
Identification of potential
biomarkers from amino acid
transporter in the activation of
hepatic stellate cells via
bioinformatics

Yingying Zhao1†, Xueqing Xu2†, Huaiyang Cai2†, Wenhong Wu2,
Yingwei Wang2, Cheng Huang2, Heping Qin2* and
Shuangyang Mo2*
1Shandong University of Traditional Chinese Medicine, Jinan, China, 2Liuzhou People’s Hospital Affiliated
to Guangxi Medical University, Liuzhou, China

Background: The etiopathogenesis of hepatic stellate cells (HSC) activation has yet to
be completely comprehended, and there has been broad concern about the interplay
between amino acid transporter and cell proliferation. This study proposed exploring
themolecularmechanism from amino acid transport-related genes in HSC activation
by bioinformatic methods, seeking to identify the potentially crucial biomarkers.

Methods:GSE68000, the mRNA expression profile dataset of activated HSC, was
applied as the training dataset, andGSE67664 as the validation dataset. Differently
expressed amino acid transport-related genes (DEAATGs), GO, DO, and KEGG
analyses were utilized. We applied the protein-protein interaction analysis and
machine learning of LASSO and random forests to identify the target genes.
Moreover, single-gene GESA was executed to investigate the potential functions
of target genes via the KEGG pathway terms. Then, a ceRNA network and a drug-
gene interaction network were constructed. Ultimately, correlation analysis was
explored between target genes and collagen alpha I (COL1A), alpha-smooth
muscle actin (α-SMA), and immune checkpoints.

Results: We identified 15 DEAATGs, whose enrichment analyses indicated that
they were primarily enriched in the transport and metabolic process of amino
acids. Moreover, two target genes (SLC7A5 and SLC1A5) were recognized from
the PPI network and machine learning, confirmed through the validation dataset.
Then single-gene GESA analysis revealed that SLC7A5 and SLC1A5 had a
significant positive correlation to ECM−receptor interaction, cell cycle, and
TGF−β signaling pathway and negative association with retinol metabolism
conversely. Furthermore, the mRNA expression of target genes was closely
correlated with the COL1A and α-SMA, as well as immune checkpoints.
Additionally, 12 potential therapeutic drugs were in the drug-gene interaction
network, and the ceRNA network was constructed and visualized.

Conclusion: SLC7A5 and SLC1A5, with their relevant molecules, could be
potentially vital biomarkers for the activation of HSC.
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Introduction

Liver fibrosis is the pathologic reaction to persistent hepatic injury
triggered by various etiological factors, which can directly lead to the
ultimate consequences of liver cirrhosis and end-stage liver failure,
placing a threat to public health worldwide (Ogaly et al., 2018). It was
reported that liver fibrosis is responsible for a large number of clinical
cases and deaths annually (Luo et al., 2021). Hepatic stellate cells
(HSC), situated in the space of Disse, are essential mesenchymal cells
and perform a crucial function for liver physiology. Usually, HSC are
in a quiescent state and store retinol (Yang et al., 2019). The activation
of HSC is considered the main event and promoter of liver fibrosis.
The migration, proliferation, and differentiation of activated HSC
(aHSC) can stimulate the excessive cumulation of extracellular
matrixes (ECM) with retinol loss (Khazali et al., 2018). However,
with recent advances in the awareness of HSC activation and their
dominant position in liver fibrosis, the particular molecular
mechanisms of regulating these processes are unclear.

Energy metabolism is the foundation of cell proliferation,
biosynthesis, and physiological activity (Zhang et al., 2017). Rapidly
proliferating cells utilize a diversity of strategies for metabolism to
fulfill the energetic demands of cell growth, biosynthesis, and
karyokinesis (Black et al., 2020). This shift has been defined as
metabolic reprogramming, which is a hallmark of various diseases
(Rodenfels et al., 2019). In reaction to harm factors, HSC are
activated, transdifferentiating from a quiescent form to a myofibroblast
state characterized by proliferation, migratory, invasive capabilities, and
excessive production of ECM. HSC need to exert a diversity of metabolic
energy strategies to meet the extraordinary requirements for exuberant
biosynthesis and proliferation (Gu et al., 2019). A study demonstrated that
themetabolic reprogramming of glycogen, ascorbic acid, and amino acids
metabolism active remodeling of the ECM, proceeding to liver
fibrogenesis in reaction to persistent impairment (Nault et al., 2016).
Du et al. illustrated that the hepatic glutamine uptake in liver fibrosis
models of mice induced with CCl4 was significantly higher compared
with control mice, and suppression of glutaminolysis was proved to
prevent the accumulation of fibrogenesis (Chen et al., 2012). Glutamine is
an essential substrate of metabolic reprogramming in many cancer cells,
which can facilitate rapid proliferation and biosynthesis (Du et al., 2020).
Furthermore, theHedgehog-YAP signaling pathwaymay correlate closely
to the HSC activation through regulating glutaminolysis (Du et al., 2018).
Similarly, Leucine could promote the biosynthesis of collagen alpha I
(COL1A) in HSC by stimulating the regulative translation mechanisms
and PI3K/Akt/mTOR signaling pathways (Pérez de Obanos et al., 2006).
Along these lines, regulating the cellular amino metabolism of HSC may
represent a potential fresh therapeutical target for liver fibrogenesis.

Amino acids are categorized into non-essential and essential types,
with the latter not being synthesized from scratch. In mammals, various
amino acid transporters (AAT) located in the plasma membrane or
intracellular compartments, such as the Golgi apparatus, lysosomes, and
mitochondria, contribute to the regulation of amino acids
transmembrane transport and promote the transmembrane exchange
of other substrates (Zhang et al., 2020). Some studies indicated that
regulating the amount or activity of particular AAT may contribute to
modulating the proliferation of eukaryotes; moreover, AAT are closely
correlated with cancer patients’ prognosis, metastasis, and survival (Lin
et al., 2020). The solute carrier family 7 member 5 (SLC7A5; LAT1),
which especially participates in the transport of large neutral amino

acids, is extraordinarily upregulated in hepatocellular carcinoma, and
suppression of SLC7A5 leads to downregulates global translation in
cancer cells (Li et al., 2013). The amino transporter SLC6A14, regulating
the transmembrane uptake of amino acids, is upregulated in many
human cancers characterized by a growing requirement for amino acids
(Yazawa et al., 2015). Analogously, the expression of SLC38A1 in
colorectal carcinoma is closely relevant to the clinical stage of tumor
node metastasis (TNM). The SLC38A1 downregulation can restrain
tumor expansion and inhibit the migration of colorectal cancer cells
(Zhou et al., 2017). The alterations of metabolism that appeared in HSC
activation share various customary characteristics with cancer cells
(Gauthier-Coles et al., 2021). Thus, we hypothesized that modulation
of amino acid metabolic by AAT could have a role in aHSC operation.
However, our understanding of the specific relationship between AAT
and the activation of HSC is limited.

In contemporary life science research, the advancement of high-
throughput sequencing and microarray technologies has positioned
bioinformatics as an essential tool. It is employed to analyze
differentially expressed mRNA and to predict potential therapeutic
targets for specific diseases. Bioinformatic analysis is an efficacious
approach to discovering biomarkers of etiopathogenesis of ailments
and provides an estimable foundation for further studies (Peng S.
et al., 2022). Consequently, this study involved an analysis of datasets
from the Gene Expression Omnibus (GEO) (Clough and Barrett,
2016) via bioinformatic methods to determine the molecular
mechanism of amino acid transport-related genes in activating
HSC and recognized critical biomarkers. Furthermore, a drug-gene
interaction meshwork and ceRNA network were established.

Material and method

Microarray data source

Figure 1 illustrates the analysis procedure for this research. Data
series GSE68000 and GSE67664 were downloaded from the GEO

FIGURE 1
Flowchart of the study.
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database. There were 11 samples’ mRNA expression profiling of
GSE68000, including 3 aHSC and 3 qHSC samples. GSE67664
contained 13 samples, including 4 aHSC and 4 qHSC samples.
Further information can be found in Table 1. Dataserie
GSE68000 was the training set, and data series GSE67664 was the
validation set.

Identifying differently expressed amino acid
transport-related genes

Differentially expressed genes (DEGs) between the aHSC and
qHSC were identified using normalized data processed with the
GEO2R tool (Barrett et al., 2013), applying a threshold of |
log2 Fold Change| >1 and p < 0.05. The GeneCards Database was
used to download 33 genes involved in the amino acid transport
pathway across the plasma membrane (https://pathcards.genecards.
org/Pathway/3132). Altogether, identical genes in DEGs and amino
acid transport across the plasma membrane pathway were defined as
differently expressed amino acid transport-related Genes (DEAATGs).

GO, DO, and KEGG enrichment analyses

Gene ontology (GO) enrichment [included biological process
(BP), cellular component (CC), and molecular function (MF)]
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were applied by utilizing the R clusterProfiler
package (Yu et al., 2012). The false discovery rate (FDR) was
calculated via Benjamini–Hochberg (BH) adjustment. The cutoff
criterion was q-value <0.05. We utilized the R DOSE package to
apply the enrichment analysis of Disease Ontology (DO) terms (Yu
et al., 2015). Ultimately, the significant outcomes of these enrichment
analyses were visualized using the R ggplot2 and pathview packages.

Investigating protein-protein interaction
networks and hub genes

We predicted and constructed a protein-protein interaction (PPI)
network using the STRING database by uploading DEAATGs. The
network was visualized and analyzed with Cytoscape 3.9.1, and hub
genes were identified using the cytohubba plugin.

LASSO and random forest

Subsequently, machine learning techniques, including LASSO
regression and the random forests (RF) algorithm, were employed to
identify feature genes from DEAATGs. The LASSO regression model

was optimized by determining the optimal parameter λ through 10-fold
cross-validation, configured with “family = binomial” and “measure =
deviance,” while all other parameters were set to their default values
(Engebretsen and Bohlin, 2019). Concurrently, the RF method was
applied to differentiate feature genes from DEAATGs utilizing the R
randomforest package (Pavey et al., 2017). Within the RF algorithm,
which has a feature selection capability, the MeanDecreaseGini value
signifies the importance of a feature. Each input gene of DEAATGs was
ranked by order of importance in the classification using their
MeanDecreaseGini score. Genes with a MeanDecreaseGini score not
equal to zero were identified as feature genes of the RF model.

Target genes recognition

In this study, we identified the consistently present genes within
the hub and feature gene set of the two aforementioned machine-
learning models as target genes.

Data verification of target genes

The validation set was derived from the dataset GSE67664,
comprising 4 aHSC samples and 4 qHSC samples, and was
utilized to verify the reliability of these target genes.

Gene Set Enrichment Analysis and Gene Set
Variation Analysis

We investigated the roles of target genes in HSC activation by
conducting single-gene Gene Set Enrichment Analysis (GSEA) using
the R clusterProfiler package. Each target gene’s expression level was
used to categorize samples into low- and high-expression groups. GSEA
was then applied to identify significantly different KEGG pathways
between these groups. Then a nonparametric unsupervised method of
Gene Set VariationAnalysis (GSVA)was performed to demonstrate the
differential enrichment KEGG pathways between the two groups
similarly. In this study, the R GSVA package was utilized with the
gene sets of c2.cp.kegg.symbols.gmt, downloaded from the official site.
A p-value of less than 0.05 was established as the threshold for statistical
significance.

Investigation of ceRNA network of
target genes

The Prospective miRNAs associating the target genes were
predicted via the miRTarBase (Huang et al., 2022), TargetScan
(McGeary et al., 2019), and Starbase (Li et al., 2014), aiming at

TABLE 1 Details of the GEO data.

Dataset Platform Number of samples (activated/quiescent HSC, subjects)

GSE68000 GPL13667 [HG-U219] Affymetrix Human Genome U219 Array 11 (3/3,6)

GSE67664 GPL19099 [HG-U219] Affymetrix Human Genome U219 Array 13 (4/4,8)

GEO, gene expression omnibus.

Frontiers in Genetics frontiersin.org03

Zhao et al. 10.3389/fgene.2024.1499915

https://pathcards.genecards.org/Pathway/3132
https://pathcards.genecards.org/Pathway/3132
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1499915


exploring the mRNA–miRNA interaction of the ceRNA network. A
miRNA identified simultaneously in all three databases was enrolled,
and then the potential lncRNAs targeting the miRNA were recognized
from the spongeScan website (http://spongescan.rc.ufl.edu/). Ultimately,
the data visualization with a Venn diagram was performed through a
web-based tool (https://www.bioinformatics.com.cn/), and the ceRNA
network was visualized with Cytoscape 3.9.1 software.

Drug–gene interaction meshwork

The DrugBank database was employed to predict current or
potentially related drug substances for studying the drug-gene link
(Wishart et al., 2018). Moreover, Cytoscape software was used to
construct the data visualization of the drug-gene interaction network.

Identification of protein subcellular
localization

We used the Cell-PLoc 2.0 tool (Chou and Shen, 2008), a
package from a website, to predict the subcellular localization of
proteins coded by target genes.

Assessment of the correlation with immune
checkpoints

The correlation between the target gene and vital immune
checkpoints (Liu, 2019), such as PD1, CTLA4, LAG3, TIGIT,
HAVCR2, and PDL1, was studied with Pearson’s correlation
coefficient. Then the website tool (http://www.bioinformatics.
com.cn/) was utilized for data visualization with a scatter diagram.

Analysis of correlation with common key
biomarkers of activated HSC

α-SMA (ACTA2) and COL1A was considered the key biomarkers
for activation of HSC to a fibrogenic myofibroblast. Similarly, the
correlation analyses between the target genes and these key biomarkers
in HSC activation were proceeded by Pearson’s correlation coefficient.

Statistical analysis

A Student’s t-test for unpaired samples was conducted to
analyze the data between the two groups, and Pearson’s
correlation coefficient was utilized for the correlation analysis
between the two variables. p < 0.05 was set as the cutoff.

Result

Recognition of DEGs

The mRNA expression profile dataset (GSE68000) for HSC was
normalized, as depicted in Figures 2A, B. Subsequently, 3,775 DEGs

were identified from the GSE68000 dataset, comprising
2,225 upregulated and 1,565 downregulated DEGs. A volcano
plot and heatmap illustrating these findings are presented in
Figures 2C, D, respectively.

Enrichment analyses of the DEGs

The GO and DO analyses of the DEGs were conducted to
elucidate their potential biological functions. Within the GO BP
cluster, the DEGs are predominantly involved in the regulation of
extracellular matrix organization, positive regulation of cell
adhesion, amino acid transport, cellular amino acid biosynthesis
process, etc. (Figure 2E). The majority of DEGs are found in the
membrane microdomain, cell-cell junction, and basal plasma
membrane within the GO CC cluster (Figure 2F). The GO MF
cluster shows that mainly DEGs were enriched in actin binding,
GTPase regulator activities, glycosaminoglycan binding, ECM
structural constituent and growth factor binding, etc.
(Figure 2G). In the DO category, the DEGs mainly participated
in the malignant tumor, liver cirrhosis, pulmonary fibrosis, etc.
(Figure 2H). Finally, the outcomes from KEGG pathway enrichment
showed that the DEGs mostly participated in cancer pathways, cell
adhesion molecules, PI3K-Akt signaling pathway, and cholesterol
metabolism. (Figure 2I).

Recognition of DEAATGs

Figure 3A shows the genes involved in the pathway for
transporting amino acids across the plasma membrane. Then we
utilized an integrated bioinformatics analysis to identify a total of
15 congruent DEAATGs, containing 8 genes consistently
upregulated and 7 genes congruously downregulated (Figures 3B,
C; Table 2). The heatmap for DEAATGs is exhibited in Figure 3D.

Function enrichment analyses of
the DEAATGs

The biology functions of DEAATGs were performed in GO and
DO analyses. Expectedly, the DEAATGs were mainly located in the
cell membranes and promoted the transport of various amino acids
across the plasma membrane (Figures 4A, B). In the GO MF
category, the DEAATGs contribute particularly to regulating the
cellular metabolic activity of plentiful amino acids. (Figure 4C). The
R package DOSE was utilized to conduct a comprehensive
investigation into the function of DEAATGs. The findings from
the DO enrichment analysis indicated that DEAATGs may be
involved in amino acid metabolic disorder, inherited metabolic
disorder, leiomyoma, cell type benign neoplasm, etc., which were
the principal diseases (Figure 4D). KEGG pathway enrichment
analysis indicates that DEAATGs are primarily linked to protein
digestion and absorption, ferroptosis, central carbon metabolism in
cancer, and the mTOR signaling pathway (Figure 4E). These
findings imply that DEAATGs primarily function in regulating
cell proliferation, ferroptosis, and cellular metabolism, especially
amino acid transport.
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FIGURE 2
Identification of DEGs and erichment analyses. (A)GSE68000 data after normalization; (B) Sample cluster of GES68000; (C) The volcano plot of the
GSE68000; (D) The heatmap ofDEGs; (E) GO BP; (F) GO CC; (G) GO MF; (H) DO enrichment; (I) KEGG signaling pathway.
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PPI network and hub gene analyses

A PPI network of the DEAATGs was built using the STRING
database to investigate the relationship of each protein, consisting of
10 nodes and 15 edges. In this PPI network map, each node
represented a protein, and simultaneously each edge represented
an association between two proteins. Additionally, within the
10 nodes, 7 nodes were upregulated, and 3 were downregulated
(Figure 5A). As displayed in Figure 5B, The genes were ranked by
target connectedness from large to small within the PPI network
graph. Hub genes were identified congruously through five categories
(degree, betweenness, MNC, MCC, and stress) from cytoHubba Plug-
in of Cytoscape software. Finally, we extracted the intersection of the
top 6 hub genes and screened out 5 hub genes, SLC7A5, SLC7A8,
SLC1A5, SLC3A2, and SLC3A1 might have a crucial function in the

PPI network (Figures 5C, D; Table 3). The outputs of DO enrichment
and KEGG pathway enrichment of these 5 hub genes are shown in
Figures 5E, F. They still primarily enrich in the mTOR signaling
pathway, ferroptosis, and cellular metabolism of amino acids.

The machine learning algorithm of LASSO
and random forests

Furthermore, to screen the feature genes from DEAATGs, we
trained two different machine-learning algorithms of lasso and RF.

The LASSO regression is a machine-learning technique that
assumes a linear relationship and incorporates an L1 regularization
penalty. Initially, LASSO regression was conducted using 10-fold cross-
validation to minimize the binomial deviance, resulting in an optimized

FIGURE 3
Identification of DEAATGs. (A) Amino acid transport-related genes; (B) The DEAATGs of GES68000; (C) The details of each DEAATGs; (D) The
heatmap of DEATTGs (Clu: Cluster).

TABLE 2 The DEAATGs of GSE68000.

Regulation DEAATGs

Upregulated (n = 8) SLC1A5, SLC38A1, SLC7A5, SLC36A1, SLC38A1, SLC36A4, SLC3A1, SLC7A1

Downregulated (n = 7) SLC7A11, SLC7A8, SLC7A2, SLC6A12, SLC43A1, SLC38A3, SLC3A2

DEAATGs, differently expressed amino acid transport-related genes.
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λ value of 0.0325. Consequently, 6 genes with non-zero regression
coefficients were chosen as feature genes for DEAATGs and included in
the simplified LASSO regularization model (Figures 6A, B; Table 4).

The RF algorithm is a method for ensemble prediction. A
random forest-supervised classification algorithm was employed
to identify feature genes from DEAATGs, using the R

FIGURE 4
Enrichment analyses of DEAATGs. (A) GO BP; (B) GP CC; (C) GO MF; (D) DO enrichment; (E) KEGG signaling pathway.
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randomforest package to create the RF models. The significance of
each gene was assessed by computing the mean decrease in
the Gini index (MeanDecreaseGini). Finally, there were
14 feature genes determined by the random forest model
(Figures 6C, D; Table 4).

Recognition of target genes and validation

We took an intersection of the three key gene sets screened by
the PPI network (hub genes), lasso model, and random forest model
and having two target genes, SLC7A5 and SLC1A5 (Figure 6E).

FIGURE 5
The PPI network and hub gene analyses. (A) The PPI network of the DEAATGs, the bigger sizes of the edge and nodemean the higher degree,The red
means upregulated, and blue means downregulated; (B) The connectivity rank of genes; (C) Five algorithms were utilized to identified hub genes and
venn diagram; (D) The PPI network of hub genes; (E) DO enrichment of hub genes; (F) KEGG enrichment of hub genes.
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The target genes were initially obtained from the training dataset
GSE68000 and then validated using an independent validation
dataset GSE67664. The basic information of the
GSE67664 dataset is displayed in Figure 7A and Supplementary
Figure S1. We identified 2,919 DEGs total, within which 1,592 were
downregulated genes and 1,327 were upregulated genes (Figures 7B,
C). Analysis of enrichment and signal pathways were executed for
the DEGs. Similar enrichments of GO term were observed for all the
clusters of BP, CC, and MF as well (Figure 7D). Details of the
significant genes that participated in amino acid transmembrane
transport and amino acid transport are given in Supplementary
Figure S2. A description of DO disease enrichment and KEGG
pathway enrichment is provided in Figures 7E, F. DEGs regulate
liver cirrhosis, ECM−receptor interaction, and biosynthesis of

amino acids. A study conducted using GSE67664 revealed that
SLC7A5 and SLC1A5 of aHSC had significantly upregulated
mRNA expression compared with the qHSC, which was
consistent with the above results (Figures 8A, B). Therefore, our
outcomes indicated that SLC7A5 and SLC1A5 might be the target
genes for HSC activation.

GSEA of target genes and GSVA

Since SLC7A5 and SLC1A5 may be pivotal in the amino acid
transport of HSC and participate in the activation of HSC, and
simultaneously the log2FC of themwere maximum in the whole hub
genes, we selected SLC7A5 and SLC1A5 for farther single-gene

TABLE 3 The top five hub genes.

Genes MCC MNC Degree Stress Betweenness Log2FC

SLC7A5 6 3 5 22 10.3 2.143191791

SLC1A5 8 5 5 16 7.5 2.382896913

SLC7A8 4 2 4 16 5.3 1.580877908

SLC3A1 3 2 3 4 1.3 1.550995367

SLC3A2 4 2 4 16 5.3 -1.237840961

MCC, maximal clique centrality; MNC, maximum neighborhood component.

FIGURE 6
Identification of target genes. (A, B) The LASSO model; (C, D) The random forest model; (E) Identified target genes and venn diagram.
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GSEA analysis separately via KEGG. The findings from the single-
gene GSEA analysis aligned with the aforementioned results.

All samples were categorized into groups with high and low
SLC7A5 expression according to mRNA levels. Differential
expression evaluation was performed within these two groups,
and a heatmap of the top 30 upregulated and downregulated
differential expression genes is shown in Figure 9A. As Figures
9B–L shows, besides alcoholic liver disease, chemokine signaling
pathway and cell adhesion molecules, SLC7A5 were still positively
related to the glycosaminoglycan biosynthesis, cell cycle, basal
transcription factors, ECM−receptor interaction, TGF−β signaling
pathway, aminoacyl−tRNA biosynthesis. Inversely, SLC7A5 was
negatively correlated with the retinol metabolism and Drug
metabolism−cytochrome P450. Moreover, the outcomes of the
SLC1A5 single-gene GSEA analysis were similar to the above, as
Figures 10A–C shows that SLC1A5 was positively associated with
glycosaminoglycan biosynthesis, biosynthesis of nucleotide sugars,
cell cycle, and alcoholic liver disease.

Correspondingly, the results of GSVA analysis illustrated that
the activated HSC group was closely correlated with the
upregulation of the mTOR signaling pathway, cell cycle, and
biosynthesis. Oppositely, the activation of HSC was negatively
associated with retinol metabolism (Figure 10D).

Correlation analysis with common key
biomarkers of HSC activation

As illustrated in Figures 11A–D, the mRNA expression of both
SLC7A5 and SLC1A5 were significantly positively correlated with
ACTA2(α-SMA) and COL1A, indicating that SLC7A5 and
SLC1A5 may associate with the activation of HSC closely.

Subcellular localization and relationship
with immune checkpoint

The biological functions of a particular protein are mainly
associated with its different subcellular localizations. The
subcellular localization of SLC7A5 and SLC1A5 was plasma
membrane, predicted via Cell-PLoc 2.0. This characteristic
suggests that SLC7A5 and SLC1A5 may be essential for the
transmembrane transport of amino acids.

In a physiological status, immune checkpoints are necessary for
immunologic tolerance, to block autoimmunity, and to preserve
normal tissues from immune injury (Wang H. et al., 2019). As
presented in Figures 12A–F, there was a significant negative
correlation within SLC7A5 conventional immune checkpoints
containing LAG3 and CTLA4; meanwhile, a significant negative
correlation between SLC1A5 and PDCD1, LAG3, and CTLA4 was

verified. Their results revealed that SLC7A5 and SLC1A5 might
further occupy an essential position in the immune response.

mRNA–miRNA–lncRNA ceRNA network

It is well-known that miRNAs are involved in regulating gene
expression at the post-transcriptional level. Moreover, the biological
function of Long Non-coding RNA (lncRNA) cannot be ignored,
although it does not participate in encoding proteins. The lncRNA
can modulate the expression of mRNA through their interactions
with miRNA in the mRNA-miRNA-lncRNA ceRNA network, and
disturbance of these networks may impact diseases. Decades of
miRNAs predicted to target 3′-UTR of the SLC7A5 and
SLC1A5 were identified by using three miRNA target-predicted
databases. The interactional miRNA of lncRNA was searched and
analyzed via the spongeScan database. Finally, a ceRNA network
(containing 2 target genes, 16 LncRNAs, and 42 miRNAs) was
identified in Figure 13A.

Drug-gene interplay network

The DGIdb and DrugBank databases were used to explore drug-
gene interactions and identify existing or potential pharmaceuticals.
Targeting SLC7A5 and SLC1A5 could provide a specific treatment
strategy. The complete drug-gene interaction network for these
genes is shown in Figure 13B. In total, 12 potential therapeutic
drugs were identified.

Discussion

Liver fibrosis is a common hepatic disease posing a critical threat to
human health. The molecular mechanisms of liver fibrosis are
complex, involving multiple molecular and signal pathway
mechanisms. Although recent treatments of liver fibrosis have slight
improvement and effectiveness, how to more effectively prevent and
reverse it remains a significant challenge worldwide as there are still
great unknowns in its direct genesis. Since HSC is the most relevant
mesenchymal cell contributing to liver fibrosis, most suggested anti-
fibrotic treatments were based on the molecular mechanisms related to
HSC activation (Malaguarnera et al., 2015). According to AAT, there is
a promising research potential in liver fibrosis that parallels that of
malignant tumors. This study was conducted to identify and
characterize potential biomarkers for aHSC by examining amino
acid transport-related genes through bioinformatics approaches.
The focus was particularly on the accumulation of ECM and
myofibroblasts, to provide novel perspectives on the underlying
etiopathogenesis and possible treatments for liver fibrosis.

TABLE 4 The feature genes of the LASSO and random forest model.

Machine learning algorithm Feature genes

Lasso SLC1A5, SLC7A5, SLC7A11, SLC36A1, SLC38A4, SLC7A1

Random Forest SLC7A11, SLC7A8, SLC7A2, SLC6A12, SLC38A3, SLC3A2, SLC1A5, SLC38A1, SLC7A5, SLC36A1, SLC38A1, SLC36A4,
SLC3A1, SLC7A1
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FIGURE 7
Validation of target genes. (A) The PCA plot of GES67664; (B) The volcano plot of the GSE67664; (C) The heatmap of DEGs in GSE67664; (D) GO
enrichment; (E) DO enrichment; (F) KEGG signaling pathway enrichment.
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In this study, we identified 3,775 DEGs within the aHSC
mRNA-expression profile, and functional enrichment analyses
of the DEGs were performed. Amino acid metabolism is
essential for the rapid metabolic reprogramming of classically
activated HSC (Trivedi et al., 2021). Our study has shown that
the DEGs mostly took part in the transport and biosynthesis of
amino acids according to the function enrichment analyses. These
results inspired us to execute in-depth research on the correlation
between amino acid transport and HSC activation. Then, a total of
15 DEAATGs were identified by crossing DEGs with genes related
to amino acid transport, with 8 being upregulated and
7 downregulated. and utilized for functional gene analysis. All
of the DEAATGs belong to the solute carrier family (SLC). The
SLC family, a superfamily located on the eukaryotic plasma
membrane, regulates the uptake and outflow of multiple solutes,
such as amino acids, sugars, and drugs (Cropp et al., 2008). The
SLC family has many crucial functions in eukaryote biology and
correlates with cellular protein and nucleotide biosynthesis,
especially those cells in high demand for substances
(Coothankandaswamy et al., 2016). As shown in the GO
cluster, the DEAATGs mostly participated in the transport and
metabolic process of amino acids. The DEAATGs are mainly
involved in metabolism and signaling pathways according to
the KEGG pathway, likely central carbon metabolism, protein
digestion, absorption, and the mTOR signaling pathway. The
Wnt signaling pathway was proven to be associated with central
carbon metabolism and suppression of HSC activation through
mediating the biosynthesis of glutamine synthetase and reducing

ammonia levels (Russell and Monga, 2018). Additionally, the
mTOR pathway, playing a central role in cell metabolism and
growth (Li et al., 2019), is closely correlated with HSC activation
(Zhang et al., 2019). Moreover, the result of DO further
corroborates the above. These outcomes of gene function
analysis for DEAATGs revealed that, to some extent, the SLC
family might drive adjustments of amino acid metabolism and
function to promote activation of HSC.

The interaction associations between DEAATGs-encoded proteins
were investigated using the PPI and itsmodules. Subsequently, five hub
genes were identified from it, namely, SLC7A5, SLC1A5, SLC7A8,
SLC3A1, and SLC3A2.While proteins are vital for biological functions
and the PPI network is crucial within the body, it does not, in isolation,
offer a comprehensive representation of the intricate biological
regulatory network (He et al., 2023). To address the limitations
inherent in a singular model, we utilized additional algorithms to
concurrently identify feature genes. Recently, machine learning
algorithms have been extensively applied in bioinformatics analyses
to filter diagnostic biomarkers and construct prognostic models (Fabris
et al., 2018). Consequently, the LASSO regression and RF algorithm
were employed to further assess the relative importance of feature
genes, thereby facilitating dimensionality reduction and feature
selection. To mitigate the risk of overfitting or selection bias,
LASSO regression was validated using 10-fold cross-validation, in
conjunction with the RF algorithm, to identify the signature genes.
Finally, SLC7A5 and SLC1A5 genes are identified as targets based on
the overlap between hub and feature gene sets. The validation dataset
GSE67664 confirmed the mRNA expression of SLC7A5 and SLC1A5.

FIGURE 8
(A) The expression of SLC7A5 in GSE67664; (B) The expression of SLC1A5 in GSE67664.
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Although these methods yielded more accurate results compared to
those based solely on PPI networks, they were not without limitations.
Notably, the use of a small dataset increases the risk of the model
becoming either overfitted or underfitted during training.
Consequently, future research employing larger sample sizes is
necessary to validate these findings.

Previous research has demonstrated that the activation of HSC
can be inhibited by modulating the expression of critical genes

involved in metabolic reprogramming. During liver injury, aHSC
exhibits increased cell proliferation, fibrogenesis, contractility,
chemotaxis, and cytokine release. The activation and
functionality of HSC are contingent upon metabolic alterations.
Consequently, supporting the energy metabolism of HSC may serve
as a potential strategy for prevention (Bae et al., 2022). During the
activation of HSC, there is an increased demand for essential amino
acids, such as leucine, as well as an enhanced uptake of glutamine.

FIGURE 9
Single-gene GSEA of SLC7A5. (A) The top 30 genes of upregulated and downregulated DEGs in SLC7A5 high expression and low expression groups,
the Highmeans SLC7A5 high expression group, the Lowmeans SLC7A5 low expression group; (B) The top 10 KEGGpathway ranked by enrichment score;
(C) Glycosaminoglycan biosynthesis; (D) Cell cycle; (E) Basal transcription factors; (F) ECM−receptor interaction; (G) p53 signaling pathway; (H) Central
carbon metabolism in cancer; (I) TGF−beta signaling pathway; (J) Aminoacyl−tRNA biosynthesis; (K) Retinol metabolism; (L) Drug metabolism −

cytochrome P450.
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FIGURE 10
Single-gene GSEA of SLC1A5 and GSVA of GSE68000. (A) The top 10 KEGG pathways ranked by enrichment score; (B) The top 10 upregulated KEGG
pathways ranked by NES; (C) The top 10 downregulated KEGG pathways ranked by NES; (D) The volcano plot of GSVA in GSE68000.
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The transmembrane protein SLC7A5 is responsible for facilitating
the transport of essential amino acids into cells, while SLC1A5 plays
a significant role in the uptake of glutamine. In addition to
facilitating cell proliferation, glutamine plays a crucial role in
phagocytosis, the synthesis and secretion of pro-inflammatory
cytokines, and antigen presentation. Notably, macrophages
overexpressing HMBOX1 exhibited a significant reduction in
glutamine concentrations, accompanied by the downregulation of
the glutamine transporter SLC1A5. Furthermore, the HMBOX1/
SLC1A5-mediated reduction in glutamine uptake may represent a
potential mechanism underlying the protective effects of
HMBOX1 in liver inflammation (Jiang et al., 2023).

Consequently, targeting the transport mechanisms of these amino
acids presents a potential novel therapeutic strategy.

There is a crucial role for SLC7A5 in promoting cell growth and
proliferation (Chai et al., 2022). In addition to nutrition, stress, and
energy state, mTOR also plays a key role in intracellular signaling
(Zhang et al., 2022). SLC7A5 transports amino acids including
leucine as a result of activation of the AKT/mTOR signaling
pathway (Chen et al., 2022). SLC7A5 knockdown reduced mTOR
pathway activity and suppressed the proliferation and metastasis of
tumor cells (Li et al., 2021). Recent reports suggest that cancer cells
may shift their energy source from glucose to glutamine and
manifest as a glutamine-dependent phenotype via metabolic

FIGURE 11
Correlation analysis with common key markers of activated HSC. (A) The correlation between SLC7A5 and ACTA2(α-SMA); (B) The correlation
between SLC7A5 and COL1A; (C) The correlation between SLC1A5 and ACTA2(α-SMA); (D) The correlation between SLC1A5 and COL1A.
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reprogramming (Sikder et al., 2020). S. Tanaka reported that
downregulated SLC1A5 expression could lead to the diminished
activity of mTORC1, resulting in weakened cell proliferation
(Tanaka et al., 2018). In the experimental model of hepatic
fibrosis, following hepatic cell injury, activation of the mTOR
pathway in mesenchymal cells enhanced the wound healing
response. In summary, overactivation of mTOR within the
mesenchymal compartment exacerbated liver fibrosis induced by
CCl4 (Shan et al., 2016). AKT and mTOR, which are pivotal
components of the PI3K pathway, have the potential to regulate
the activation of HSC and the progression of liver fibrosis (Huang
et al., 2023). Furthermore, liver fibrosis can be mitigated through
AMPK phosphorylation and inhibition of mTOR-dependent
signaling cascades (Wang et al., 2020). In this study, we observed
that the upregulation of SLC7A5 and SLC1A5 is closely linked to
enhanced activity of the mTOR pathway, corroborating previous
research findings. We hypothesize that the transporters SLC7A5 and
SLC1A5 could serve as novel biomarkers for the initial activation of
HSC by modulating the activity of the mTOR signaling pathway.

During the progression of liver fibrosis, the TGF-β signaling
pathway plays a crucial role (Peng W. et al., 2022). Inhibition of this
pathwaymay lead to a reduction in hepatic fibrosis (Kundu et al., 2023).

Various serum markers indicative of ECM components are employed
to evaluate the progression of liver fibrosis, a condition marked by the
excessive accumulation of ECM (Wu et al., 2017). In the human body,
retinol is sequestered in HSCs, which are pivotal in the fibrogenic
processes of the liver (Saki et al., 2020). To investigate the relationship
between the target genes and principal markers of liver fibrosis, we
conducted a single-gene GSEA analysis. The single-gene GSEA utilizing
the KEGG pathway for SLC7A5 and SLC1A5 individually revealed a
noteworthy positive correlation between the upregulation of
SLC7A5 and the ECM-receptor interaction, cell cycle, and TGF-β
signaling pathways. Conversely, this upregulation exhibited a
significant negative association with retinol metabolism. There were
similar results in single-gene GSEA analysis of SLC1A5, and both
SLC1A5 and SLC7A5 were closely related to alcoholic liver disease,
which is known as a common genesis of liver fibrosis around the world
(Heo et al., 2019). The pieces of evidence that the TGF-βsignaling
pathway places a central position during every step of the development
of HSC activation and hepatocarcinogenesis were strong. Treatments
aimed at depressing the TGF-βsignaling pathway have conspicuously
prevented liver fibrosis in vivo models (Liu et al., 2019). During HSC
activation, the decreased expression of retinol acyltransferase (LRAT)
may lead to a reduction of retinol significantly (Zhang et al., 2021), and

FIGURE 12
Correlation analysis with immune checkpoint. (A) The correlation between SLC1A5 and CTLA4; (B) The correlation between SLC1A5 and LAG3; (C)
The correlation between SLC1A5 and PDCD1; (D) The correlation between SLC7A5 and CTLA4; (E) The correlation between SLC7A5 and LAG3; (F) The
correlation between SLC7A5 and PDCD1.
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the deficiency of retinol is known to promote fibrosis development of
the liver (Aguilar et al., 2009). Consequently, utilizing single-gene
GSEA, we identified that the alteration of the target genes resulted
in a consistent modulation of several liver fibrosis markers. This finding
further substantiates the pivotal role of the target genes in the activation
of hepatic stellate cells from an alternative perspective.

Additionally, due to the limited number of data samples,
constructing a nomogram and ROC curve for predicting HSC
activation based on the target gene was challenging, as the area
under the curve (AUC) equaled 1, indicating overfitting.
Consequently, we conducted scatter plot analyses of the

correlation coefficients and performed statistical tests between the
target genes and conventional diagnostic markers of liver fibrosis,
specifically α-SMA and COL1A. The expression patterns of the
target genes were found to be completely consistent with those of the
traditional markers, according to the results. Ultimately, these
results show a possibly vital role in the overexpression of
SLC7A5 and SLC1A5 in the activation of HSC.

The numerous intrahepatic immunocytes play an important role
in maintaining hepatic homeostasis and are the essential
mechanisms for many liver illnesses (Liang et al., 2020a).
Recently, many studies have indicated that various intrahepatic

FIGURE 13
The ceRNA network and drug-gene interaction network of target genes; (A) The ceRNA network of target genes, the ellipse means mRNA of target
genes, the diamond means miRNAs, and the triangle means lncRNAs; (B) The drug-gene interaction network of target genes, the ellipse means target
genes and the rectangle means drugs.
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immunocyte subcategories (containing B cells, T-cells, macrophages,
and neutrophils) performed a crucial position in the progression of
liver inflammation and fibrosis (Liang et al., 2020b). An anomalous
immune cell activation could lead to a dysfunctional immune
microenvironment in the liver, inducing HSC to differentiate into
myofibroblast-like cells and drive liver fibrosis (Ikeno et al., 2020).
Immune homeostasis is crucially associated with the regulation of
immune checkpoints under normal physiological conditions and
inhibits irregular autoimmune damage to healthy tissues (Liu et al.,
2020). However, cancer cells can escape immune attack via the
expression of immune checkpoints (Tu et al., 2020). Then we
speculate that immune checkpoints might correlate with HSC
activation and liver fibrosis and found that SLC1A5 was
significantly negatively associated with CTLA4, LAG3, and
PDCD1; similarly, SLC7A5 was significantly negatively associated
with CTLA4 and LAG3. CTLA4 delivers an inhibitory signal to the
T-cell as a T-cell transmembrane receptor, and the antagonist of
CTLA4 activates the immune system and prevents T-cell exhaustion
(Welsh et al., 2019). The proliferation, activation, and effector
function of CD4+ and CD8+ T-cells were negatively modulated by
LAG3 expression, which has also been reported to regulate
autoimmunity (Wang J. et al., 2019). It was found in clinical
studies that anti-PD-1 and anti-CTLA-4 monotherapy could lead
to a higher incidence of acute liver injury, and anti-PD-L1 antibodies
such as atezolizumab may promote fast progression of liver fibrosis,
triggered by acute intrahepatic immunocytes infiltration of CD4+ and
CD8+ T-cells principally (Honma et al., 2021). Jing Xu reported that
SLC7A5 performed as a checkpoint for the activation of T-cells
through the mTOR pathway (Xu et al., 2020). Taken together, we
automatically hypothesized that upregulated SLC7A5 and
SLC1A5 might contribute to the development of liver fibrosis by
suppressing the expression of the immune checkpoint and inducing
the anomalous immunocyte activation intrahepatic. Undeniably, our
knowledge of this perspective has been extraordinarily limited
recently, and more evidence is imminently needed to support this
hypothesis in the future.

Finally, to provide drug treatment strategies for HSC activation,
we further identified 12 possible therapeutic drugs targeting
SLC7A5, and one of them may have a potential therapeutical
effect for SLC1A5 too. Moreover, a ceRNA network was
constructed to demonstrate a potentially interactive regulation in
HSC activation, which will be helpful for future studies on the post-
transcriptional regulatory mechanism.

Furthermore, as far as we know, this research is the first to
propose that SLC7A5 and SLC1A5 might be involved in HSC
activation. Nevertheless, our research is subject to certain
limitations. Notably, the GEO database offers a limited number
of datasets and samples on the mRNA expression profiles of
activated HSC in vitro. Moreover, the cell culture model of
activated HSC may not entirely correspond with in vivo data. It
is noteworthy that the expression of the target genes exhibited
consistent patterns across two independent datasets, thereby
minimizing the potential for batch-to-batch variation and
strengthening the validity of our study. Furthermore, further
research involving larger sample sizes is required to substantiate
the diagnostic efficacy of these target genes in the activation of HSC,
and future in vivo experiments are planned to substantiate our
findings. Additionally, further investigation is required to elucidate

the regulatory mechanisms of SLC7A5 and SLC1A5 within the
context of HSC activation.

Conclusions

We identified two target genes, SLC7A5 and SLC1A5, from
amino acid transport-related genes, whichmainly participated in the
ECM−receptor interaction, cell cycle, TGF−β signaling pathway,
and retinol metabolism, and also closely correlated with the familiar
biomarkers of liver fibrosis and immune checkpoints. Therefore,
SLC7A5 and SLC1A5, with their relevant molecules, might be
potentially vital biomarkers for HSC activation to some extent.
These results would supply a novel insight into the pathogenesis
and therapeutical approaches of liver fibrosis.
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