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Objectives: Unlike other diseases, cancer is not just a genome disease but should
broadly be viewed as a disease of the cellular machinery. Therefore, integrative
multifaceted approaches are crucial to understanding the complex nature of
cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human BCL-2 gene, is
an anti-apoptoticmolecule that plays a key role in apoptosis and genetic variation
of Bcl-2 proteins and is vital in disrupting the apoptotic machinery. Single
nucleotide polymorphisms (SNPs) are considered viable diagnostic and
therapeutic biomarkers for various cancers. Therefore, this study explores the
association between SNPs in Bcl-2 and the structural, functional, protein-protein
interactions (PPIs), drug binding and dynamic characteristics.

Methods: Comprehensive cross-validated bioinformatics tools and molecular
dynamics (MD) simulations. Multiple sequence, genetic, structural and disease
phenotype analyses were applied in this study.

Results: Analysis revealed that out of 130 mutations, approximately 8.5% of these
mutations were classified as pathogenic. Furthermore, two particular variants,
namely, Bcl-2G101V and Bcl-2F104L, were found to be themost deleterious across all
analyses. Following 500 ns, MD simulations showed that these mutations caused
a significant distortion in the protein conformational, protein-protein interactions
(PPIs), and drug binding landscape compared to Bcl-2WT.
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Conclusion: Despite being a predictive study, the findings presented in this report
would offer a perspective insight for further experimental investigation, rational
drug design, and cancer gene therapy.
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1 Introduction

The complex nature of cancer biology imposes a major challenge
in cancer research and, consequently, the development of effective
treatment regimes. The World Health Organization (WHO)
estimated that 10 million patients globally died from various
forms of cancer in 2020 alone. Many clinical trials do not
provide significant success despite significant advances in
diagnosis and innovative therapy methods (Karimi et al., 2022).
Even though targeted therapy has been a successful approach in
treating cancer, heterogeneous cancer still has a variety of clinical
profiles and molecular alterations. Certain genetic alterations in
cancer targets can make drugs more effective or, more often, cause
them to become resistant to treatment (Jin et al., 2019). Drug
resistance caused by mutations is a common occurrence in
cancer. Thus, the mutation profile of patient malignancies plays a
major role in determining the effectiveness of targeted therapy.
Accurate molecular and genetic profiling of tumour cells is
becoming a crucial step before implementing targeted therapy in
patients (Jin et al., 2019).

The oncoprotein B-cell lymphoma-2 (Bcl-2) family proteins
control apoptosis and are implicated in various tumour
progressions (Rosser et al., 2003; Goff et al., 2013). This gene was
the first to promote prolonged cell survival and growth rather than
boost proliferation, demonstrating the importance of inhibiting cell
death in tumorigenesis (Cory and Adams, 2002). Bcl-2 inhibits
cytochrome c (cyt-c) release from the mitochondria, preventing
caspases involved in apoptosis from activating (Yin et al., 1994). Bcl-
2 overexpression or aberrant expression has been associated with
many cancers’ emergence, progression, and relapse (Delbridge et al.,
2016; Kitada et al., 2002). Consequently, Bcl-2 activity and protein
levels have emerged as essential measures for determining the
success or failure of clinical treatment and predicting patient
outcomes (Delbridge et al., 2016). The sensitivity of malignant
tumor cells to apoptosis can be efficiently boosted by either
lowering Bcl-2 protein levels or suppressing Bcl-2 function (Qian
et al., 2022). Multidrug resistance (MDR) in cancer cells can be
overcome by selectively inhibiting Bcl-2, resulting in cell cycle arrest,
senescence, and eventual cell death in response to radiotherapy and
chemotherapy (Tang et al., 2020; Wang et al., 2020). Therefore,
inhibition of Bcl-2 inactivation has become a highly attractive
strategy in the battle against cancer, and BH3 mimetics are the
main category of promising therapeutic agents (Perini et al., 2018;
Delbridge and Strasser, 2015). BH3 mimetics inhibit Bcl-2 activity
by competing with its physiological ligands, BH3 domain-
containing pro-apoptotic proteins, at the hydrophobic (binding)
groove (Czabotar et al., 2014).

Despite the promising initial clinical effectiveness of
BH3 mimetic agents in various cancers, the mutation is a
common way cancer cells evade therapies (Roberts et al., 2016;

Stilgenbauer et al., 2018). The most common mutation is a change
from glycine to valine at amino acid position 101 (G101V), which
substantially decreases Bcl-2 affinity towards the BH3 mimetics
agent (Venetoclax) and prevents the drug from displacing pro-
apoptotic mediators from Bcl-2 in the cells (Blombery et al., 2019;
Blombery et al., 2020). Most human genetic variations are
attributable to single nucleotide polymorphisms (SNPs) (Dakal
et al., 2017). This genetic variation generated by SNPs in genetic
codons influences the translation outcome, resulting in a mutant
protein with a different structure and function. Nevertheless, not all
SNPs impact protein function and structure; a few are harmful, but
many are not (Kucukkal et al., 2015).

Bioinformatics offers enormous array of databases and
techniques that are necessary for the analysis, integration, and
interpretation of cancer multi-omics data (Jiménez-Santos et al.,
2022). It is noteworthy that in silico techniques have recently
emerged as valuable tool to assess the distinct genomic
alterations and transcriptome profiles of tumors, as well as
understanding the underlying mechanisms of cancer (Yalcin-
Ozkat, 2021; Edelman et al., 2010; Elamin et al., 2024).

Herein, combined in silico, bioinformatic approaches and
molecular dynamics simulations were employed to
comprehensively analyze the genomic and proteomic changes in
Bcl-2 (Figure 1) and their implications on carcinogenicity. In order
to do cross-validation and ensure the validity of the generated data,
we choose to employ a variety of bioinformatics algorithms for each
type of analysis we carried out in this work. Several mutations have
been analyzed for their potential impact on the genesis and
progression of cancer, and their deleterious effects on Bcl-2
structure and function have been described. Subsequently, the
most deleterious mutations, Bcl-2G101V and Bcl-2F104L, were
selected for further dynamic analysis to probe their impact on
the protein conformational landscape using molecular dynamics
(MD) simulations and post-dynamic analyses.

We believe that the extensive andmultifaceted analyses provided
in this study will offer a thorough grasp of the effects of deleterious
Bcl-2 gene mutations on the apoptotic machinery and their
implications for carcinogenesis. This understanding will then
inform future directions in drug design and the development of
anti-cancer therapeutics.

2 Methods

2.1 Generation of the datasets

The Bcl-2 FASTA sequence was obtained from UniProt
(UniProt ID: P10415) (https://www.uniprot.org/) (Bateman et al.,
2017). The dbSNP (https://www.ncbi.nlm.nih.gov/snp/) and
Ensembl (https://www.ensembl.org/) databases and an extensive
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literature search were used to compile the list of mutations (Sherry
et al., 2001; Hubbard et al., 2002). Gene synonyms (Bcl-2, PPP1R50)
(transcript ID: ENST00000333681.5) of the Bcl-2 protein were
selected for this study. Duplicate variants and other redundant
data were excluded from the analysis. High-resolution crystal
structures of the Bcl-2 protein, both wild-type and mutated
(G101V and F104L) (PDB ID:6O0K, 6O0L, and 6O0M), were
obtained from the Protein Data Bank (https://www.rcsb.org/)
(Birkinshaw et al., 2019).

2.2 Sequence-based analyses for
point mutation

We utilised eight different bioinformatics tools to obtain a
reliable cross-validated sequence-based analysis to determine the
deleterious effects of residue mutations on the protein. These are, the
Sorting Intolerant From Tolerant (SIFT) algorithm (https://sift.bii.a-
star.edu.sg) which determines the deleterious effects of residue
mutations on proteins (Kumar et al., 2009); Polymorphism
Phenotyping 2 (PolyPhen-2) (http://genetics.bwh.harvard.edu/
pph2/) (Adzhubei et al., 2013), which is tailored to the study of
high-throughput Next-Generation Sequencing (NGS) data and
features multiple sequence alignments and classifiers based on
machine learning; Combined Annotation Dependent Depletion
(CADD) (https://cadd.gs.washington.edu/) that is designed to
estimate the deleterious effect of residue variation on protein

sequences (Rentzsch et al., 2019); Rare Exome Variant Ensemble
Learner (REVEL) (https://sites.google.com/site/revelgenomics/)
(Ioannidis et al., 2016); MetaLR (https://sites.google.com/site/
jpopgen/dbNSFP) which predicts the deleteriousness of missense
variants using logistic regression, which incorporates nine
independent variant deleteriousness scores and allele frequency
information (Liu et al., 2016); Mutation Assessor (http://
mutationassessor.org/r3/) uses the evolutionary conservation of
the impacted residues in protein homologs to speculate on the
functional consequences of residue changes in proteins (Reva et al.,
2011); Functional Analysis Through Hidden Markov Models
(FATHMM) which is a high-throughput web server capable of
predicting the functional consequences of both coding variants,
that is, non-synonymous single nucleotide variants (nsSNVs) and
non-coding variants in the human genome (http://fathmm.
biocompute.org.uk/); and Predict-SNP (https://loschmidt.chemi.
muni.cz/predictsnp1/) (Bendl et al., 2014).

2.3 Structure-based analyses for
point mutation

Various algorithms were employed to predict the effect of
missense mutations on the protein stability. These include,
mCSM (https://biosig.lab.uq.edu.au/mcsm/) which uses
various residues atomic distance patterns to train the
predictive models (Pires et al., 2014a); Site-directed mutator2

FIGURE 1
Flowchart of the different types of analyses and approaches employed in this study.
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(SDM2) (http://marid.bioc.cam.ac.uk/sdm2) which can also
estimate the relative stability of wild-type and mutated
protein structures by comparing them to known homologous
3D structures; DUET (http://biosig.unimelb.edu.au/duet/)
which uses Support Vector Machines (SVM) to produce a
consensual estimate (Pires et al., 2014b); PremPS (https://
lilab.jysw.suda.edu.cn/research/PremPS/) which estimates
changes in the Gibbs free energy of protein unfolding to
assess the impact of single mutations on protein stability
(Chen et al., 2020); CUPSAT (http://cupsat.tu-bs.de/)
(Parthiban et al., 2006); ENCoM (https://labworm.com/tool/
encom) (Frappier et al., 2015); MutPred2 (http://mutpred.
mutdb.org/) (Pejaver et al., 2020); and DynaMut (https://
biosig.lab.uq.edu.au/dynamut/) which takes the changes in
vibrational entropy into account (Rodrigues et al., 2018).

2.4 Disease phenotype prediction analysis

Several machine learning and neural network algorithms were
employed for disease phenotype prediction. These include, PhD-
SNP (https://bio.tools/phd-snp) which uses neural networks that
have been trained on a large library of standard and pathogenic
mutations (Capriotti and Fariselli, 2017); Protein ANalysis
THrough Evolutionary Relationships (PANTHER) (http://www.
pantherdb.org/) which is designed to estimate the likelihood of a
particular non-synonymous (residue changing) coding SNP that
causes a functional impact on the protein (Thomas et al., 2022);
SNPs and GO (https://snps.biofold.org/snps-and-go/) is another a
precise technique that uses the associated protein functional
annotation to determine whether or not a variation is
associated with a disease based on a protein sequence
(Capriotti et al., 2013); PMut (http://mmb.irbbarcelona.org/
PMut/) which identifies pathogenic protein variants with up to
80% predictive accuracy in humans (López-Ferrando et al., 2017);
and Meta-SNP (https://snps.biofold.org/meta-snp/) which is a
randomised forest-based classification algorithm that
distinguishes between polymorphic non-synonymous SNVs and
disease-related one.

2.5 Post-transcriptional modification (PTM)
sites prediction

PTM site predictions comprised several rearranged residues that
produced many proteins. Ubiquitination, phosphorylation, and
methylation are some of the PTM sites that have been
characterised. These sites are essential in vital cellular organising
processes such as pathological signaling cascades and protein-
protein interactions. Thus, PTM prediction assisted in elucidating
whether genetic variants were associated with or contributed to
disease pathogenesis. We used four tools for this purpose, namely,;
NetPhos 3.1 (https://services.healthtech.dtu.dk/service.php?
NetPhos-3.1); Group-based Prediction System (GPS) 6.0 (http://
gps.biocuckoo.cn/) (Xue et al., 2005); BDM-PUB (http://bdmpub.
biocuckoo.org/) which is for protein ubiquitination site prediction
using the Bayesian Discriminant Method; and UbPred (http://www.
ubpred.org/).

2.6 Gene-gene interaction network analysis

The gene function can be better understood by studying the genes
with which it interacts. The GeneMANIA and STRING databases were
used to investigate the relationship between the Bcl-2 gene and other
genes and to predict the effect of Bcl-2 nsSNPs on other associated
genes. GeneMANIA (https://genemania.org/) is a database for
identifying genes related to input genes using an extensive set of
functional association data (Warde-Farley et al., 2010). These
association data included co-expression, colocalisation, pathways,
protein domain similarity, and interactions between proteins and
genes. GeneMANIA can identify novel pathway members or
complex members, genes missed during the screening process, or
genes that perform a specific function, such as protein kinases.
STRING (https://string-db.org/) is a database of both experimentally
verified and theoretically predicted interactions between proteins
(Szklarczyk et al., 2021). These interactions occur through
computational prediction, inter-organism information transmission,
and aggregation of interactions from other (primary) databases, and
they can be either direct (physical) or indirect (functional).

2.7 Effect of point mutation on the structural
and functional integrity of the protein

The formation of a protein complex is critical in controlling many
biological activities. Therefore, different algorithms were employed to
investigate the effect of Bcl-2G101V and Bcl-2F104L structural and
functional properties. mCSM-PPI2 (http://biosig.unimelb.edu.au/
mcsm_ppi2/) was used to predict the effects of missense mutations
on protein-protein affinity (Rodrigues et al., 2019). mCSM-PPI2 uses
graph-based structural signatures to model the effects of variations on
the inter-residue interaction network, evolutionary information,
complex network metrics, and energy terms to generate an
optimised predictor. ConSurf (https://consurf.tau.ac.il/) is another
tool we employed to estimate the evolutionary conservation of
residue positions in a protein molecule based on the phylogenetic
relationships between homologous sequences (Ashkenazy et al., 2016).
The degree to which the residue position is evolutionarily conserved
strongly depends on its structural and functional importance. The
ConSurf value varied from 1 to 9, with one denoting residues with the
least conservation and nine denoting residues with the most
conservation. Other tools such as FTSite (https://ftsite.bu.edu/)
(Ngan et al., 2012), HOPE (https://www3.cmbi.umcn.nl/hope/) and
Stride (http://webclu.bio.wzw.tum.de/stride/) (Heinig and Frishman,
2004), were also used to provide deeper insight on the structural
and functional integrity of the protein upon mutation.

2.8 Molecular dynamics (MD) simulations

2.8.1 Systems preparation
The Protein Data Bank Repository (RCSB PDB) (https://www.

rcsb.org/) provided a crystallized X-ray structure of the Bcl-2WT, Bcl-
2G101V, and Bcl-2F104L with PDB entries of 6O0K, 6O0L, and 6O0M,
respectively. The water molecules in the crystal structure were
removed, and the missing hydrogen atoms were substituted for
them, with the correct charges assigned at neutral pH. The
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Schrödinger suite’s Protein Preparation Wizard was employed for
initial structure processing and energy minimization. To further
reduce steric clashes between residues, we used the OPLS-2005 force
field to minimize energy while setting the RMSD threshold to 0.
30 for all structures (Shivakumar et al., 2012).

2.8.2 Molecular dynamics simulations and post-
dynamic analysis

MD simulations were carried out using AMBER18 software and
its Particle Mesh Ewald Molecular Dynamics (PMEMD) module
(Case et al., 2024; Darden et al., 1993). Protein systems were
modelled, and atomic charges were assigned state using the
standard Amber (FF14SB) force field within the Amber package.
An in-house pdb4amber script was used to modify, rename, and
protonate (histidine) Bcl-2 (Maier et al., 2015). The LEAPmodule was
employed to generate Bcl-2 parameters and topology files. This was
also used for system neutralization. Molecular minimisation was
carried out using a constraint potential of 500 kcal/mol, with
partial minimisation for 2,500 steps and full minimization taking
5,000 steps. Furthermore, a gradual heating from 0 to 310 K was
implemented in the system. The unconstrained equilibration was
performed for 5 ns while the atmospheric pressure was maintained at
1 bar with the help of a Berendsen barostat (Berendsen et al., 1984).
Subsequently, production stages were conducted over 500 ns to
understand the structural consequences of the mutations on Bcl-2.

The enzyme coordinates of Bcl-2WT, Bcl-2G101V, and Bcl-2F104L

were saved every 1 ps, and their resultant trajectories were analysed
using the AMBER18 integrated CPPTRAJ module (Roe and
Cheatham, 2013). Post-MD analyses included root-mean-square
deviation (RMSD), root-mean-square fluctuations (RMSF), radius
of gyration (Rg), solvent accessible surface area (SASA),
intramolecular hydrogen bonding, and dynamic cross-correlation
matrix (DCCM). Furthermore, principal component analysis (PCA)
was calculated to unravel the protein’s atomic displacement extent.
The generated data and subsequent complexes were visualized using
Microcal Origin analytical software (www.originlab.com), NMWiz
implemented in Visual Molecular Dynamics (VMD) (https://www.
ks.uiuc.edu/Research/vmd/) (Seifert, 2014; Humphrey et al., 1996).

3 Results

The Bcl-2 SNP dataset was obtained from the dbSNP and
Ensembl databases. Approximately 52,619 variations in Bcl-2 have
been identified, with 49,593 SNPs located in the intronic region,
163 SNPs classified as missense variants, 1,401 SNPs located in the
3′UTR area, 832 SNPs located in the 5′UTR region, and
115 synonymous variants, as reported by dbSNP and Ensembl.
Missense mutations in the coding region were the current target of
this study. As a result of further filtering to remove duplicate
variations, 130 variants were selected for further investigation.

3.1 Sequence-based analysis of
point mutation

Eight tools, namely, SIFT, PolyPhen2, CADD, REVEL, MetaLR,
Mutation Assessor, FATHMM, and Predict-SNP were used to

conduct sequence-based prediction and analyze the potential
effects of Bcl-2 mutations. These eight tools separated deleterious
mutations from tolerated ones (Supplementary Table S1). Out of
130 variants, SIFT and PolyPhen2 estimated 45 (~35%) to be
deleterious while CADD, REVEL, Mutation Assessor, FATHMM,
and Predict-SNP predicted 19 (~15%), 6 (~5%), 30 (~23%), 26
(~20%), and 38 (~29%) mutations as deleterious, respectively.
However, the MetaLR algorithm predicted that all 130 (100%)
variants were tolerated (Figure 2).

3.2 Structure-based analysis

Multiple computational algorithms, including mCSM, SDM2,
DUET, PremPS, CUPSAT, ENCoM, MutPred-2, and DynaMut
were used to provide structure-based predictions of the effect of
mutations. These tools distinguished between destabilizing and
stabilizing mutations (Supplementary Table S2). The analysis
concluded that out of 130 mutations, mCSM: 120 (~92%),
SDM2: 85 (~65%), DUET: 97 (~75%), PremPS: 94 (~72%),
CUPSAT: 84 (~65%), ENCoM: 60 (~46%), MutPred: 2–27
(~21%), and DynaMut: 61 (~47%) mutations were estimated to
be destabilizing the structure of the protein (Figure 3).

FIGURE 2
Deleterious and tolerated variations in Bcl-2 predicted through
sequence-based algorithms.

FIGURE 3
Destabilizing and stabilizing variations in Bcl-2 predicted through
structure-based algorithms.
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3.3 Disease phenotype analysis

The pathogenicity of the targeted mutations was assessed utilizing
PhD-SNP, PANTHER, SNPs and GO, PMut, and Meta-SNP. These
algorithms use their prediction values to determine whether a specific
mutation is disease-causing or neutral. From the 130 mutations, PhD-
SNP predicted 27 (~21%) mutations to be pathogenic, while
PANTHER, SNPs and GO, PMut, and Meta-SNP predicted 40
(~31%), 20 (~15%), 45 (~35%), and 23 (~18%) mutations associated
with the disease, respectively (Figure 4). However, only 11 of these
mutations were predicted to be disease-causing across all the prediction
algorithms (R12G, V15L, H94P, L97P, R98L, R129P, G141E, V142G,
N143S, M166T, and G193R) (Supplementary Table S3).

3.4 Post-transcriptional modification (PTM)
sites prediction

GPS-MSP 6.0 was used for methylation and determined the
number of Bcl-2 sites that would be modified. However, GPS-MSP

6.0 predicted that phosphorylation would occur at 35 residues [Ser:
15 (43%), Thr:12 (34%), and Tyr:8 (23%)]. In contrast, it was
predicted by Netphose 3.1 those 20 different residues could be
phosphorylated [Ser:11 (55%), Thr:7 (35%), and Tyr:2 (10%)].

Ubiquitination was predicted using BDMPUB and UbPred.
BDMPUB anticipated that two lysine residues would be
ubiquitinated, whereas UbPred projected those four lysine
residues would be ubiquitinated.

3.5 Gene interaction network

The interaction between Bcl-2 and other genes was evaluated
using the GeneMANIA and STRING web servers. GeneMANIA
analysis showed that Bcl-2 physically interacted with all ten genes
and has no co-localization or genetic interaction with any other
gene. However, Bcl-2 was co-expressed with BAX, BCL2L1, NLRP1,
BBC3, and BID. Moreover, Bcl-2 shared protein domains with
BCL2L1, BAX, BIK, and BID (Figure 5A).

The STRING database offers an integrated and comprehensive
evaluation of indirect (functional) and direct (physical) protein-
protein interactions. The network analysis revealed that Bcl-2
interacted directly with BECN1, BAX, TP53, BAD, BCL2L11,
BIK, BBC3, BID, BCL2L1, and FKBP8 (Figure 5B).

3.6 Effect of mutations on the structural and
functional integrity of Bcl-2

3.6.1 Estimation of impact of mutation on protein-
protein interactions (PPIs)

The effect of mutations on the binding affinity of protein
interactions was evaluated using mCSM-PPI2, which evaluates
the effect of mutation by simulating the impact of variations on
the network of non-covalent interactions between residues utilizing
graph kernels, energetic terms, complex network metrics, and
evolutionary data. The decreased binding affinity of protein-protein

FIGURE 4
Disease and neutral variations in Bcl-2 predicted through disease
phenotype prediction algorithms.

FIGURE 5
Bcl-2 Gene interactions with other genes predicted by (A) GeneMANIA and (B) STRING.
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interaction was observed at the active site residues of the mCSM-
PPI2-predicted Bcl-2 interaction, with a change in affinity
(ΔΔGaffinity) of −0.559 kcal/mol for the G101V variant
and −1.053 kcal/mol for the F104L variant. The interaction
network revealed that the wild-type protein residue
Gly101 established hydrogen bonds with Tyr18, Leu97, Arg98,
Phe104, and Ser105, as well as van der Waals interactions with
Gln99 and Glu152; however, in the mutant, Val101 established a
hydrogen bond with Leu97, Arg98, Phe104, Ser105, and Glu152
(Figure 6). Likewise, the Phe104 in the wild-type generated
hydrogen bonds with Ala100, Gly101, and Tyr108, and van der
Waals interactions with Ala100, Asp102, Arg106, Tyr108, and
Phe123, while in the mutant, leucine formed hydrogen bonds
with the same residues in the wild-type (Figure 6).

3.6.2 Conservation analysis of Bcl-2
The conservation of residues is the primary factor that ensures

the structural integrity of proteins. The Bcl-2 structure’s
conservation of residues was investigated using the ConSurf web
server to comprehend its significance and localized evolution. The
arrangement of residues and their degree of conservation was
uncovered utilizing the ConSurf analysis. Several residues in Bcl-
2 were shown to be relatively conserved using ConSurf, with
particular emphasis on G101 and F104, suggesting that genetic
variations at these positions might substantially impact Bcl-
2 (Figure 7).

3.6.3 Mapping ligand binding sites of Bcl-2
The FT-site web server was used to identify Bcl-2 binding sites

based on experimental evidence. The FT-site server depicted three
ligand sites in Bcl-2. The ligand sites in Bcl-2 were represented by
three different mesh-like structures on the FT-site server (pink,
green, and purple), with corresponding residues that are within
5.0 Å of the binding site represented by ball and stick in these sites

(Figure 8). The position of the F104 residue is detected in the first
and second ligand-binding sites, while G101 is detected in the
second ligand-binding site (Table 1). Consequently, mutations
G101V and F104L may be more deleterious, as they potentially
impact the Bcl-2 ligand-binding affinity.

The HOPE project PDB viewer was used to visualize the
structural features of the Bcl-2WT, Bcl-2G101V, and Bcl-2F104L

(Figure 9). Each residue demonstrated a unique size, charge, and
hydrophobicity. These values frequently varied between the original
wild-type and the newly introduced mutant residues. For the Bcl-
2G101V, the mutant residue was bigger and more hydrophobic than
the Bcl-2WT residue. Although the mutated residue is not directly
involved in ligand binding, it may indirectly affect ligand
interactions made by other residues due to changes in local
stability. The mutated residue is located within a special
BH3 motif. Therefore, the different properties of residues caused
the motif to become disrupted and consequently impair its function.
Glycine had the highest degree of flexibility compared to other
residues, which may be necessary for protein function. This function
can be abolished by mutating this glycine. For Bcl-2F104L, the mutant
residue was smaller than the Bcl-2WT residue. The Bcl-2WT residue
interacted with Venetoclax, and the difference in properties between
the Bcl-2WT and mutant can easily cause a loss of interactions with
the ligand. Protein function was frequently dependent on ligand
binding, and this mutation may impair this function. The mutated
residue was located within a special BH3 motif near a highly
conserved position. Consequently, the motif was disturbed owing
to the different properties of the residues, which would impede
its function.

3.6.4 Investigating the effect of the mutations on
the protein secondary structure

MD trajectories of 500 ns were used to investigate the dynamics of
secondary structural elements in Bcl-2WT, Bcl-2G101V, and Bcl-2F104L.

FIGURE 6
G101 and F104 residue interactions network of Bcl-2; (A) wild G101, (A) G101V variant, (B) wild F104, and (B) F104L variant as predicted by
mCSM-PPI2.
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This study contributed to a better understanding of the effects of
genetic variations on the Bcl-2’s secondary structure through
simulations. The STRIDE web server was used to detect the change
in secondary structure at 10, 100, 200, 300, 400, and 500 ns (Figure 10).

The secondary structural components in Bcl-2, such as α-helix,
3–10 helix, and turns, were divided into specific residues at each
time interval. The Bcl-2G101V and Bcl-2F104L were observed to switch
from a helix to a turn configuration at these residues.

3.7 Dynamic and conformational stability
and fluctuations

The inherent behavior of a protein is associated with
conformational changes and structural aberrations. Modifying a
protein’s structure can significantly affect its function]. Therefore,
understanding mutation-induced structural changes requires a
more in-depth investigation of the conformational dynamics of
proteins. For this reason, the effects of Bcl-2 mutations (G101V
and F104L) were investigated over 500 ns MD simulations. The
dynamics and stability of Bcl-2WT, Bcl-2G101V, and Bcl-2F104L were
determined by evaluating the time variable considering the RMSD of
Cα atoms from computed trajectories. All systems reached
convergence after 100 ns of the simulation period (Figure 11A).
The Bcl-2WT exhibited the lowest deviated RMSD value, 1.14 Å,
while the Bcl-2G101V and Bcl-2F104L revealed higher RMSD values,
1.43 and 1.62 Å, respectively. The Bcl-2G101V disrupted the RMSD
pattern of Bcl-2WT and caused it to fluctuate more than the Bcl-2WT

and Bcl-2F104L during the simulation. The findings showed that Bcl-
2WT and Bcl-2F104L displayed the least deviation of Cα atoms
compared to Bcl-2G101V, indicating that the mutation of Gly to
Val reduced the structural stability of Bcl-2. Furthermore, no
significant variations in structural snaps were noticed, excluding

FIGURE 7
Sequence conservation plot of Bcl-2 protein generated using ConSurf web server.

FIGURE 8
FT-site server prediction of the Bcl-2 protein ligand binding sites
represented in mesh-like structure: pink (binding site 1), green
(binding site 2), and purple (binding site 3).
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the α3-α4 helices (hydrophobic groove) of superimposed Bcl-2WT,
Bcl-2G101V, and Bcl-2F104L every 100 ns during the simulation
(Supplementary Figure S1). Here, α3-α4 helices become more
dynamic and flexible as the simulation progresses, thus inducing
expansion or shrinking in the hydrophobic groove, which appears
most effectively in the Bcl-2G101V.

The relative rigidity and flexibility of residues determined
protein conformational changes and their associated functions.
Consequently, the RMSF values of Bcl-2WT, Bcl-2G101V, and Bcl-
2F104L can be computed and analyzed to see how Bcl-2’s residual
fluctuations change due to mutations (Figure 11B). Bcl-2WT

demonstrated the least fluctuations of the residues with an
average RMSF value of 1.10 Å when compared to 1.13 and
1.20 Å for the Bcl-2F104L and Bcl-2G101V, respectively. The
calculated trajectory showed a slightly higher pattern of
fluctuations, especially for the Bcl-2G101V variant. As a result of
these mutations, the regions surrounding the various sites become
more dynamic and internally disturbed, reflecting higher
fluctuations in Bcl-2. The RMSF distribution correlated with the
RMSD pattern, with mutated systems exhibiting more significant
fluctuations. The substantial variations in the mutants’ residual
fluctuations could be attributed to Bcl-2 structural inactivation.

Furthermore, the Rg values of all three systems were analyzed to
determine the folding behavior and overall conformational changes
in the Bcl-2 structure before and after mutation induction. The
compactness, stability, and folding of a protein can be determined
from the change in Rg values over time. The Rg values of the Bcl-
2WT, Bcl-2G101V, and Bcl-2F104L were estimated from the MD

trajectories and plotted (Figure 11C). Bcl-2WT had the lowest Rg
value (14.54 Å, while the Bcl-2F104L and Bcl-2G101V showed slight
increases at 14.59 and 14.63 Å, respectively. Altogether, Rg analysis
of Bcl-2 revealed that the mutants were less stable, more flexible, and
less compact than the native protein.

Moreover, the Bcl-2 structure’s hydrophilic and hydrophobic
residues were analyzed using SASA. The SASA values for the Bcl-
2WT, Bcl-2G101V, and Bcl-2F104L were obtained and plotted throughout
the 500 ns of MD simulation (Figure 11D). Following exposing the
system to the solvent, Bcl-2WT had a median SASA value of 7,824 Å2.
The Bcl-2G101V exhibited a higher SASA value of 8,049 Å2 than that
of the Bcl-2F104L, which displayed a value of 7,985 Å2. The SASA
values of all three systems agreed with the Rg results. The differences
in the SASA values for the three systems throughout the simulation
reflect Bcl-2 unfolding and folding. The overall SASA values for Bcl-
2WT and Bcl-2F104L were slightly different, suggesting that the
structural mutation from Phenylalanine to Leucine at position
104 in Bcl-2 provides better exposure to solvent compared with
Bcl-2G101V and, thus, favors the enhanced activity of the Bcl-2F104L

over that of the Bcl-2G101V.

3.7.1 Hydrogen bonding analysis
Analysis of intramolecular hydrogen bonds primarily assists in

evaluating the overall conformation and stability of the protein
structure through MD simulations. Time-dependent intramolecular
hydrogen bond analysis was performed and plotted to evaluate the
effect of mutations on the structure of Bcl-2 (Figure 12). The average
values of intramolecular hydrogen bonds in Bcl-2WT, Bcl-2G101V, and

TABLE 1 Bcl-2 protein ligand-binding sites and their respective residues.

Binding site 1 (pink) Binding site 2 (green) Binding site 3 (purple)

Phe104, Asp111, Phe112, Met115, Ser116, Val133, Glu136, Leu137,
Ala149, Phe150, Glu152, Phe153, and Val156

Ala100, Gly101, Asp103, Phe104, Arg107, Tyr108,
Trp144, Gly145, Val148, Phe198, and Tyr202

Asn11, Arg12, Val15, Met16, Trp30, Asp171,
Ala174, Leu175, and Thr178

FIGURE 9
Close-ups (different angles) of the mutant and wild system; (A) Bcl-2G101V and (B) Bcl-2F104L.
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Bcl-2F104L ranged from about (43–100), (41–98), and (40–96),
respectively, indicating a slight change before and after mutation
formation. The Bcl-2F104L and Bcl-2WT models were more compact
and stable than the Bcl-2G101V model, and the results maintained a
roughly similar trajectory pattern.

3.7.2 Dynamic cross-correlation matrix (DCCM)
To examine the differences in the dynamics of Bcl-2WT, Bcl-

2G101V, and Bcl-2F104L, DCCM plots were generated for anti-
correlated and correlated protein structural motions. The
residues’ motion values range from −1 to +1. Positive values
indicate positively correlated motions (brown colour), whereas
negative values indicate anticorrelated motions (black colour)

between residues (Figure 13). The scatter plots revealed that
motion modes between residues of Bcl-2F104L are similar to those
of Bcl-2WT, whereas the Bcl-2G101V showed a slightly different
pattern, mutation obviously enhances the positively correlated
motions occurring in the Bcl-2.

3.7.3 Principal component analysis (PCA)
Intensive movements in Bcl-2WT, Bcl-2G101V, and Bcl-2F104L were

evaluated using PC analysis with the first two eigenvectors (EVs) to
qualitatively examine the influence of induced mutations on the
major conformational movements of each residue (Kumalo et al.,
2016). The eigenvectors illustrate the directions of Bcl-2 motion, and
the eigenvalues represent the overall motion strength; these are

FIGURE 10
The secondary structural analysis of the Bcl-2WT, Bcl-2G101V, and Bcl-2F104L at 10, 100, 200, 300, 400, and 500 ns using the STRIDE web server.
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obtained by diagonalizing the covariance matrix (Chen et al.,
2021; Chen et al., 2022). The conformational changes of Bcl-2
and its variants were shown in a 2D scatter plot (Figure 14),
indicating a significant change in Bcl-2 overall movements after
acquiring the mutations, especially Bcl-2G101V. Moreover,
Figure 14 shows that the Bcl-2G101V and Bcl-2F104L with the
trace covariance matric of 12.46 and 22.46 Å2, respectively,
imposed highly fluctuated anti-correlated effects as the

negative values of 2D scatter point into the protein. In the
case of Bcl-2WT, the trace covariance matrices were 24.09 Å2,
indicating the presence of prominent correlated motions with
minimal system fluctuations. Consequently, the findings
demonstrated that the Bcl-2G101V caused substantial
fluctuations in the simulated Bcl-2 dynamics.

4 Discussions

4.1 Sequence, structure, phenotype-
mutational analysis and gene interactions

To ascertain the deleterious effect of residue mutation on the
protein, we employed various sequence-based point mutation
algorithms. Out of 130 mutations, SIFT and
PolyPhen2 algorithms displayed the highest estimation, deeming
45 mutations (~35%) deleterious. With the exception of the MetaLR
algorithm, which predicted that all 130 (100%) variants were
tolerated, other algorithms displayed results ranging from around
5 to 23 percent (Figure 2). We hypothesize that the inclusion of
machine learning and high-throughput Next-Generation
Sequencing (NGS) data in the PolyPhen2 method broadened the
search field, contributing to the high prediction rate. Similarly,
various algorithms were adopted to predict the effect of missense
mutations on the protein stability, and to distinguish between
destabilizing and stabilizing mutations. Out of 130 mutations,
3 algorithms (ENCoM, MutPred, and DynaMut) assessed
between 21% and 46% of mutations are destabilizing, while
4 predictive tools (mCSM, SDM2, DUET, PremPS, and

FIGURE 11
(A) RMSD, (B) RMSF, (C) Rg, and (D) SASA values across Cα of Bcl-2WT (gray), Bcl-2F104L (orange), and Bcl-2G101V (green) over 500 ns MD
simulations.

FIGURE 12
Intramolecular hydrogen bonding in Bcl-2WT (gray), Bcl-2F104L
(orange), and Bcl-2G101V (green) over 500 ns MD simulations.
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CUPSAT) estimated between 65% and 92% of mutations are
destabilizing (Figure 3). We believe that the analysis adopted
here is robust and reliable as we opted to combine various
algorithms that take into account critical structural features
such as protein folding and Gibbs’s free energy (PremPS), site-
directed mutations relative to wild type (SDM2), vibrational
entropy (DynaMut) and consensual estimation (DUET). A
number of machine learning and neural network techniques
were used to predict disease phenotypes (Figure 4;
Supplementary Table S3), yet only 11 mutations were shown to
be disease-causing by all prediction algorithms. These mutations
are R12G, V15L, H94P, L97P, R98L, R129P, G141E, V142G,
N143S, M166T, and G193R. GeneMANIA and STRING
database offer an integrated and comprehensive evaluation of
indirect (functional) and direct (physical) protein-protein
interactions. The network analysis revealed that Bcl-2, Bcl-2
shared protein domains with BCL2L1, BAX, BIK, and BID
(Figure 5A), and interacted directly with BECN1, BAX, TP53,
BAD, BCL2L11, BIK, BBC3, BID, BCL2L1, and FKBP8 (Figure 5).

4.2 Impact of mutations on protein-protein
interactions

To explore the impact of Bcl-2G101V and Bcl-2F104L on their
structural and functional characteristics, we utilized various
techniques. The mCSM-PPI2 algorithm predicted a reduction in
the binding affinity of protein-protein interaction, G101V
variant change affinity (ΔΔGaffinity) with −0.559 kcal/mol,
compared with −1.053 kcal/mol for F104L variant. According
to the interaction network, Gly101in the wild-type protein,
generated hydrogen bonds with Tyr18, Leu97, Arg98,
Phe104, and Ser105, and exhibited van der Waals
interactions with Gln99 and Glu152. However, in the mutant,
Val101 established hydrogen bonds with Leu97, Arg98, Phe104,
Ser105, and Glu152 (Figure 6). Furthermore, in the wild-type,
Phe104 established hydrogen bonds with Ala100, Gly101, and
Tyr108 and van der Waals interactions with Ala100, Asp102,
Arg106, Tyr108, and Phe123. While in the mutant, leucine
established hydrogen bonds with the same residues
(Figure 6). The ConSurf web server was utilized to confirm
the structural integrity of the Bcl-2 protein. Several residues in
the Bcl-2 protein were shown to be relatively conserved, with a
specific focus on G101 and F104., suggesting that genetic
variations at these positions might substantially impact Bcl-2
(Figure 7). Additionally, FTSite, HOPE, and Stride were
employed to gain further understanding of the structural and
functional integrity of the Bcl-2 protein following mutation.
The FT-site server depicted three ligand sites in Bcl-2 (Figure 8).
According to Table 1, the first and second ligand-binding sites
detect the position of the F104 residue, while the second ligand-
binding site detects the G101 residue. Considering they may
affect the Bcl-2 ligand-binding affinity, mutations G101V and
F104L may thus be more deleterious. The Bcl-2WT, Bcl-2G101V,
and Bcl-2F104L structural characteristics were visualized using
the HOPE project PDB viewer (Figure 9). The Bcl-2G101V mutant
residue exhibited a bigger size and greater hydrophobicity
compared to the Bcl-2WT residue. The mutant residue of Bcl-
2F104L was smaller than the residue of Bcl-2WT. Venetoclax was

FIGURE 13
DCCM analyses for Bcl-2WT, Bcl-2G101V, and Bcl-2F104L over 500 ns MD simulations.

FIGURE 14
PCA for Bcl-2WT (gray), Bcl-2F104L (orange), and Bcl-2G101V (green)
over the 500ns MD simulations.
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bound to the Bcl-2WT residue, and because the two amino acids
had different characteristics, the mutant form of Bcl-2WT can
readily lose its binding affinity for the ligand. Finally, the
STRIDE web server was utilized to identify alterations in the
secondary structure at specific time points: 10, 100, 200, 300,
400, and 500 ns (Figure 10). The conformational switch from a
helix to a turn was seen in Bcl-2G101V and Bcl-2F104L at
these residues.

4.3 Effect of mutations on the structural and
dynamic landscape of the protein

We employed the MD simulations to conduct a comprehensive
analysis of the conformational dynamics of proteins to understand
the structural alterations caused by mutations. These mutations
affected Bcl-2’s stability, flexibility, solvent-accessible surface area,
and rigidity, as demonstrated by 500 ns MD simulations (Figure 11).
Moreover, mutations impacted Bcl2’s hydrogen bond formation,
and the Bcl-2F104L and Bcl-2WT models exhibited greater
compactness and stability compared to the Bcl-2G101V model
(Figure 12). To explore mutation-induced effect on
conformational alterations of Bcl-2, DCCMs and PCA are
estimated. The results showed that the Bcl-2G101V mutation
clearly affects the positively correlated motions occurring in the
Bcl-2 and causes substantial fluctuations in the simulated Bcl-2
dynamics (Figures 13, 14).

Overall, the findings of this study hold several biological
significances, for instance having information on SNPs in the
Bcl-2 gene would help identify potential biomarkers for cancer
diagnosis and treatment. Furthermore, by examining the
structural and functional effects of SNPs in Bcl-2, our
finding may pinpoint novel targets for cancer therapy.
Treatments that specifically target genetic variants or protein
interactions linked to Bcl-2 SNPs may be able to return cancer
cells to normal apoptotic pathways, which would ultimately
result in their elimination. Information presented here on how
SNPs in Bcl-2 influence protein-protein interactions can
provide insights into the molecular mechanisms underlying
cancer development and progression. Modulating apoptotic
pathways through the disruption or enhancement of certain
protein interactions linked to Bcl-2 SNPs may have
therapeutic benefits.

5 Conclusion

The impact of SNPs on the structure and function of Bcl-2
was investigated using state-of-the-art bioinformatics
approaches and molecular dynamics simulations. Disease
phenotype analysis indicated that 11 mutations of Bcl-2 were
found to be pathogenic. Furthermore, Bcl-2G101V and Bcl-2F104L

variants were found to be the most deleterious and impacted
negatively on the binding affinity of protein-protein
interaction. These mutations have also altered van der Waals
and hydrogen bonds interactions, conservation scores, ligand-
binding affinity, residues size, residues charge, and residues
hydrophobicity. As a result, a significant conformational

deviation in the Bcl-2 structure and a slight change the
secondary structure of Bcl-2 throughout the entire MD
trajectory were observed. The findings from this study would
serve useful for future in vitro and population genetics research
and would pave the way for further rational drug design of anti-
cancer therapy.
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