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DNA methylation is of crucial importance for biological genetic expression, such
as biological cell differentiation and cellular tumours. The identification of DNA-
6mA sites using traditional biological experimental methods requires more
cumbersome steps and a large amount of time. The advent of neural network
technology has facilitated the identification of 6 mA sites on cross-species DNA
with enhanced efficacy. Nevertheless, the majority of contemporary neural
network models for identifying 6 mA sites prioritize the design of the
identification model, with comparatively limited research conducted on the
statistically significant DNA sequence itself. Consequently, this paper will focus
on the statistical strategy of DNA double-stranded features, utilising the multi-
head self-attention mechanism in neural networks applied to DNA position
probabilistic relationships. Furthermore, a new recognition model, PSATF-
6 mA, will be constructed by continually adjusting the attentional tendency of
feature fusion through an integrated learning framework. The experimental
results, obtained through cross-validation with cross-species data,
demonstrate that the PSATF-6 mA model outperforms the baseline model.
The in-Matthews correlation coefficient (MCC) for the cross-species dataset
of rice and m. musus genomes can reach a score of 0.982. The present model is
expected to assist biologists in more accurately identifying 6 mA locus and in
formulating new testable biological hypotheses.
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1 Introduction

DNA methylation is a common epigenetic phenomenon, whereby methyl groups are
attached to the bases of a DNA molecule through covalent bonds, thus affecting gene
expression and cellular functions. Among these, 6-methyladenine (the sixth position of the
purine ring in adenine, 6 mA) is one of the most significant epigenetic modifications in the
DNA molecule (He et al., 2019), which plays a pivotal role in biological functions and
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pathological processes, such as cell differentiation, development, cell
cycle regulation, chromosome stability, and cellular tumourigenesis
(Guo et al., 2020). In order to further investigate the effects of
methylation at the 6 mA site on DNA, a number of more mature
biological experimental techniques have been developed (McIntyre
et al., 2019). These include single-molecule real-time (SMRT)
sequencing methods based on high-throughput technologies
(Flusberg et al., 2010), as well as liquid chromatography-tandem
mass spectrometry (LC-MS/MS) (Greer et al., 2015), laser-induced
fluorescence capillary electrophoresis (CE-LIF) (Krais et al., 2010)
and immunoprecipitation (Pomraning et al., 2009). However, these
traditional bioanalytical techniques are highly laborious and time-
consuming for the identification of 6 mA sites, and are unable to
perform accurate methylation localisation in large-scale sequences
(Zhang et al., 2021).

With the continuous development of machine learning and
deep learning, some researchers have already investigated tool
models for identifying 6 mA locus based on machine learning
methods (Kong and Zhang, 2019), but they still fall short of the
efficiency and accuracy of cross-species identification. Liu and Li,
(2020) constructed the SICD6mA and SNNRice6mA models using
recurrent neural networks, enabling the identification of 6 mA
locus on an independent rice genome with an accuracy of over
90%. Furthermore Huang et al. (2021), integrated a long-term and
short-term memory artificial neural network with an attention
mechanism to enhance the recognition accuracy. The previously
described method was successful in identifying the 6 mA site, but it
employed a single DNA coding method, which overlooked the
chemical nature of the nucleotides and the relationship between
the relevant nucleotides. Additionally, several other notable
methods have emerged Tang et al. (2022). Proposed
Deep6mAPred, employed a parallel stacking of CNNs and Bi -
LSTMs along with an attention mechanism, enhanced the
prediction accuracy. Subsequently Tsukiyama et al. (2022),
combined the BERT model with vectors to incorporate the
nucleotide relationships at different positions into the model,
which further enhanced the prediction ability Zheng et al.,
(2023). Adopted adaptive embedding for nucleotide encoding
and combined multi - scale CNNs and long short - term
memory for feature extraction, achieving favorable accuracies
Huang et al. (2023). Improved stacking ensemble model for
predicting DNA N6 - methyladenine site, utilized a meta -
learning algorithm with cross - validation output as input to
the final classifier and exhibited excellent performance in the
Rosaceae independent test.

Despite the availability of a range of models at home and abroad,
the recognition methods all face challenges in terms of their single
encoding method and poor generalisation and cross-species
recognition abilities. In this paper, we propose a new encoding
method based on the advantages of deep learning technology in
feature learning and neural network technology. Our method
employs position-specific encoding of DNA sequences to join the
automatic attention mechanism of neural networks for
optimisation. This enables the identification of key features of the
6 mA site by better capturing the probability distribution of the
target site in the sequence. Once the existing machine learning and
deep learning models have been validated, it can be demonstrated
that the proposed encoding method fully considers the positional

frequency of the sequence, and has a superior ability to predict the
6 mA locus.

2 Materials and methods

2.1 Literature search strategy

We utilise the DNA 6 mA benchmark dataset, which is a
combination of the rice genome (Chen et al., 2019), the mouse
muscle genome, and a cross-species dataset that is a mixture of these
two benchmark datasets. In order to reduce sequence redundancy in
the dataset, the threshold was set to 0.8 using CD-HIT software in
this paper (Fu et al., 2012).

The rice genome benchmark dataset comprises 1760 sequences,
of which 880 are designated as positive samples and 880 as negative
samples. The benchmark dataset for the rat muscle genome has
3,868 sequences, of which 1,934 are positive samples and
1,934 negative samples. The cross-species dataset comprises
5,484 sequences, of which 2,768 are positive samples and
2,716 are negative samples. In all benchmark datasets, the length
of each sequence is 41 nt. Details of the dataset can be found
in Table 1.

The sequence identity of the 6 mA site sample in the benchmark
dataset is illustrated in Figure 1.

2.2 Feature encoding methods

2.2.1 Binary encoding
The binary coding method employs a four-bit binary vector to

represent each nucleotide in a DNA fragment. For example, the
nucleotide A is represented by the binary vector (1,0,0,0), the
nucleotide C by (0,1,0,0), the nucleotide G by (0,0,1,0), and the
nucleotide T by (0,0,0,1). This binary coding scheme is also one of
the most basic coding schemes in biogenetics (Feng et al., 2019), with
the advantage of being able to accurately describe the different
positions of the ribonucleotides in the same sample of sequences
(Liu et al., 2019).

2.2.2 K-nucleotide frequency coding (Kmer)
Kmer frequency coding refers to the division of a nucleotide

sequence under study into strings containing k bases. In general, a
nucleotide sequence of lengthm can be divided into (m-k + 1) kmers
(Nie and Zhao, 2019). This paper investigates and analyses the

TABLE 1 Summary of dataset.

Species Dataset Number of Samples

Corss-species Positive 2,768

Negative 2,716

Rice Positive 880

Negative 880

M.musculus Positive 1,934

Negative 1,934
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problem of multi-nucleotide sequences with k consecutive
nucleotides in order to accomplish k-nucleotide frequency
coding. As an illustration, if k = 3, there are 43 = 64 dinucleotide
frequencies to be calculated, such as AAA, AAT, AAG, AAC, etc.
The remaining nucleotides are TTT. It can be observed that the
k-mer is employed to elucidate the relationship between bases in a
nucleotide sequence through the application of statistical
frequencies derived from the original nucleotide sequence. This
approach is used to elucidate the relationship between bases in a
nucleotide sequence.

The calculation formula for k-mer is presented in Equation 1.

f t( ) � N t( )
N

, t ∈ AAA,AAC, .AAG, ..TTT{ } (1)

2.2.3 Nucleotide chemical property codes (NCP)
Nucleotide Chemical Property Coding is a feature extraction

method that aims to extract the intrinsic information between
nucleotides. There are four different types of nucleotides in the
DNA sequence, each of which has a different chemical structure and
binding properties. All types of nucleotides can be classified into
three main categories based on their chemical properties. In this
paper, the four types of nucleotides ACGT are coded as (1,1,1),
(0,1,0), (1,0,0), (0,0,1) based on their chemical properties.

2.2.4 Enhanced nucleotide composition (ENAC)
The Enhanced Nucleotide Composition (ENC) coding scheme is

based on calculating nucleotide composition (NAC) based on a
fixed-length window of sequences (Liu F et al., 2018; Chen et al.,
2018a; Chen et al., 2018b). This will use a fixed-length window (in
this paper, the window size is set to 5), starting from the start
position of each nucleotide sequence and sliding along the sequence,
to compute the composition of the nucleotides within the window is
calculated. The dimensionality of the ENAC coding is determined by
two parameters, including the sequence length and sliding window
size. The latter can be calculated as (sequence length - window size +
1)*4. The calculation formula is shown by Equation 2:

f t( ) � N t( )
N

, t ∈ A,C, G, T{ } (2)

In this formula, the N(t) numerator represents the number of
nucleotides, while the denominator N represents the length of the
ribonucleotide sequence.

2.2.5 Position-specific trinucleotide statistical
coding (PSTNPds)

The PSTNPds encoding employs a statistical strategy based
on DNA double-strand features (Chen et al., 2020), which results
in a more distinctive statistical profile based on complementary
base pairing (Li et al., 2023). In this context, A and T are
considered to be identical to C and G. Consequently, for each
sample, it can be converted to a sequence containing only A and
C. This process results in the generation of 2³ = 8 trinucleotides:
AAA, AAC, Thus, for a DNA sequence of length L, its
trinucleotide position specificity can be represented by a
matrix of 8*(L-2).

Z �
z1,1 z1,2 / z1,L−2
z2,1 z2,2 / z2,L−2
..
. ..

. ..
. ..

.

z8,1 z8,2 / z8,L−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

zi,j � F+ 3mer | j( ) − F− 3meri | j( )i � 1, 2,/, 8, j � 1, 2,/, L − 2

(3)
In Equation 3, the symbol “ F+(3meri | j) and F−(3meri | j) ”

represents the frequency of the I th trinucleotide at the j th position
in the positive and negative data set.

2.3 PSATF-6mA model

The PSATF-6mA model proposed in this paper is a fusion of
neighbouring nucleotide position encoding with multi-head neural
network self-attention. This generates a weight matrix for the 6 mA
sites in the DNA sequence, which is used to identify the relevant
positions. Ultimately, this generates the main framework of the
model through the integration of the learning network, which is used
to continuously optimise the feature matrix. The model framework
is described as follows.

The PSATF-6mA model primarily encodes the original DNA
sequence with the neighbour nucleotide positional features, thereby
fully considering the positional relationship between neighbouring
nucleotides. Furthermore, the position fusion feature matrix is
incorporated into the attention mechanism via a feed-forward
neural network. This enables the statistical characteristics of the
position probability relationship formed by base complementary
pairing to be fully exploited after encoding, thereby greatly

FIGURE 1
6 mA site sample in the benchmark datase.
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improving the accuracy and learnability of the encoding as the
input vector for machine learning. In the neural network model,
the multi-head attention mechanism is employed to assign
higher-quality weights to the nucleotides that are more
pertinent to the identification of the 6 mA site. Furthermore,

the feed-forward neural network is utilised to continuously
optimise the feature vectors following the completion of the
encoding process. Subsequently, the model is evaluated using
the cross-entropy loss function. A series of decision tree models is
generated through iterative training of the decision tree models

FIGURE 2
Experimental flowchart of PSATF-6mA model.
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based on residuals. The final integrated result is obtained by
weighted averaging the predictions of each decision tree. The
final prediction results are then obtained. The overall design
concept of the PSATF-6mA model proposed in this paper is
illustrated in Figure 2.

The DNA sequence was initially converted to a sequence
comprising adenine (A) and cytosine (C) utilising a coding
process to transform the DNA sequence. It is crucial to
highlight that each of the trinucleotide combinations in the

position-specific trinucleotide statistical coding (AAA, AAC,
ACA, etc.) are paired according to complementary bases,
thereby exhibiting a more distinctive statistical signature. At
this juncture in the paper, A and T are considered to be
identical to C and G, and thus, for each sample, it can be
converted to a sequence containing only A and C.
Consequently, there are a total of 2³ = 8 trinucleotide
compositions: AAA, AAC, CCC. For a sample in the dataset
with a DNA length of 41 bp, the details of the trinucleotide

FIGURE 3
Interpretation of the attention mechanism through heat maps.
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position specificity can be represented by the
following 8 *39 matrix.

Z0 �
z0,1;1 z0,1;2 / z0,1;39
z0,2;1 z0,2;2 / z0,2;39
..
. ..

.
1 ..

.

z0,8;1 z0,8;2 / z0,8;39

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The model is querying the coding representation of the

variant construction samples. In this instance, the sample S0 is

represented by the first feature, which (ϕ0) corresponds to a

specific trinucleotide fragment. Consequently, the sample

comprises the aforementioned components, where the latter is

defined as follows:

FIGURE 4
Prediction results between different integrated learning classifiers selected for PSATF-6mA model.

FIGURE 5
Comparative analysis of evaluation metrics between different integrated learning classifiers selected by PSATF-6mA model.
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ϕ′
u �

z1,u′ , when NuNu+1Nu+2 � AAA
z2,u′ , when NuNu+1Nu+2 � AAC
z3,u′ , when NuNu+1Nu+2 � ACA

..

. ..
. ..

.

z8,u′ , when NuNu+1Nu+2 � CCC

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
In the event that the trinucleotide fragment at a given position is

AAA, the result is ϕu0 � z20, u. Conversely, if the trinucleotide
fragment at a position is AAC, the result is ϕu0 � z20, u.
Consequently, the trinucleotide fragment at the final position,
CCC, can be expressed as ϕu0 � z80, u. Subsequently, the coding z0
representation of sample S0 was constructed based on the frequency
of the trinucleotide fragment. Finally, this paper combines all ϕu0
elements into a single vector, designated as S0 (where h denotes
horizontal stacking and T denotes the transpose operation).

S0 �

ϕ″01
ϕ2
″

..

.

ϕ″0u
..
.

ϕ′ 0
39

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

The additive attention mechanism invoked in the PSATF-6mA
model is designed to handle the case where the vector dimensions of
the Query and Key do not coincide. This is achieved through the
following Equation 4:

a q, k( ) � WT
v tanh Wqq +Wkk( ) (4)

q ∈ Rq, k ∈ Rk,Wq ∈ Rh×q,Wk ∈ Rh×k,Wv ∈ Rh×v. The Query
and Key can be unified into a single vector dimension through
the integration of two fully connected layers. This enables the
relationship between the query and key to be determined by
summing and activating the tanh function. Subsequently, the
vector dimension can be unified with that of the value through
the integration of a fully connected layerWv. The final result is then
passed through the function to softmax(WT

v tanh(Wqq +Wkk))
obtain the probability distribution of the query and key, which is
used to adjust the attention weight. The dot product scoring
function is frequently employed as an attention mechanism, as it
is capable of capturing the similarity between vectors. Furthermore,
the features of DNA sequences are typically represented as vectors or
matrices. The dot product scoring function is capable of measuring
the correlation between a query and a key, which may result in its
effectiveness in identifying positional features in some sequence-
based tasks.

Subsequently, a cross-entropy loss function is employed based
on the actual 6 mA bit labels, and the positional frequency feature
matrix is trained and optimised. The cross-entropy loss function is
employed to quantify the discrepancy between the probability
distribution of the model output and the actual labels in a block.
Furthermore, the gradient statistics of the position frequencies are
sorted from the highest to the lowest. Subsequently, several
classification decision trees are constructed to rectify the residuals
generated in the preceding step, until the results of all the decision
trees are integrated to complete the final prediction. In the design of
applying the multi-head attention mechanism to the PSATF-6mA

model, the key is to query a specific pattern or key information
corresponding to the attention to the 6 mA locus on the DNA
sequence. By dynamically adjusting the query, the model is able to
focus on different DNA segments in different contexts, thereby
improving its adaptability with regard to the encoding process.

The addition of the attention mechanism allows for the
formation of keys and values that correspond to specific
trinucleotide fragments in the DNA sequence and their
corresponding statistical features. By considering the similarity of
the keys and values, it is possible to capture more precise
information from the DNA sequence. The use of an additive
attention mechanism as a scoring function in PSTNPds facilitates
the calculation of similarity scores between different trinucleotide
fragments. The selection of an appropriate scoring function
facilitates the measurement of relatedness in DNA sequences,
thereby enabling the attention mechanism to identify important
fragments with greater accuracy.

2.4 Attention mechanism in PSATF-6mA

In the PSATF-6mA, the attention mechanism plays a pivotal
role in the identification of DNA - 6 mA methylcytosine
modification sites. It enables the model to automatically focus on
the information that is more crucial for recognizing 6 mA sites
during the processing of DNA sequences. Specifically, for different
encoding schemes such as Kmer, NCP, ENAC, and particularly the
PSTNPds emphasized in this study, the attention mechanism
assigns an attention weight to each encoded feature. These
weights reflect the degree of attention that the model pays to
each feature during the decision-making process.

We demonstrate the attention mechanism of the model in
Figure 3. The attention heat maps provide a visual representation
of the attention weights. Overall, if certain regions in the heat map
exhibit a generally darker color, it indicates that the model assigns a
higher attention weight to the features corresponding to these
regions. This implies that these features are regarded as more
important sources of information when the model determines the
presence of 6 mA sites.

For different encoding methods, the x-axis of the heat map
corresponds to different encoded features. For instance, in the kmer-
encoded heat map, each tick on the x-axis represents a specific kmer
combination. If the area corresponding to a particular kmer
combination on the x-axis shows a darker color in the heat map,
it suggests that the model pays higher attention to this kmer
combination during data processing. This could be because this
kmer combination has a certain association with the occurrence of
6 mA sites in the DNA sequence, and the model has learned to
capture this association and assigns corresponding attention during
the decision-making process.

Similarly, for the NCP encoding, the features on the x-axis
correspond to different nucleotide chemical property categories or
their combinations. The darker regions indicate that the model
pays more attention to the features related to these chemical
properties, suggesting a close relationship between these
chemical properties and the recognition of 6 mA sites. On the
y-axis, each tick represents a sample. By observing the color
distribution of different samples in the heat map, it can be seen

Frontiers in Genetics frontiersin.org07

Kang et al. 10.3389/fgene.2024.1498884

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1498884


that the model’s attention to different samples also varies. Some
samples may have a darker color throughout the map, indicating
that the model pays a higher overall attention to all the features of
these samples. This may be because these samples contain more
information related to 6 mA sites or their feature patterns are more
easily recognizable by the model. In contrast, for some samples
with a lighter color, the model may consider the information they
contain to be of relatively lower importance for determining
6 mA sites.

The attention mechanism enables PSATF-6mA to utilize the
input encoded feature information more effectively. Instead of
treating all features equally, it can dynamically adjust the focus
according to the relevance between the features and the target (6 mA
site identification). This allows the model to better capture critical
information when dealing with complex DNA sequence data,
thereby improving the model’s accuracy and performance in
identifying 6 mA sites.

3 Results

3.1 Model validation

In this paper, the following metrics were employed for the
assessment of sensitivity (Sn), specificity (SP), accuracy (ACC)
and Mathews correlation coefficient (MCC) (Yu et al., 2020a; Yu
et al., 2020b; Liu et al., 2015; Jiang et al., 2019; Wang et al., 2016):

Pre � TP

FP + TP

SN � TP

TP + FN

SP � TN

FP + TN

ACC � TP + TN

TP + TN + FP + FN

MCC � TP × TN − FP × FN�������������������������������������
TP + FN( ) TP + FP( ) TN + FP( ) TN + FN( )√

Where TP and TN are the number of true positive and true
negative samples, and FP and FN are the number of false positive
and false negative samples, respectively. Additionally, this paper
employs subject operating characteristic (ROC) curves (Liu and
Chen, 2020; Wang et al., 2021; Liu and Li, 2020) and precision-recall
(PR) (Liu and Chen, 2020; Yu et al., 2020a) curves to provide a visual
representation of the prediction performance. The ROC curves are
generated by plotting the true-positive rate (y-axis) and the false-
positive rate (x-axis) at varying thresholds. The closer the ROC curve
is to the upper left corner, the better the performance (Tang et al.,
2022). The PR curve is a plot of precision (y-axis) versus recall
(x-axis) at various thresholds. Recall is equivalent to Sn, The area
under the ROC curve and the PR curve (AUC) are employed to
quantify the prediction efficacy (Chen et al., 2020; Chen et al., 2019;
Li et al., 2021; Liu et al., 2016). The AUC is defined as a value
between 0 and 1, with one representing optimal prediction,
0.5 indicating random prediction, and 0 representing the
opposite of a prediction. A larger AUC value indicates a more
accurate prediction.

3.2 Comparison experiments of different
coding approaches

In order to compare the effect of the PSATF-6mA model based
on the enhancement of encoding methods by using a multi-head
attention mechanism in the task of DNA-6mA methyl cytosine
modification site recognition, a comparison will be made between
the following methods: Four commonly used DNA encoding
methods, namely, Kmer, NCP, ENAC, and Binary, were selected
for the experiment. The integration learning module in PSATF-6mA
model selected LightGBM (Pal and Mitra, 1992; Meng, 2017),
XGboost, Adaboost (Freund and Schapire, 1995), and
DecisionTree, respectively, as the integration learning classifiers
used in this paper. The K-fold cross-validation method is an
effective model evaluation method. This paper uses the 5-fold
cross-validation method to evaluate the effectiveness of the
prediction model (Shi et al., 2019; Khanal et al., 2021; Xie et al.,
2020; Buzhong et al., 2019).

Table 2 presents the results of a comparative analysis between
the PSATF-6mA model and the traditional coding method Kmer.
The PSATF-6mA model, which employs LightGBM and
DecisionTree as integrated learning classifiers, demonstrated
superior coding effectiveness compared to Kmer. The model
performance of Sn was enhanced by 45.9%. The results
demonstrate that the PSATF-6mA model, when integrated with
LightGBM and DecisionTree, outperforms the traditional coding
method Kmer. The model’s performance in terms of Sn, ACC, and
MCC is significantly enhanced, with improvements of 45.9, 29.984,
and 0.7758, respectively. Furthermore, the ROC metric also shows a
notable improvement, with an increase of 0.3663.

Table 3 lists the performance of the test on XGBoost and
Adaboost classifiers. The PSATF-6mA model performs better
with the selection of XGBoost and Adaboost as integrated
learning classifiers. The model’s Sn improves. The results
demonstrate that the PSATF-6mA model outperforms the
baseline model in terms of accuracy, with improvements of
11.78%, 23.01%, and 20.5352% for precision, recall, and F1-score,
respectively. Furthermore, the model exhibits enhanced Matthews
correlation coefficient (MCC) values of 0.4175 and 0.4318,
indicating a more balanced performance. Additionally, the
receiver operating characteristic (ROC) curve demonstrates an
improvement of 0.1573 and 0.1739, indicating a more accurate
classification.

3.3 Comparison experiments with
existing models

In order to verify the generality of the PSATF-6mA model for
DNA-6mAmethylcytosine modification site recognition method on
deep learning models, this paper selects three deep learning models,
CNN(Muhammad et al., 2019), RNN and ResNet (He et al., 2016),
which are currently the most widely used in deep learning. In order
to ensure consistency with the evaluation metrics, this paper
employs the same metrics, including accuracy, sensitivity,
specificity, MCC, and AUC. The experimental results are shown
in Table 4. Additionally, the current state-of-the-art recognition
models are selected for comparison, with the results of
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SNNRice6mA and SpineNet-6mA (Yu and Dai, 2019)
directly quoted from the literature (Abbas et al., 2020). In all
evaluation metrics, the model in this paper outperforms
previous models.

The results demonstrate that in the case of multiple machine
learning and deep learning models as classifiers, the enhancement of
using the PSATF-6mA model for the traditional model leads to a
more significant improvement in the ACC value compared to

TABLE 2 The PSATF-6mA model selects LightGBM and DecisionTree as integrated classifiers.

Model Method Sn Sp Pre Acc MCC AUROC AUPRC

Light GBM binary 75.3920 74.3180 78.9040 74.8540 0.4981 0.7771 0.7953

Kmer 53.5040 66.2360 62.3560 59.8100 0.2011 0.6325 0.6549

NCP 75.3920 74.3180 78.9040 74.8540 0.4981 0.7771 0.7953

ENAC 67.0460 73.1020 74.9700 70.0380 0.4068 0.7504 0.7811

PSATF-6mA 99.4580 98.1960 98.2920 98.8360 0.9769 0.9988 0.9988

Decision Tree binary 67.8480 65.8460 69.0860 66.8480 0.3387 0.6685 0.7658

Kmer 62.1760 58.8780 60.8180 60.5400 0.2108 0.6053 0.7104

NCP 66.9460 64.9620 68.4320 65.9560 0.3212 0.6595 0.7603

ENAC 65.9680 62.8280 66.2420 64.4060 0.2881 0.6440 0.7470

PSATF-6mA 92.1600 93.2280 93.3620 92.6880 0.8543 0.9274 0.9270

The bold font represents the experimental results of the model in this article.

TABLE 3 The PSATF-6mA model selects XGBoost and Adaboost as integrated classifiers.

Model Method Sn Sp Pre Acc MCC AUROC AUPRC

XGBoost binary 87.7140 69.6840 79.3940 78.7740 0.5651 0.8418 0.8493

Kmer 63.0420 75.1920 74.3940 69.0540 0.3929 0.7505 0.7722

NCP 87.2440 70.4560 79.5340 78.9180 0.5725 0.8229 0.8250

ENAC 80.5980 72.4060 79.4540 76.5320 0.5296 0.8172 0.8313

PSATF-6mA 99.4940 98.7500 98.8060 99.1260 0.9826 0.9991 0.9991

AdaBoost binary 74.3880 73.9860 78.7220 74.1780 0.4914 0.8125 0.8236

Kmer 65.3160 68.7860 69.0540 67.0320 0.3438 0.7268 0.7307

NCP 74.3880 74.0600 78.7260 74.2160 0.4922 0.8123 0.8233

ENAC 76.0460 71.6680 76.980 73.8660 0.4813 0.8094 0.8107

PSATF-6mA 97.3980 94.7760 95.3220 96.1000 0.9232 0.9864 0.9797

The bold font represents the experimental results of the model in this article.

TABLE 4 Comparative results with traditional deep learning models.

Model Sn Sp Pre Acc MCC AUROC AUPRC

CNN_model 24.1840 82.6800 84.6800 53.1360 0.1347 0.7768 0.8010

RNN_model 38.5520 81.5020 82.4500 59.8120 0.2688 0.7733 0.7966

ResNet_model 60.6560 60.7980 62.0140 60.7220 0.2150 0.6024 0.5957

PSATF-6mA (Decision Tree) 92.1600 93.2280 93.3620 92.6880 0.8543 0.9270 0.9474

PSATF-6mA (AdaBoost) 97.3980 94.7760 95.3220 96.1000 0.9232 0.9864 0.9797

PSATF-6mA (LightGBM) 99.4580 98.1960 98.2920 98.8360 0.9769 0.9988 0.9988

AttNet (XGBoost) 99.4940 98.7500 98.8060 99.1260 0.9826 0.9991 0.9991
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existing models, with the exception of the ResNet model. The value
of AUPRC can reach up to 0. In the case of the machine learning
model, when the PSATF-6mA model integrated learning classifier
selects XGBoost, the ACC value of the model can be as high as
99.126, while the ACC value of the integrated learning classifier
selects LightGB can be as high as 98.836. The improvement is
notable; once more, it demonstrates the efficacy of the PSATF-
6mA model in identifying the 6 mA locus. To provide a further
visual illustration of the model’s performance, this paper employs
model histograms and PRC and ROC curves. The comparison of
evaluation metrics for different ensemble learning classifiers in the
PSATF-6mA model is shown in Figures 4, 5.

To demonstrate the superiority of the proposed scheme, PSATF-
6mA is comprehensively compared with existing predictors, namely,
IDNA6MA-PseKNC (Feng et al., 2019), csDMA (Liu et al., 2019),
and iIM-CNN (Wahab et al., 2019) with respect to their respective
advantages. The results are presented in Table 5, which employs a 5-
fold cross-validation approach. The species predictors are evaluated
on the same dataset. The sensitivity, specificity, accuracy, Matthews
correlation coefficient (MCC), and area under the receiver operating
characteristic curve (AUROC) of the model in this paper are
improved by 0.125, 0.207, 0.167, 0.3316, and 0.1071, respectively,
over the existing state-of-the-art models. This further demonstrates
the superiority of the PSATF-6mA model.

The PSATF-6mA model offers significant advantages over
existing methods, particularly in comparison with ilM-CNN,
csDMA, and MultiScale-CNN-4mCPred. It utilizes a novel
adjacent nucleotide position encoding combined with a multi-
head self-attention mechanism, allowing for a nuanced
understanding of inter-nucleotide relationships; in contrast,
ilM-CNN relies on one-hot encoding, which may inadequately
capture positional dynamics, while csDMA employs pseudo amino
acid composition (PseAAC) and k-mer strategies that do not fully
exploit nucleotide positioning. Additionally, the self-attention
mechanism in PSATF-6mA enables dynamic weighting of
nucleotides, enhancing feature identification across diverse
contexts, whereas ilM-CNN uses fixed weights in convolutional
layers, which may limit sensitivity to significant features, and
csDMA lacks the adaptive weighting present in PSATF-6mA.
Furthermore, PSATF-6mA’s adaptability to various sequence
contexts allows it to effectively manage intricate variations,
while ilM-CNN may show rigidity in its response to different
DNA sequences, and csDMAmay also face limitations in handling
varying biological data. In terms of overfitting mitigation, while
both PSATF-6mA and MultiScale-CNN-4mCPred incorporate
dropout layers, the former’s architecture allows for more
sophisticated regularization through attention mechanisms,
potentially leading to superior generalization in complex

datasets. Finally, empirical results consistently show that
PSATF-6mA achieves higher Matthews correlation coefficient
(MCC) values during cross-validation, indicating enhanced
accuracy and reliability in identifying 6 mA sites compared to
ilM-CNN, csDMA, and MultiScale-CNN-4mCPred.

In summary, the PSATF-6mA model distinguishes itself by
leveraging advanced encoding techniques, dynamic feature
extraction, greater flexibility, effective overfitting mitigation, and
superior performance metrics, thereby enhancing its efficacy in
analyzing complex biological sequences.

4 Conclusion

The accurate identification of 6 mA sites in DNA is of great
importance for the elucidation of the function of 6 mA epigenetic
modifications. This study develops and implements a method
called PSATF-6mA modelling approach. The methodology text
focuses on the statistical strategy of DNA double-stranded
features, utilising the multi-head self-attention mechanism in
neural networks to model DNA position probability relations.
Furthermore, the position weights are continuously adjusted
through an integrated learning framework. The experimental
results demonstrate the merits of the proposed PSATF-6mA
model by comparing it with the four most commonly used
DNA encoding methods on classifiers.

The superior performance of the PSATF-6mA model for the
recognition of 6 mA can be attributed to the following factors.
The model demonstrates position sensitivity and sequence
correlation. The PSATF-6mA model considers the information
of each position in the sequence, as well as the relationship
between different parts of the sequence. This is achieved
through the use of an attentional mechanism, which takes into
account the nucleotides in the sequence that are more relevant to
the 6 mA locus. Position sensitivity and sequence correlation help
to better represent important features and patterns in the
DNA sequence.

The PSATF-6mA model offers several advantages in the
context of binary classification problems, such as identifying
the 6 mA locus. It employs a transformer’s multi-head
attention mechanism, which focuses on the DNA double-
stranded features of the statistical strategy. Additionally, it
prioritises the computational features of the DNA strand itself.
Consequently, it can be used to select a more comprehensive and
accurate integrated learning classifier through the integrated
learning framework, which facilitates the integration of
bioinformatics and computer mathematics. Although the
PSATF-6mA model demonstrated satisfactory performance,

TABLE 5 Comparative analysis of existing predictors with this model.

Species Model Sn Sp Acc MCC AUROC

Cross_species iIM-CNN 0.8690 0.7800 0.8240 0.6510 0.8920

csDMA 0.8630 0.7350 0.7990 0.6030 0.8790

iDNA6MA-PseKNC 0.7620 0.7690 0.7650 0.5310 0.8440

PSATF-6mA (XGBoost) 0.9940 0.9870 0.9910 0.9826 0.9991

Frontiers in Genetics frontiersin.org10

Kang et al. 10.3389/fgene.2024.1498884

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1498884


there are still potential limitations. For instance, the model is not yet
sufficiently robust for complex multi-locus knowledge across species.
To further enhance the prediction of 6 mA locus, this paper proposes
two avenues for future research: (1) The design of a processing scheme
for larger cross-species datasets; and (2) the construction of a feature
optimisation tool for the features of the DNA sequences themselves,
so that themodel can better remove the noise from the features during
encoding. While there is still room for optimisation of the PSATF-
6mAmodel, this paper believes that it will be utilised as a useful tool to
accelerate progress in the detection and understanding of DNA
site function.
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