross-validation and the reliability of the generated
data, multiple bioinformatics algorithms were employed for
each type of analysis conducted. Several mutations were
examined for their potential contributions to cancer initiation
and progression, with their deleterious effects on the structure
and function of Bcl-2 thoroughly characterized. Subsequently,
the most deleterious mutations, Bcl-2G101V and Bcl-2F104L, were
selected for further dynamic analysis to probe their impact on the
protein conformational landscape using molecular dynamics
(MD) simulations and post-dynamic analyses.

We believe that the extensive and multifaceted analyses
provided in this study will offer a thorough grasp of the
effects of deleterious Bcl-2 gene mutations on the apoptotic
machinery and their implications for carcinogenesis. Our
findings would contribute to the broader discourse on the
genetic underpinnings of cancer, illustrating how specific

SNPs can alter key apoptotic regulators such as Bcl-2. This
understanding will then inform future directions in drug
design and the development of anti-cancer therapeutics.

2 Methods

2.1 Generation of the datasets

The Bcl-2 FASTA sequence was obtained from UniProt
(UniProt ID: P10415) (https://www.uniprot.org/) (Bateman et al.,
2017). The dbSNP (https://www.ncbi.nlm.nih.gov/snp/) and
Ensembl (https://www.ensembl.org/) databases and an extensive
literature search were used to compile the list of mutations
(Sherry et al., 2001; Hubbard et al., 2002). Gene synonyms (Bcl-
2, PPP1R50) (transcript ID: ENST00000333681.5) of the Bcl-2
protein were selected for this study. Duplicate variants and other
redundant data were excluded from the analysis. High-resolution
crystal structures of the Bcl-2 protein, both wild-type and mutated
(G101V and F104L) (PDB ID:6O0K, 6O0L, and 6O0M), were
obtained from the Protein Data Bank (https://www.rcsb.org/)
(Birkinshaw et al., 2019).

2.2 Sequence-based analyses for
point mutation

We utilised eight different bioinformatics tools to obtain a
reliable cross-validated sequence-based analysis to determine the
deleterious effects of residue mutations on the protein. These are,
the Sorting Intolerant From Tolerant (SIFT) algorithm (https://
sift.bii.a-star.edu.sg) which determines the deleterious effects of
residue mutations on proteins (Kumar et al., 2009); Polymorphism
Phenotyping 2 (PolyPhen-2) (http://genetics.bwh.harvard.edu/
pph2/) (Adzhubei et al., 2013), which is tailored to the study of
high-throughput Next-Generation Sequencing (NGS) data and
features multiple sequence alignments and classifiers based on
machine learning; Combined Annotation Dependent Depletion
(CADD) (https://cadd.gs.washington.edu/) that is designed to
estimate the deleterious effect of residue variation on protein
sequences (Rentzsch et al., 2019); Rare Exome Variant
Ensemble Learner (REVEL) (https://sites.google.com/site/
revelgenomics/) (Ioannidis et al., 2016); MetaLR (https://sites.
google.com/site/jpopgen/dbNSFP) which predicts the
deleteriousness of missense variants using logistic regression,
which incorporates nine independent variant deleteriousness
scores and allele frequency information (Liu et al., 2016);
Mutation Assessor (http://mutationassessor.org/r3/) uses the
evolutionary conservation of the impacted residues in protein
homologs to speculate on the functional consequences of
residue changes in proteins (Reva et al., 2011); Functional
Analysis Through Hidden Markov Models (FATHMM) which
is a high-throughput web server capable of predicting the
functional consequences of both coding variants, that is, non-
synonymous single nucleotide variants (nsSNVs) and non-coding
variants in the human genome (http://fathmm.biocompute.org.uk/);
and Predict-SNP (https://loschmidt.chemi.muni.cz/predictsnp1/)
(Bendl et al., 2014).
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2.3 Structure-based analyses for
point mutation

Various algorithms were employed to predict the effect of
missense mutations on the protein stability. These include,
mCSM (https://biosig.lab.uq.edu.au/mcsm/) which uses
various residues atomic distance patterns to train the
predictive models (Pires et al., 2014a); Site-directed mutator2
(SDM2) (http://marid.bioc.cam.ac.uk/sdm2) which can also
estimate the relative stability of wild-type and mutated
protein structures by comparing them to known homologous
3D structures; DUET (http://biosig.unimelb.edu.au/duet/)
which uses Support Vector Machines (SVM) to produce a
consensual estimate (Pires et al., 2014b); PremPS (https://
lilab.jysw.suda.edu.cn/research/PremPS/) which estimates
changes in the Gibbs free energy of protein unfolding to
assess the impact of single mutations on protein stability
(Chen et al., 2020); CUPSAT (http://cupsat.tu-bs.de/)
(Parthiban et al., 2006); ENCoM (https://labworm.com/tool/
encom) (Frappier et al., 2015); MutPred2 (http://mutpred.
mutdb.org/) (Pejaver et al., 2020); and DynaMut (https://
biosig.lab.uq.edu.au/dynamut/) which takes the changes in
vibrational entropy into account (Rodrigues et al., 2018).

2.4 Disease phenotype prediction analysis

Several machine learning and neural network algorithms were
employed for disease phenotype prediction. These include, PhD-
SNP (https://bio.tools/phd-snp) which uses neural networks that
have been trained on a large library of standard and pathogenic
mutations (Capriotti and Fariselli, 2017); Protein ANalysis
THrough Evolutionary Relationships (PANTHER) (http://www.
pantherdb.org/) which is designed to estimate the likelihood of a
particular non-synonymous (residue changing) coding SNP that
causes a functional impact on the protein (Thomas et al., 2022);
SNPs and GO (https://snps.biofold.org/snps-and-go/) is another a
precise technique that uses the associated protein functional
annotation to determine whether or not a variation is
associated with a disease based on a protein sequence
(Capriotti et al., 2013); PMut (http://mmb.irbbarcelona.org/
PMut/) which identifies pathogenic protein variants with up to
80% predictive accuracy in humans (López-Ferrando et al., 2017);
and Meta-SNP (https://snps.biofold.org/meta-snp/) which is a
randomised forest-based classification algorithm that
distinguishes between polymorphic non-synonymous SNVs and
disease-related one.

2.5 Post-transcriptional modification (PTM)
sites prediction

PTM site predictions comprised several rearranged residues that
produced many proteins. Ubiquitination, phosphorylation, and
methylation are some of the PTM sites that have been
characterised. These sites are essential in vital cellular organising
processes such as pathological signaling cascades and protein-
protein interactions. Thus, PTM prediction assisted in elucidating

whether genetic variants were associated with or contributed to
disease pathogenesis. We used four tools for this purpose, namely,;
NetPhos 3.1 (https://services.healthtech.dtu.dk/service.php?
NetPhos-3.1); Group-based Prediction System (GPS) 6.0 (http://
gps.biocuckoo.cn/) (Xue et al., 2005); BDM-PUB (http://bdmpub.
biocuckoo.org/) which is for protein ubiquitination site prediction
using the Bayesian Discriminant Method; and UbPred (http://www.
ubpred.org/).

2.6 Gene-gene interaction network analysis

The gene function can be better understood by studying the genes
with which it interacts. The GeneMANIA and STRING databases were
used to investigate the relationship between the Bcl-2 gene and other
genes and to predict the effect of Bcl-2 nsSNPs on other associated
genes. GeneMANIA (https://genemania.org/) is a database for
identifying genes related to input genes using an extensive set of
functional association data (Warde-Farley et al., 2010). These
association data included co-expression, colocalisation, pathways,
protein domain similarity, and interactions between proteins and
genes. GeneMANIA can identify novel pathway members or
complex members, genes missed during the screening process, or

FIGURE 2
Deleterious and tolerated variations in Bcl-2 predicted through
sequence-based algorithms.

FIGURE 3
Destabilizing and stabilizing variations in Bcl-2 predicted through
structure-based algorithms.
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genes that perform a specific function, such as protein kinases. STRING
(https://string-db.org/) is a database of both experimentally verified and
theoretically predicted interactions between proteins (Szklarczyk et al.,
2021). In STRING, and to ensure high reliability, “physical
interactions” and “confidence” was set to 0.99. These interactions
occur through computational prediction, inter-organism
information transmission, and aggregation of interactions from
other (primary) databases, and they can be either direct (physical)
or indirect (functional).

2.7 Effect of point mutation on the structural
and functional integrity of the protein

The formation of a protein complex is critical in controlling many
biological activities. Therefore, different algorithms were employed to
investigate the effect of Bcl-2G101V and Bcl-2F104L structural and
functional properties. mCSM-PPI2 (http://biosig.unimelb.edu.au/
mcsm_ppi2/) was used to predict the effects of missense mutations
on protein-protein affinity (Rodrigues et al., 2019). mCSM-PPI2 uses

graph-based structural signatures to model the effects of variations on
the inter-residue interaction network, evolutionary information,
complex network metrics, and energy terms to generate an
optimised predictor. ConSurf (https://consurf.tau.ac.il/) is another
tool we employed to estimate the evolutionary conservation of
residue positions in a protein molecule based on the phylogenetic
relationships between homologous sequences (Ashkenazy et al., 2016).
The degree to which the residue position is evolutionarily conserved
strongly depends on its structural and functional importance. The
ConSurf value varied from 1 to 9, with one denoting residues with the
least conservation and nine denoting residues with the most
conservation. Other tools such as FTSite (https://ftsite.bu.edu/)
(Ngan et al., 2012), HOPE (https://www3.cmbi.umcn.nl/hope/) and
Stride (http://webclu.bio.wzw.tum.de/stride/) (Heinig and Frishman,
2004), were also used to provide deeper insight on the structural
and functional integrity of the protein upon mutation.

2.8 Molecular dynamics (MD) simulations

2.8.1 Systems preparation
The Protein Data Bank Repository (RCSB PDB) (https://www.

rcsb.org/) provided a crystallized X-ray structure of the Bcl-2WT, Bcl-
2G101V, and Bcl-2F104L with PDB entries of 6O0K, 6O0L, and 6O0M,
respectively. The water molecules in the crystal structure were
removed, and the missing hydrogen atoms were substituted for
them, with the correct charges assigned at neutral pH. The
Schrödinger suite’s Protein Preparation Wizard was employed for
initial structure processing and energy minimization. To further
reduce steric clashes between residues, we used the OPLS-2005 force
field to minimize energy while setting the RMSD threshold to 0.
30 for all structures (Shivakumar et al., 2012).

2.8.2 Molecular dynamics simulations and post-
dynamic analysis

MD simulations were carried out using AMBER18 software and
its Particle Mesh Ewald Molecular Dynamics (PMEMD) module

FIGURE 4
Disease and neutral variations in Bcl-2 predicted through disease
phenotype prediction algorithms.

FIGURE 5
Bcl-2 Gene interactions with other genes predicted by (A) GeneMANIA and (B) STRING.
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(Case et al., 2024; Darden et al., 1993). Protein systems weremodelled,
and atomic charges were assigned state using the standard Amber
(FF14SB) force field within the Amber package. An in-house
pdb4amber script was used to modify, rename, and protonate
(histidine) Bcl-2 (Maier et al., 2015). The LEAP module was
employed to generate Bcl-2 parameters and topology files. This
was also used for system neutralization. Molecular minimisation
was carried out using a constraint potential of 500 kcal/mol, with
partial minimisation for 2,500 steps and full minimization taking
5,000 steps. Furthermore, a gradual heating from 0 to 310 K was
implemented in the system. The unconstrained equilibration was
performed for 5 ns while the atmospheric pressure was maintained at
1 bar with the help of a Berendsen barostat (Berendsen et al., 1984).
Subsequently, production stages were conducted over 500 ns to
understand the structural consequences of the mutations on Bcl-2.

The enzyme coordinates of Bcl-2WT, Bcl-2G101V, and Bcl-2F104L

were saved every 1 ps, and their resultant trajectories were analysed
using the AMBER18 integrated CPPTRAJ module (Roe and
Cheatham, 2013). Post-MD analyses included root-mean-square
deviation (RMSD), root-mean-square fluctuations (RMSF), radius
of gyration (Rg), solvent accessible surface area (SASA),
intramolecular hydrogen bonding, and dynamic cross-correlation
matrix (DCCM). Furthermore, principal component analysis (PCA)
was calculated to unravel the protein’s atomic displacement extent.
The generated data and subsequent complexes were visualized using
Microcal Origin analytical software (www.originlab.com), NMWiz
implemented in Visual Molecular Dynamics (VMD) (https://www.
ks.uiuc.edu/Research/vmd/) (Seifert, 2014; Humphrey et al., 1996).

3 Results

The Bcl-2 SNP dataset was obtained from the dbSNP and
Ensembl databases. Approximately 52,619 variations in Bcl-2 have

been identified, with 49,593 SNPs located in the intronic region,
163 SNPs classified as missense variants, 1,401 SNPs located in the
3′UTR area, 832 SNPs located in the 5′UTR region, and
115 synonymous variants, as reported by dbSNP and Ensembl.
Missense mutations in the coding region were the current target of
this study. As a result of further filtering to remove duplicate
variations, 130 variants were selected for further investigation.

3.1 Sequence-based analysis of
point mutation

Eight tools, namely, SIFT, PolyPhen2, CADD, REVEL, MetaLR,
Mutation Assessor, FATHMM, and Predict-SNP were used to
conduct sequence-based prediction and analyze the potential
effects of Bcl-2 mutations. These eight tools separated deleterious
mutations from tolerated ones (Supplementary Table S1). Out of
130 variants, SIFT and PolyPhen2 estimated 45 (~35%) to be
deleterious while CADD, REVEL, Mutation Assessor, FATHMM,
and Predict-SNP predicted 19 (~15%), 6 (~5%), 30 (~23%), 26
(~20%), and 38 (~29%) mutations as deleterious, respectively.
However, the MetaLR algorithm predicted that all 130 (100%)
variants were tolerated (Figure 2).

3.2 Structure-based analysis

Multiple computational algorithms, including mCSM, SDM2,
DUET, PremPS, CUPSAT, ENCoM, MutPred-2, and DynaMut
were used to provide structure-based predictions of the effect of
mutations. These tools distinguished between destabilizing and
stabilizing mutations (Supplementary Table S2). The analysis
concluded that out of 130 mutations, mCSM: 120 (~92%),
SDM2: 85 (~65%), DUET: 97 (~75%), PremPS: 94 (~72%),

FIGURE 6
G101 and F104 residue interactions network of Bcl-2; (A) wild G101, (A) G101V variant, (B) wild F104, and (B) F104L variant as predicted by
mCSM-PPI2.
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CUPSAT: 84 (~65%), ENCoM: 60 (~46%), MutPred: 2–27 (~21%),
and DynaMut: 61 (~47%) mutations were estimated to be
destabilizing the structure of the protein (Figure 3).

3.3 Disease phenotype analysis

The pathogenicity of the targeted mutations was assessed utilizing
PhD-SNP, PANTHER, SNPs and GO, PMut, and Meta-SNP. These
algorithms use their prediction values to determine whether a specific
mutation is disease-causing or neutral. From the 130 mutations, PhD-
SNP predicted 27 (~21%) mutations to be pathogenic, while
PANTHER, SNPs and GO, PMut, and Meta-SNP predicted 40
(~31%), 20 (~15%), 45 (~35%), and 23 (~18%) mutations associated
with the disease, respectively (Figure 4). However, only 11 of these
mutations were predicted to be disease-causing across all the prediction
algorithms (R12G, V15L, H94P, L97P, R98L, R129P, G141E, V142G,
N143S, M166T, and G193R) (Supplementary Table S3).

3.4 Post-transcriptional modification (PTM)
sites prediction

GPS-MSP 6.0 was used for methylation and determined the
number of Bcl-2 sites that would be modified. However, GPS-MSP
6.0 predicted that phosphorylation would occur at 35 residues [Ser:
15 (43%), Thr:12 (34%), and Tyr:8 (23%)]. In contrast, it was
predicted by Netphose 3.1 those 20 different residues could be
phosphorylated [Ser:11 (55%), Thr:7 (35%), and Tyr:2 (10%)].

Ubiquitination was predicted using BDMPUB and UbPred.
BDMPUB anticipated that two lysine residues would be
ubiquitinated, whereas UbPred projected those four lysine
residues would be ubiquitinated.

FIGURE 7
Sequence conservation plot of Bcl-2 protein generated using ConSurf web server.

FIGURE 8
FT-site server prediction of the Bcl-2 protein ligand binding sites
represented in mesh-like structure: pink (binding site 1), green
(binding site 2), and purple (binding site 3).
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3.5 Gene interaction network

The interaction between Bcl-2 and other genes was evaluated
using the GeneMANIA and STRING web servers. GeneMANIA
analysis showed that Bcl-2 physically interacted with all ten genes
and has no co-localization or genetic interaction with any other
gene. However, Bcl-2 was co-expressed with BAX, BCL2L1, NLRP1,
BBC3, and BID. Moreover, Bcl-2 shared protein domains with
BCL2L1, BAX, BIK, and BID (Figure 5A).

The STRING database offers an integrated and comprehensive
evaluation of indirect (functional) and direct (physical) protein-
protein interactions. The network analysis revealed that Bcl-2
interacted directly 17 genes: BECN1, BAX, TP53, BAD,
BCL2L11, BIK, BAK1, BBC3, BID, BCL2L1, HBK, BAG1, MCL1,
APAF1, CREB1, NR4A1, and FKBP8 (Figure 5B).

3.6 Effect of mutations on the structural and
functional integrity of Bcl-2

3.6.1 Estimation of impact of mutation on protein-
protein interactions (PPIs)

The effect of mutations on the binding affinity of protein
interactions was evaluated using mCSM-PPI2, which evaluates
the effect of mutation by simulating the impact of variations on
the network of non-covalent interactions between residues utilizing
graph kernels, energetic terms, complex network metrics, and

evolutionary data. The decreased binding affinity of protein-protein
interaction was observed at the active site residues of the mCSM-
PPI2-predicted Bcl-2 interaction, with a change in affinity
(ΔΔGaffinity) of −0.559 kcal/mol for the G101V variant
and −1.053 kcal/mol for the F104L variant. The interaction
network revealed that the wild-type protein residue
Gly101 established hydrogen bonds with Tyr18, Leu97, Arg98,
Phe104, and Ser105, as well as van der Waals interactions with
Gln99 and Glu152; however, in the mutant, Val101 established a
hydrogen bond with Leu97, Arg98, Phe104, Ser105, and Glu152
(Figure 6). Likewise, the Phe104 in the wild-type generated
hydrogen bonds with Ala100, Gly101, and Tyr108, and van der
Waals interactions with Ala100, Asp102, Arg106, Tyr108, and
Phe123, while in the mutant, leucine formed hydrogen bonds
with the same residues in the wild-type (Figure 6).

3.6.2 Conservation analysis of Bcl-2
The conservation of residues is the primary factor that ensures

the structural integrity of proteins. The Bcl-2 structure’s
conservation of residues was investigated using the ConSurf web
server to comprehend its significance and localized evolution. The
arrangement of residues and their degree of conservation was
uncovered utilizing the ConSurf analysis. Several residues in Bcl-
2 were shown to be relatively conserved using ConSurf, with
particular emphasis on G101 and F104, suggesting that genetic
variations at these positions might substantially impact Bcl-
2 (Figure 7).

TABLE 1 Bcl-2 protein ligand-binding sites and their respective residues.

Binding site 1 (pink) Binding site 2 (green) Binding site 3 (purple)

Phe104, Asp111, Phe112, Met115, Ser116, Val133, Glu136, Leu137,
Ala149, Phe150, Glu152, Phe153, and Val156

Ala100, Gly101, Asp103, Phe104, Arg107, Tyr108,
Trp144, Gly145, Val148, Phe198, and Tyr202

Asn11, Arg12, Val15, Met16, Trp30, Asp171,
Ala174, Leu175, and Thr178

FIGURE 9
Close-ups (different angles) of the mutant and wild system; (A) Bcl-2G101V and (B) Bcl-2F104L.
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3.6.3 Mapping ligand binding sites of Bcl-2
The FT-site web server was used to identify Bcl-2 binding

sites based on experimental evidence. The FT-site server depicted
three ligand sites in Bcl-2. The ligand sites in Bcl-2 were
represented by three different mesh-like structures on the FT-
site server (pink, green, and purple), with corresponding residues
that are within 5.0 Å of the binding site represented by ball and
stick in these sites (Figure 8). The position of the F104 residue is
detected in the first and second ligand-binding sites, while
G101 is detected in the second ligand-binding site (Table 1).
Consequently, mutations G101V and F104L may be more
deleterious, as they potentially impact the Bcl-2 ligand-
binding affinity.

The HOPE project PDB viewer was used to visualize the
structural features of the Bcl-2WT, Bcl-2G101V, and Bcl-2F104L

(Figure 9). Each residue demonstrated a unique size, charge, and
hydrophobicity. These values frequently varied between the original
wild-type and the newly introduced mutant residues. For the Bcl-
2G101V, the mutant residue was bigger and more hydrophobic than
the Bcl-2WT residue. Although the mutated residue is not directly
involved in ligand binding, it may indirectly affect ligand
interactions made by other residues due to changes in local
stability. The mutated residue is located within a special
BH3 motif. Therefore, the different properties of residues caused
the motif to become disrupted and consequently impair its function.
Glycine had the highest degree of flexibility compared to other

FIGURE 10
The secondary structural analysis of the Bcl-2WT, Bcl-2G101V, and Bcl-2F104L at 10, 100, 200, 300, 400, and 500 ns using the STRIDE web server.
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residues, which may be necessary for protein function. This function
can be abolished by mutating this glycine. For Bcl-2F104L, the mutant
residue was smaller than the Bcl-2WT residue. The Bcl-2WT residue
interacted with Venetoclax, and the difference in properties between
the Bcl-2WT and mutant can easily cause a loss of interactions with
the ligand. Protein function was frequently dependent on ligand
binding, and this mutation may impair this function. The mutated
residue was located within a special BH3 motif near a highly

conserved position. Consequently, the motif was disturbed owing
to the different properties of the residues, which would impede
its function.

3.6.4 Investigating the effect of the mutations on
the protein secondary structure

MD trajectories of 500 ns were used to investigate the dynamics of
secondary structural elements in Bcl-2WT, Bcl-2G101V, and Bcl-2F104L.
This study contributed to a better understanding of the effects of
genetic variations on the Bcl-2’s secondary structure through
simulations. The STRIDE web server was used to detect the change
in secondary structure at 10, 100, 200, 300, 400, and 500 ns (Figure 10).
The secondary structural components in Bcl-2, such as α-helix,
3–10 helix, and turns, were divided into specific residues at each
time interval. The Bcl-2G101V and Bcl-2F104L were observed to switch
from a helix to a turn configuration at these residues.

3.7 Dynamic and conformational stability
and fluctuations

The inherent behavior of a protein is associated with
conformational changes and structural aberrations. Modifying a
protein’s structure can significantly affect its function]. Therefore,
understanding mutation-induced structural changes requires a
more in-depth investigation of the conformational dynamics of
proteins. For this reason, the effects of Bcl-2 mutations (G101V
and F104L) were investigated over 500 ns MD simulations. The
dynamics and stability of Bcl-2WT, Bcl-2G101V, and Bcl-2F104L were
determined by evaluating the time variable considering the RMSD of

FIGURE 11
(A) RMSD, (B) RMSF, (C) Rg, and (D) SASA values across Cα of Bcl-2WT (gray), Bcl-2F104L (orange), and Bcl-2G101V (green) over 500 ns MD
simulations.

FIGURE 12
Intramolecular hydrogen bonding in Bcl-2WT (gray), Bcl-2F104L
(orange), and Bcl-2G101V (green) over 500 ns MD simulations.
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Cα atoms from computed trajectories. All systems reached
convergence after 100 ns of the simulation period (Figure 11A).
The Bcl-2WT exhibited the lowest deviated RMSD value, 1.14 Å,
while the Bcl-2G101V and Bcl-2F104L revealed higher RMSD values,
1.43 and 1.62 Å, respectively. The Bcl-2G101V disrupted the RMSD
pattern of Bcl-2WT and caused it to fluctuate more than the Bcl-2WT

and Bcl-2F104L during the simulation. The findings showed that Bcl-
2WT and Bcl-2F104L displayed the least deviation of Cα atoms
compared to Bcl-2G101V, indicating that the mutation of Gly to
Val reduced the structural stability of Bcl-2. Furthermore, no
significant variations in structural snaps were noticed, excluding
the α3-α4 helices (hydrophobic groove) of superimposed Bcl-2WT,
Bcl-2G101V, and Bcl-2F104L every 100 ns during the simulation
(Supplementary Figure S1). Here, α3-α4 helices become more
dynamic and flexible as the simulation progresses, thus inducing
expansion or shrinking in the hydrophobic groove, which appears
most effectively in the Bcl-2G101V.

The relative rigidity and flexibility of residues determined
protein conformational changes and their associated functions.

Consequently, the RMSF values of Bcl-2WT, Bcl-2G101V, and Bcl-
2F104L can be computed and analyzed to see how Bcl-2’s residual
fluctuations change due to mutations (Figure 11B). Bcl-2WT

demonstrated the least fluctuations of the residues with an
average RMSF value of 1.10 Å when compared to 1.13 and
1.20 Å for the Bcl-2F104L and Bcl-2G101V, respectively. The
calculated trajectory showed a slightly higher pattern of
fluctuations, especially for the Bcl-2G101V variant. As a result of
these mutations, the regions surrounding the various sites become
more dynamic and internally disturbed, reflecting higher
fluctuations in Bcl-2. The RMSF distribution correlated with the
RMSD pattern, with mutated systems exhibiting more significant
fluctuations. The substantial variations in the mutants’ residual
fluctuations could be attributed to Bcl-2 structural inactivation.

Furthermore, the Rg values of all three systems were analyzed to
determine the folding behavior and overall conformational changes
in the Bcl-2 structure before and after mutation induction. The
compactness, stability, and folding of a protein can be determined
from the change in Rg values over time. The Rg values of the Bcl-
2WT, Bcl-2G101V, and Bcl-2F104L were estimated from the MD
trajectories and plotted (Figure 11C). Bcl-2WT had the lowest Rg
value (14.54 Å, while the Bcl-2F104L and Bcl-2G101V showed slight
increases at 14.59 and 14.63 Å, respectively. Altogether, Rg analysis
of Bcl-2 revealed that the mutants were less stable, more flexible, and
less compact than the native protein.

Moreover, the Bcl-2 structure’s hydrophilic and hydrophobic
residues were analyzed using SASA. The SASA values for the Bcl-
2WT, Bcl-2G101V, and Bcl-2F104L were obtained and plotted throughout
the 500 ns of MD simulation (Figure 11D). Following exposing the
system to the solvent, Bcl-2WT had a median SASA value of 7,824 Å2.
The Bcl-2G101V exhibited a higher SASA value of 8,049 Å2 than that
of the Bcl-2F104L, which displayed a value of 7,985 Å2. The SASA
values of all three systems agreed with the Rg results. The differences
in the SASA values for the three systems throughout the simulation
reflect Bcl-2 unfolding and folding. The overall SASA values for Bcl-
2WT and Bcl-2F104L were slightly different, suggesting that the
structural mutation from Phenylalanine to Leucine at position
104 in Bcl-2 provides better exposure to solvent compared with

FIGURE 13
DCCM analyses for Bcl-2WT, Bcl-2G101V, and Bcl-2F104L over 500 ns MD simulations.

FIGURE 14
PCA for Bcl-2WT (gray), Bcl-2F104L (orange), and Bcl-2G101V (green)
over the 500ns MD simulations.
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Bcl-2G101V and, thus, favors the enhanced activity of the Bcl-2F104L

over that of the Bcl-2G101V.

3.7.1 Hydrogen bonding analysis
Analysis of intramolecular hydrogen bonds primarily assists in

evaluating the overall conformation and stability of the protein
structure through MD simulations. Time-dependent intramolecular
hydrogen bond analysis was performed and plotted to evaluate the
effect of mutations on the structure of Bcl-2 (Figure 12). The average
values of intramolecular hydrogen bonds in Bcl-2WT, Bcl-2G101V, and
Bcl-2F104L ranged from about (43–100), (41–98), and (40–96),
respectively, indicating a slight change before and after mutation
formation. The Bcl-2F104L and Bcl-2WT models were more compact
and stable than the Bcl-2G101V model, and the results maintained a
roughly similar trajectory pattern.

3.7.2 Dynamic cross-correlation matrix (DCCM)
To examine the differences in the dynamics of Bcl-2WT, Bcl-2G101V,

and Bcl-2F104L, DCCM plots were generated for anti-correlated and
correlated protein structural motions. The residues’ motion values
range from −1 to +1. Positive values indicate positively correlated
motions (brown colour), whereas negative values indicate anticorrelated
motions (black colour) between residues (Figure 13). The scatter plots
revealed that motionmodes between residues of Bcl-2F104L are similar to
those of Bcl-2WT, whereas the Bcl-2G101V showed a slightly different
pattern, mutation obviously enhances the positively correlated motions
occurring in the Bcl-2.

3.7.3 Principal component analysis (PCA)
Intensive movements in Bcl-2WT, Bcl-2G101V, and Bcl-2F104L were

evaluated using PC analysis with the first two eigenvectors (EVs) to
qualitatively examine the influence of induced mutations on the
major conformational movements of each residue (Kumalo et al.,
2016). The eigenvectors illustrate the directions of Bcl-2 motion, and
the eigenvalues represent the overall motion strength; these are
obtained by diagonalizing the covariance matrix (Chen et al.,
2021; Chen et al., 2022). The conformational changes of Bcl-2
and its variants were shown in a 2D scatter plot (Figure 14),
indicating a significant change in Bcl-2 overall movements after
acquiring the mutations, especially Bcl-2G101V. Moreover,
Figure 14 shows that the Bcl-2G101V and Bcl-2F104L with the
trace covariance matric of 12.46 and 22.46 Å2, respectively,
imposed highly fluctuated anti-correlated effects as the
negative values of 2D scatter point into the protein. In the
case of Bcl-2WT, the trace covariance matrices were 24.09 Å2,
indicating the presence of prominent correlated motions with
minimal system fluctuations. Consequently, the findings
demonstrated that the Bcl-2G101V caused substantial
fluctuations in the simulated Bcl-2 dynamics.

4 Discussions

4.1 Sequence, structure, phenotype-
mutational analysis and gene interactions

To ascertain the deleterious effect of residue mutation on the
protein, we employed various sequence-based point mutation

algorithms. Out of 130 mutations, SIFT and
PolyPhen2 algorithms displayed the highest estimation,
deeming 45 mutations (~35%) deleterious. With the
exception of the MetaLR algorithm, which predicted that all
130 (100%) variants were tolerated, other algorithms displayed
results ranging from around 5 to 23 percent (Figure 2). We
hypothesize that the inclusion of machine learning and high-
throughput Next-Generation Sequencing (NGS) data in the
PolyPhen2 method broadened the search field, contributing
to the high prediction rate. Similarly, various algorithms were
adopted to predict the effect of missense mutations on the
protein stability, and to distinguish between destabilizing and
stabilizing mutations. Out of 130 mutations, 3 algorithms
(ENCoM, MutPred, and DynaMut) assessed between 21% and
46% of mutations are destabilizing, while 4 predictive tools
(mCSM, SDM2, DUET, PremPS, and CUPSAT) estimated
between 65% and 92% of mutations are destabilizing
(Figure 3). We believe that the analysis adopted here is robust
and reliable as we opted to combine various algorithms that take
into account critical structural features such as protein folding
and Gibbs’s free energy (PremPS), site-directed mutations
relative to wild type (SDM2), vibrational entropy (DynaMut)
and consensual estimation (DUET). A number of machine
learning and neural network techniques were used to predict
disease phenotypes (Figure 4; Supplementary Table S3), yet only
11 mutations were shown to be disease-causing by all prediction
algorithms. These mutations are R12G, V15L, H94P, L97P, R98L,
R129P, G141E, V142G, N143S, M166T, and G193R.
GeneMANIA and STRING database offer an integrated and
comprehensive evaluation of indirect (functional) and direct
(physical) protein-protein interactions. The network analysis
revealed that Bcl-2, Bcl-2 shared protein domains with
BCL2L1, BAX, BIK, and BID (Figure 5A), and interacted
directly with BECN1, BAX, TP53, BAD, BCL2L11, BIK, BAK1,
BBC3, BID, BCL2L1, HBK, BAG1, MCL1, APAF1, CREB1,
NR4A1, and FKBP8 (Figure 5).

4.2 Impact of mutations on protein-protein
interactions

To explore the impact of Bcl-2G101V and Bcl-2F104L on their
structural and functional characteristics, we utilized various
techniques. The mCSM-PPI2 algorithm predicted a reduction in
the binding affinity of protein-protein interaction, G101V
variant change affinity (ΔΔGaffinity) with −0.559 kcal/mol,
compared with −1.053 kcal/mol for F104L variant. According
to the interaction network, Gly101in the wild-type protein,
generated hydrogen bonds with Tyr18, Leu97, Arg98,
Phe104, and Ser105, and exhibited van der Waals
interactions with Gln99 and Glu152. However, in the mutant,
Val101 established hydrogen bonds with Leu97, Arg98, Phe104,
Ser105, and Glu152 (Figure 6). Furthermore, in the wild-type,
Phe104 established hydrogen bonds with Ala100, Gly101, and
Tyr108 and van der Waals interactions with Ala100, Asp102,
Arg106, Tyr108, and Phe123. While in the mutant, leucine
established hydrogen bonds with the same residues
(Figure 6). The ConSurf web server was utilized to confirm
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the structural integrity of the Bcl-2 protein. Several residues in
the Bcl-2 protein were shown to be relatively conserved, with a
specific focus on G101 and F104., suggesting that genetic
variations at these positions might substantially impact Bcl-2
(Figure 7). Additionally, FTSite, HOPE, and Stride were
employed to gain further understanding of the structural and
functional integrity of the Bcl-2 protein following mutation.
The FT-site server depicted three ligand sites in Bcl-2 (Figure 8).
According to Table 1, the first and second ligand-binding sites
detect the position of the F104 residue, while the second ligand-
binding site detects the G101 residue. Considering they may
affect the Bcl-2 ligand-binding affinity, mutations G101V and
F104L may thus be more deleterious. The Bcl-2WT, Bcl-2G101V,
and Bcl-2F104L structural characteristics were visualized using
the HOPE project PDB viewer (Figure 9). The Bcl-2G101V mutant
residue exhibited a bigger size and greater hydrophobicity
compared to the Bcl-2WT residue. The mutant residue of Bcl-
2F104L was smaller than the residue of Bcl-2WT. Venetoclax was
bound to the Bcl-2WT residue, and because the two amino acids
had different characteristics, the mutant form of Bcl-2WT can
readily lose its binding affinity for the ligand. Finally, the
STRIDE web server was utilized to identify alterations in the
secondary structure at specific time points: 10, 100, 200, 300,
400, and 500 ns (Figure 10). The conformational switch from a
helix to a turn was seen in Bcl-2G101V and Bcl-2F104L at
these residues.

4.3 Effect of mutations on the structural and
dynamic landscape of the protein

We employed the MD simulations to conduct a comprehensive
analysis of the conformational dynamics of proteins to understand
the structural alterations caused by mutations. These mutations
affected Bcl-2’s stability, flexibility, solvent-accessible surface area,
and rigidity, as demonstrated by 500 ns MD simulations (Figure 11).
Moreover, mutations impacted Bcl2’s hydrogen bond formation,
and the Bcl-2F104L and Bcl-2WT models exhibited greater
compactness and stability compared to the Bcl-2G101V model
(Figure 12). To explore mutation-induced effect on
conformational alterations of Bcl-2, DCCMs and PCA are
estimated. The results showed that the Bcl-2G101V mutation
clearly affects the positively correlated motions occurring in the
Bcl-2 and causes substantial fluctuations in the simulated Bcl-2
dynamics (Figures 13, 14).

Overall, the findings of this study hold several biological
significances, for instance having information on SNPs in the
Bcl-2 gene would help identify potential biomarkers for cancer
diagnosis and treatment. Furthermore, by examining the
structural and functional effects of SNPs in Bcl-2, our finding
may pinpoint novel targets for cancer therapy. Treatments that
specifically target genetic variants or protein interactions linked
to Bcl-2 SNPs may be able to return cancer cells to normal
apoptotic pathways, which would ultimately result in their
elimination. Information presented here on how SNPs in Bcl-2
influence protein-protein interactions can provide insights into
the molecular mechanisms underlying cancer development and
progression.

5 Limitation of the study and future
perspective

The current study has focused exclusively on the association
between single nucleotide polymorphisms (SNPs) in the Bcl-2 gene
and various aspects of its function and interactions in human cells. One
limitation of this approach is the exclusion of comparative genomic
analyses, which could provide additional insights into the evolutionary
history and functional differences between Bcl-2 in cancerous versus
non-cancerous cells, as well as comparisons with unicellular organisms
such as yeasts. Such comparisons might reveal conserved or divergent
evolutionary traits that contribute to our understanding of Bcl-2 role in
apoptosis and oncogenesis across different species and cell types.
Moreover, the study does not address the broader genomic context
that may influence these variations, such as regulatory elements or
interactions with other genomic regions. The potential impact of
epigenetic factors on Bcl-2 expression and function is also not
explored, which could be significant given the gene’s role in critical
cellular processes.

Future studies could expand on the current work by incorporating
comparative genomics to analyze Bcl-2 across different species,
including model organisms like yeasts, which can offer valuable
insights due to their simpler genetic backgrounds and ease of
genetic manipulation. Such studies would enhance our
understanding of the evolutionary pressures that have shaped the
Bcl-2 gene and could identify conserved elements critical for its
function. Additionally, examining the interplay between Bcl-2 SNPs
and other genomic or epigenetic factors could provide a more
comprehensive picture of how Bcl-2 variants contribute to disease
phenotypes. This could involve integrating broader genomic data sets,
includingwhole-genome sequencing and epigenetic profiling, to discern
the complex regulatory networks that impact BCL-2 expression and
activity. In light of these limitations, further research could also focus on
the translational application of our findings, exploring how the SNPs
identified could influence the efficacy of BCL-2-targeted therapies in
clinical settings.

By addressing these areas, future research could provide a deeper
understanding of BCL-2’s role in disease and offer new avenues for
therapeutic intervention, ultimately leading to improved treatment
strategies for diseases mediated by this critical gene.

6 Conclusion

This study explored the impact of single nucleotide polymorphisms
(SNPs) in the Bcl-2 gene on the protein structural and functional
dynamics, with implications for carcinogenesis. Comprehensive
bioinformatics tools and molecular dynamics simulations revealed
that 8.5% of identified mutations in Bcl-2 were pathogenic, with
Bcl-2G101V and Bcl-2F104L emerging as the most deleterious variants.
These mutations significantly disrupted protein stability, binding
affinities in protein-protein interactions, and ligand-binding
capabilities. Structural and dynamic analyses indicated that these
mutations led to conformational deviations, altered secondary
structure, and compromised the integrity of critical functional motifs
such as the BH3 domain.

The findings underscore the pivotal role of Bcl-2 mutations in
disrupting apoptotic regulation, a hallmark of cancer, and highlight
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their potential as diagnostic biomarkers and therapeutic targets. By
providing a detailed characterization of mutation-induced effects on
Bcl-2, this study lays a foundation for future experimental validation
and the development of targeted anti-cancer strategies, including
rational drug design.

While the current work focuses on the molecular implications of
Bcl-2 SNPs, future research integrating broader genomic and
epigenetic datasets, as well as comparative analyses across species,
will provide a more holistic understanding the role of Bcl-2 in
apoptosis and oncogenesis. These efforts could contribute to
innovative therapeutic interventions targeting Bcl-2-associated
pathways in cancer.
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