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Climate change poses a growing threat to the livestock industry, impacting
animal productivity, animal welfare, and farm management practices. Thus,
enhancing livestock climatic resilience (CR) is becoming a key priority in
various breeding programs. CR can be defined as the ability of an animal to
be minimally affected or rapidly return to euthermia under thermally stressful
conditions. The primary study objectives were to perform genome-wide
association studies for 12 CR indicators derived from variability in longitudinal
vaginal temperature in lactating sows under heat stress conditions. A total of
31 single nucleotide polymorphisms (SNPs) located on nine chromosomes were
considered as significantly associated with nine CR indicators based on different
thresholds. Among them, only two SNPs were simultaneously identified for
different CR indicators, SSC6:16,449,770 bp and SSC7:39,254,889 bp. These
results highlighted the polygenic nature of CR indicators with small effects
distributed across different chromosomes. Furthermore, we identified
434 positional genes associated with CR. Key candidate genes include
SLC3A2, STX5, POLR2G, and GANAB, which were previously related to heat
stress responses, protein folding, and cholesterol metabolism. Furthermore,
the enriched KEGG pathways and Gene Ontology (GO) terms associated with
these candidate genes are linked to stress responses, immune and inflammatory
responses, neural system, and DNA damage and repair. The most enriched
quantitative trait loci are related to “Meat and Carcass”, followed by
“Production”, “Reproduction”, “Health”, and “Exterior (conformation and
appearance)” traits. Multiple genomic regions were identified associated with
different CR indicators, which reveals that CR is a highly polygenic trait with small
effect sizes distributed across the genome. Many heat tolerance or HS related
genes in our study, such as HSP90AB1, DMGDH, and HOMER1, have been
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identified. The complexity of CR encompasses a range of adaptive responses, from
behavioral to cellular. These results highlight the possibility of selecting more heat-
tolerant individuals based on the identified SNP for CR indicators.

KEYWORDS

climate resilience, heat stress, genome-wide association studies, livestock breeding,
genomic regions

1 Introduction

Climate change poses an increasing risk to productivity, welfare,
and requires farm management practices change without
compromising effectiveness in the livestock industry (Rhoads
et al., 2009; Yang et al., 2021). Moreover, economically important
traits are significantly influenced by genotype-by-environment
interactions, and the animals’ performance can deteriorate with
rising global temperatures (Haile-Mariam et al., 2008; Braz et al.,
2021). Over the past few decades, intensive breeding for greater
productivity, such as increased milk yield, growth rate, little size, and
body weight in livestock, led to higher metabolic heat production
(Cabezón et al., 2017), potentially reducing the ability of livestock
(i.e., pigs) to thrive in harsh environments. Consequently, this has
caused farm management to become more challenging with
declining profitability as animals face heightened risks from the
severe effects of global warming. Thus, enhancing CR has become a
primary objective in livestock breeding.

Climate resilience refers to the animal’s ability to maintain or
quickly return to euthermia under thermally stressful conditions
(Colditz and Hine, 2016; Wen et al., 2024). Many studies have
investigated CR and proposed novel indicators, such as genetic
variance of the slope of reaction norm models (Shi et al., 2021;
Waters et al., 2022; Freitas et al., 2024). However, most direct
resilience phenotypes are difficult or expensive to measure,
leading to less frequent measurements and more issues, such as
low phenotypic variability and low tomoderate heritability estimates
(Guy et al., 2012; Gorssen et al., 2021). In previous studies, various
phenotypes related to heat stress (HS) in lactating sows—including
vaginal temperature, respiration rate, skin surface temperature, hair
density, and body condition score—were measured under HS
conditions and considered as useful indicators of HS (Scheffer
et al., 2018; Gorssen et al., 2021; Johnson et al., 2023). These
phenotypes exhibited low to moderate heritability estimates.
However, identifying CR of animals based on these measures
alone is challenging. Individuals who exhibit greater consistency
in their phenotypes over time are likely to have higher resilience
(Scheffer et al., 2018; Berghof et al., 2019). This is because they are
expected to deviate less from their optimal production or
physiological levels when faced with disruptions, leading to
increased survival and reduced disease incidence (Scheffer et al.,
2018; Berghof et al., 2019).

Increased availability of longitudinal data from various methods,
such as automatic thermometers, feeding stations, and computer
vision systems, makes it possible to derive more effective resilience
indicators (Chen et al., 2023; Pedrosa et al., 2023). For instance,
methods for deriving several new resilience indicators in dairy cattle
based on deviations from observed and expected performance,
including variance, lag-1 autocorrelation, and skewness of

deviations, have been proposed (Poppe et al., 2020). These
methods have been applied in resilience studies across various
species, including cattle (Poppe et al., 2020; Chen et al., 2023),
pigs (Mancin et al., 2024), and dairy goats (Sánchez-Molano
et al., 2019).

Fifteen novel CR indicators, such as variance, lag-1
autocorrelation, and skewness of deviations, as well as HS
duration, using longitudinal automatically-recorded vaginal
temperature were developed in our previous study (Wen et al.,
2024). Most of these indicators were moderately heritable and had
low to high genetic correlations with each other. Current
understanding of the biological mechanisms and genetic factors
influencing CR in lactating sows is rather limited. In this context,
genome-wide association studies (GWAS) enable the detection of
single nucleotide polymorphisms (SNP) associated with traits of
interest (Visscher et al., 2012). Many GWAS studies focusing on
resilience have been conducted in different species, such as chicken
(Doekes et al., 2023), pigs (Putz et al., 2019), sheep (Tsartsianidou
et al., 2021), and cattle (Alonso-Hearn et al., 2022; Chen et al., 2024).
However, CR is expected to be a polygenic trait influenced by
numerous biological mechanisms, which could lead to the
identification of many putative quantitative trait loci (QTL),
some of them with small effect and located on different
chromosomes. GWAS can contribute to a better understanding
of the genetic basis underlying phenotypic variability in CR. By
undertaking GWAS on different CR metrics, we can delve deeper
into the genetic basis of this complex trait, potentially uncovering
valuable insights that will not only advance our scientific knowledge
but also inform breeding strategies aimed at enhancing CR in sows.
Thus, the primary study objectives were to 1) detect SNPs and
genomic regions significantly associated with twelve CR indicators
derived from automatically-recorded vaginal temperature measured
in lactating sows under HS conditions; and 2) identify the
underlying biological functions and metabolic pathways these
regions are involved in based on functional genomic analyses.

2 Materials and methods

2.1 Datasets

All live animal data collection procedures were approved by the
Purdue University Animal Care and Use Committee (Protocol
#1912001990). All data collection procedures, physiological data,
genotype information, and quality control processes have been
previously described in our previous studies (Johnson et al., 2023;
Wen et al., 2023; Wen et al., 2024). In brief, 1,639 lactating sows
(parities 2–7; Landrace × Large White) were genotyped using the
PorcineSNP50K Bead Chip (Illumina, San Diego, CA,
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United States). The vaginal temperature (TV) of 1,381 sows within
the studied population was automatically measured every 10 min
from June 5th to July 30th, 2021, using a vaginally implanted
thermochron data recorder (Johnson et al., 2023). Ambient
temperature and humidity of each barn was automatically
collected every 5 minutes (Johnson et al., 2023). The phenotypic
and genomic quality control procedures performed can be accessed
on our research (Johnson et al., 2023; Wen et al., 2023). Twelve CR
indicators were derived based on variability in automatically
measured vaginal temperature (Wen et al., 2024). Log-
transformed variance [LnVar(Ave) and LnVar(Med)], Lag-1
autocorrelation (Autocor (Ave) and Autocor(Med)], and
skewness [Skew(Ave) and Skew(Med)] of the deviations between
observed and the average (Ave) or median (Med) values from
moving windows consisting of six consecutive observations with
a 10-minute interval were calculated for each animal (Poppe et al.,
2020). The HS thresholds for individuals under distinct ventilation
conditions (mechanical ventilation at 39.76°C and natural
ventilation at 39.78°C) were reported (Johnson et al., 2023).
Additional traits were derived including the daily maximum
vaginal temperature (MaxTv) per individual and the HS duration
(HSD), which quantifies the duration of the time interval in which
an individual’s vaginal temperature consistently exceeded the HS
threshold each day. Two CR indicators were normalized median
(Nor medvar) or average TV (Nor avevar) multiplied by the
normalized TV variance on a population level as follows,

Nor medvari � Medi−Medmin
Medmax−Medmin

× var(Tv)i−var(Tv)min
var(Tv)max−var(Tv)min

and

Nor avevari � Avei−Avemin
Avemax−Avemin

× var(Tv)i−var(Tv)min
var(Tv)max−var(Tv)min

, where Medi, Avei,

and Var(Tv)i represent the median, average, and variance of TV

for individual i, Avemin and Avemax are the minimum and maximum
median TV, Medmin and Medmax are the minimum and maximum
median TV, and Var(Tv)min and Var(Tv)max are the minimum and
maximum TV variance, respectively. Furthermore, two additional
traits were derived based on the total deviations between TV and HS
threshold values, which were calculated by summing up the TV

values above (HSUA) or below (HSUB) the HS threshold throughout
the entire data collection period as follows,

HSUA � ∑n
t�1(Tvt −HS threshold) and HSUB � ∑n

t�1
(Tvt −HS threshold), where Tvt is the TV at time point t. All
these CR indicators were described in detail (Wen et al., 2024),
and the heritability estimates ranged from 0.084 ± 0.037 [Skew
(Med)] to 0.291 ± 0.047 (HSUB).

2.2 Genome-wide association studies and
functional genomic analyses

Genome-wide association studies between the CR indicators and
the SNPs were conducted using the linear mixed animal model in the
GCTA software (Yang et al., 2011), with the option of leaving one
chromosome out (MLMA-LOCO). The effects included in the
GWAS models are the same as those reported previously (Wen
et al., 2024). After performing the GWAS, the genomic inflation
factor (λ) was calculated to evaluate potential bias in the results, e.g.,
from unaccounted population stratification. The λ value was
calculated as the ratio of the median of the observed distribution
of the statistic to the expected median, for which a 95% confidence

interval of value was further derived (Devlin and Roeder, 1999). The
Bonferroni correction was used for multiple testing corrections
(Armstrong, 2014). The genome-wide significance and suggestive
significance threshold were set as 1.17 × 10−6 (P = 0.05/N) and
2.34 × 10−5 (P = 1/N), respectively, where N represents the total SNP
number left after removing SNPs based on linkage disequilibrium
(LD) (indep-pairwise 50 5 0.1, N = 42,729). To avoid type I errors
and false negative results, another less-stringent significance
threshold of 0.05 divided by the number of independent
chromosomal segments (Me) at chromosome-wise levels was
considered (Li et al., 2015), following the model:
Me � 2NeL/log (NeL), where Me is an function of effective

population size (Ne) and chromosome length (L, in
centimorgans–cM). Ne was considered to be equal to 60 (Hall,
2016) and 1 cM equivalent to 1 Mb (Wang et al., 2016). Quantile-
quantile plots (Q-Q plots) were created using the CMplot R package
(Yin et al., 2021).

The GALLO R package (Fonseca et al., 2020) was used to detect
genes located within 500 Kb up and downstream of significant SNP
and QTL regions previously cited in the pig QTLdb (Hu et al., 2019)
based on the latest genome reference Sscrofa 11.1 assembly (http://
useast.ensembl.org/Sus_scrofa/Info/Index). Gene Ontology (GO)
(Ashburner et al., 2000) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa and Goto, 2000) enrichment analyses
for candidate genes were carried out using the DAVID platform
(Huang et al., 2009).

3 Results and discussion

3.1 GWAS results summary

We first conducted GWAS studies for all traits to investigate the
genetic basis and biological mechanisms associated with heritable
CR indicators [heritability estimates ranging from 0.084 ± 0.037 to
0.291 ± 0.047 (Wen et al., 2024)]. The traits evaluated were
LnVar(Ave), Autocor(Ave), Skew(Ave), LnVar(Med),
Autocor(Med), Skew(Med), MaxTv, HSD, Nor_avevar, Nor_
medvar, HSUA, and HSUB. The genomic inflation factors ranged
from 0.95 to 1.2 for all indicators, showing small inflation of P-values
for the estimated SNP effects (Price et al., 2010). Lambda values and
Q-Q plots for each CR trait are shown in Figure 1.

Thirty-one SNPs located on nine Sus scrofa chromosomes (SSC)
that reached at least the suggestive significance level were detected
for nine CR indicators and presented in Table 1. Four, one, one, 13,
one, four, one, five, one SNP at the suggestive threshold was detected
for LnVar(Ave), Autocor (Ave), Skew (Ave), LnVar (Med), Nor_
medvar, Nor_avevar, HSUA, HSUB, and HSD, respectively. Among
these SNPs, one SNP located on SSC15:135,366,143 bp, one SNP on
SSC6:16,449,770 bp, one SNP on SSC6:16,323,291 bp, and three
SNPs on SSC2:88,327,932 bp and 88,631,882 bp and SSC3:
18,088,863 bp, were identified as significant at the chromosome-
wise level threshold for four CR indicators: Autocor (Ave),
LnVar(Med), HSUB, and Nor_avevar, respectively. Notably, only
one SNP (SSC9: 15,692,376 bp) for HSD met the most stringent
significance thresholds (Table 1). No significant associations were
found for MaxTv, Autocor (Med), and Skew (Med), and this may be
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lack of power. The small number of suggestive SNPs for each
indicator in our study indicates that the evaluated CR indicators
are highly polygenic, with many genomic regions of small effects
located throughout the different chromosomes. Most HS or heat
tolerance related traits in livestock are polygenic (Macciotta et al.,
2017; Tiezzi et al., 2020; Cheruiyot et al., 2021), with fewmajor genes
identified. Larger sample sizes could be beneficial for identifying
these QTLs with smaller effects. These findings are in agreement
with our previous research (Freitas et al., 2023; Wen et al., 2023).

Four common SNPs were identified to be associated with more
than one CR indicator. The SNPs are located on SSC6:16,449,770 bp
and SSC6:16,435,748 bp [HSUB, LnVar(Ave), and LnVar(Med)],

SSC7:39,254,889 bp [LnVar(Ave) and LnVar(Med)], and SSC9:
15,692,376 (HSUB and HSD). The CR indicators created based
on similar metrics are highly correlated at the genetic level, such
as LnVar(Ave) and LnVar(Med), or HSUA and HSUB (Wen et al.,
2024). Interestingly, the SNPs identified for these correlated
indicators are not distributed at similar genomic regions. There
are several reasons for that: first, as previously mentioned, these
indicators are highly polygenic, and we did not find any major gene
control in the CR indicators; Second, the candidate SNPs identified
by each indicator are in linkage disequilibrium with their causal
variants, explaining why overlapping SNPs are still observed across
different indicators.

FIGURE 1
Quantile-quantile plots (QQ-plot) and lambda values for the climatic resilience indicators evaluated1. 1Indicators: LnVar(Ave), log-transformed
variance of the deviations between each observation and the average values from moving windows that contains six continuous observations with 10-
mins interval in between; Autocor (Ave): Lag-1 autocorrelation of the deviations between the average values from moving windows that contains six
continuous observations with 10-mins interval in between; Skew (Ave): skewness of the deviations between each observation and the average
values from moving windows that contains six continuous observations with 10-mins interval in between; LnVar(Med): log-transformed variance of the
deviations between themedian values frommoving windows that contains six continuous observations with 10-mins interval in between; Autocor (Med):
Lag-1 autocorrelation of the deviations between the median values from moving windows that contains six continuous observations with 10-mins
interval in between; Skew (Med): skewness of the deviations between each observation and the median values from moving windows that contains six
continuous observations with 10-mins interval in between; Nor_avevar: normalized average TV multiplies the normalized TV variance; Nor_medvar:
normalized median TV multiplies the normalized TV variance; HSUA: sum of TV values above the HS threshold during the whole data collection period;
HSUB: sum of TV values below the HS threshold during the whole data collection period; HSD: The length of time during which the body temperature
remained above the HS threshold value for each collection day; MaxTv: The highest TV of each measurement day.
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3.2 Candidate genes and functional
genomic analyses

A total of 442 positional genes harboring or adjacent to the
significant SNPs were mapped, including 212 protein-coding genes,
225 non-coding RNAs, and 5 pseudogenes (Supplementary
Additional File S1: Supplementary Table S1). Specifically, 22,
three, one, 30, one, 91, 45, 18, and one protein-coding genes
were identified to be associated with LnVar(Ave), Autocor(Ave),

Skew(Ave), LnVar(Med), Nor_medvar, Nor_avevar, HSUA, HSUB,
and HSD, respectively. For LnVar(Ave), the genomic regions
around four significant SNPs (SSC2: 100,913,257 bp; SSC3:
141,963,034 bp; SSC6: 16,449,770 bp; SSC7: 39,254,889 bp)
harbors Heat Shock Protein 90 Alpha Family Class B Member 1
(HSP90AB1), Hyperpolarization Activated Cyclic Nucleotide Gated
Potassium Channel 1 (HCN1), SPT3 Homolog SAGA And STAGA
Complex Component (SUPT3H), and Transmembrane Protein 63B
(TMEM63B) genes.HSP90AB1 functions as a chaperone and plays a

TABLE 1 Candidate SNPs that reached the suggestive significance level for CR indicators.

SSCa Position Freqb P-value Indicator Bonferroni Chromosome-wise level Suggestive level

2 8,775,302 0.47 1.08 × 10−5 HSUA Significant

6 16,323,291 0.28 2.04 × 10−6 HSUB Significant Significant

6 16,390,288 0.27 2.93 × 10−6 HSUB Significant

6 16,449,770 0.14 1.52 × 10−5 HSUB Significant

9 15,692,376 0.18 1.52 × 10−5 HSUB Significant

9 72,539,075 0.42 1.78 × 10−5 HSUB Significant

9 15,692,376 0.18 1.81 × 10−7 HSD Significant Significant Significant

1 57,981,015 0.47 5.31 × 10−5 Nor_medvar Significant

3 18,088,863 0.38 1.86 × 10−6 Nor_avevar Significant Significant

2 88,631,882 0.40 7.03 × 10−6 Nor_avevar Significant Significant

2 88,327,932 0.19 8.48 × 10−6 Nor_avevar Significant Significant

2 25,247,173 0.14 2.15 × 10−5 Nor_avevar Significant

7 39,254,889 0.26 5.48 × 10−6 LnVar(Ave) Significant

6 16,449,770 0.14 9.97 × 10−6 LnVar(Ave) Significant

2 100,913,257 0.12 1.65 × 10−5 LnVar(Ave) Significant

3 141,963,034 0.15 1.68 × 10−5 LnVar(Ave) Significant

15 135,366,143 0.14 1.75 × 10−6 Autocor (Ave) Significant Significant

13 186,420,881 0.41 0.000718 Skew (Ave) Significant

6 16,449,770 0.14 3.54 × 10−6 LnVar(Med) Significant Significant

7 39,254,889 0.26 1.12 × 10−5 LnVar(Med) Significant

16 29,568,619 0.28 1.45 × 10−5 LnVar(Med) Significant

16 29,287,377 0.28 1.60 × 10−5 LnVar(Med) Significant

2 91,661,760 0.13 1.65 × 10−5 LnVar(Med) Significant

6 16,435,748 0.16 1.77 × 10−5 LnVar(Med) Significant

16 29,837,397 0.27 1.77 × 10−5 LnVar(Med) Significant

16 29,102,419 0.28 1.78 × 10−5 LnVar(Med) Significant

16 28,947,227 0.27 1.78 × 10−5 LnVar(Med) Significant

16 29,107,832 0.28 1.90 × 10−5 LnVar(Med) Significant

16 29,645,155 0.28 2.01 × 10−5 LnVar(Med) Significant

16 29,513,888 0.28 2.07 × 10−5 LnVar(Med) Significant

16 29,092,396 0.28 2.13 × 10−5 LnVar(Med) Significant

aSSC, Sus scrofa chromosome.
bFreq, allele frequency.
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role in protein transport and degradation. Its expression level
decreased significantly in response to HS in pigs (Seibert et al.,
2019). Besides, one SNP (SNP g.4338T > C) within HSP90AB1 was
found to be significantly related to heat tolerance in Thai indigenous
cattle (Charoensook et al., 2012). HCN1, SUPT3H, and TMEM63B
were found to be associated with cellular and oxidative stress
response in salmon (Beemelmanns et al., 2021), milk production
in Holstein cattle (Liu et al., 2021), and residual feed intake in
purebred French Large White pigs (Messad et al., 2021),
respectively.

One SNP, located at 135,366,143 bp on SSC15, was associated
with Autocor (Ave) at chromosome-wise and suggestive significance
level. The genomic region around this SNP contains SH3 Domain
Binding Protein 4 (SH3BP4) and ArfGAP with GTPase Domain,
Ankyrin Repeat and PHDomain 1 (AGAP1). SH3BP4was identified
in a region with copy number variation in South African Nguni
cattle, which are recognized for their ability to sustain harsh
environmental conditions and resistance to parasites and disease
(Wang et al., 2015). There were a few peaks with significant SNPs for
LnVar(Med) on SSC2: 91,661,760 bp, SSC6: 16.435–16.449 Mb,
SSC7: 39,254,889 bp, and between 28.947 and 29.837 Mb on SSC16.
The up and downstream of the significant SNPs covered
15 candidate genes that were enriched for LnVar(Ave) before due
to the overlapping SNPs. Strong associations were found on
SSC2 and SSC3, with Low-Density Lipoprotein Receptor Class A
Domain Containing 3 (LDLRAD3), solute carrier family 1 member 2
(SLC1A2), Dimethylglycine Dehydrogenase (DMGDH), Betaine-
Homocysteine S-Methyltransferase 2 (BHMT2), and Homer
Scaffold Protein 1 (HOMER1), harboring the most significant
SNPs for Nor_avevar. LDLRAD3, known to encode a low-density
lipoprotein (LDL) receptor and associated with decreased levels of
very low-density lipoprotein receptor, has been linked to HS in
chickens (Jastrebski et al., 2017; Wang et al., 2020). Further research
in mice has revealed that the very low-density lipoprotein receptor
plays a crucial role in regulating thermogenesis in brown adipocytes,
suggesting its importance in body temperature regulation (Shin
et al., 2022). It has been demonstrated that genes encoding the very
low-density lipoprotein receptor are crucial for both lipid
metabolism and the response to temperature stress (Álvarez
et al., 2020). SLC1A2 was significantly downregulated in the
mouse pituitary gland under hot conditions and was related to
stress response (Memon et al., 2016). DMGDH was considered a
candidate gene for heat tolerance, defined as the rate of decline
(slope) in milk, fat, and protein yield in swamp buffalos.
Furthermore, DMGDH may be involved in alleviating oxidative
stress in heat-stressed cattle (Cheruiyot et al., 2021). BHMT2 is
involved in regulating homocysteine metabolism with beneficial
effects in heat-stressed animals through its activity against
osmotic stress and protection of protein denaturation (Cottrell
et al., 2015; Del Vesco et al., 2015). Besides, BHMT2 has been
identified as a positively selected candidate gene affecting
thermotolerance in African indigenous cattle (Ankole, Ogaden,
N’Dama, Boran, and Kenana cattle), using XP-CLR and XP-EHH
population statistics (Taye et al., 2017). HOMER1 plays an
important role in behavior, particularly concerning adaptation to
stress and fear responses (Kamprath et al., 2009). For Skew(Ave) and
Nor_medvar, only one protein-coding gene was identified for each
trait–ENSSSCG00000042482 and ENSSSCG00000052428,

respectively. However, no information regarding their functions
was found for these two genes.

The genes Solute Carrier Family 3 Member 2 (SLC3A2),
Syntaxin 5 (STX5), RNA Polymerase II Subunit G (POLR2G),
and Glucosidase II Alpha Subunit (GANAB) were significantly
enriched for HSUA. Previous research observed downregulated
SLC3A2 gene expression in bovine mammary epithelial cells
under HS conditions (Ma et al., 2018), and this might be an
adaptive response to meet increased amino acid requirements
during HS (Rhoads et al., 2011). A frameshift mutation in STX5
has been considered a potential causal mutation for cattle’s heat
tolerance, and it also significantly impacts milk production
(Cheruiyot et al., 2021). Besides, STX5 was linked to tick
resistance in Belmont Red cattle (Tabor et al., 2017) and
Tunisian indigenous sheep (Ahbara et al., 2022). Tick burdens
might correlate with thermal comfort (Rocha et al., 2019), as
traits such as skin thickness, hair density, and skin secretions
influence both tick resistance and heat regulation (Shyma et al.,
2015). GANAB was found to be downregulated in jejunum mucosa
of German Holstein cows under HS conditions, and this is related to
responses to incorrect protein folding and stabilization processes
(Koch et al., 2021). For HSUB, Cytochrome P450 Family
51 Subfamily A Member 1 (CYP51A1), and Cyclin Dependent
Kinase 6 (CDK6) were detected in the SSC9. CYP51A1, a gene
involved in cholesterol and sterol metabolism, was observed to be
upregulated in the plasma of laying hens in response to HS (Zhu
et al., 2019). CDK6 was significantly downregulated by HS in duck
granulosa cells (Yang et al., 2021).

Only one protein-coding gene (ENSSSCG00000034240) was
annotated for the only significant SNP of HSD. The limited
overlap between candidate genes identified for various CR
indicators in this study and candidate genes from GWAS of
resilience for HS is not surprising. First, the traits we used to
define resilience, such as HSD and LnVar(Med), differ from
those in many other studies (Cheruiyot et al., 2021; Tsartsianidou
et al., 2021). Additionally, automatically measured TV enables us to
get more accurate CR indicator values. Given the complexity of CR
that spans a broad spectrum of adaptive responses, from behavioral
to physiological to cellular, it is likely that varying QTLs are captured
based on the indicators employed in GWAS studies.

To investigate the biological functions of these candidate genes
further, we performed GO and KEGG analysis using DAVID, as
shown in Tables 2, 3. Two, one, and one significant KEGG pathways
were observed for Lnvar(Med), Lnvar(Ave), and Nor_avevar,
respectively. These pathways are related to stress response [e.g.,
chemical carcinogenesis - receptor activation (Trush and Kensler,
1991)], immune and inflammatory responses [e.g., Th17 cell
differentiation (Guo et al., 2018)], cell survival, proliferation, and
migration [e.g., PI3K/Akt signaling pathway (Zhang et al., 2016;
Yiming et al., 2021)], and nervous system (e.g., Glutamatergic
synapse) (Niciu et al., 2012). Heat stress also has been
documented to cause a change in animals’ adaptive immune
function, transitioning from the typical cell-mediated to humoral
immunity (Niciu et al., 2012). This shift can subsequently result in a
weakened immune system, making the animal more susceptible to
numerous pathogens (Calapre et al., 2013a). Heat stress has been
shown to activate heat shock proteins (HSPs), which can promote
cell proliferation and survival (Srikanth et al., 2017). Research found
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that HSPs are overexpressed in various cancers and have been
implicated in carcinogenesis (Ciocca and Calderwood, 2005).
Heat stress has also been documented to cause a change in
animals’ adaptive immune function, transitioning from the
typical cell-mediated to humoral immunity (Sophia et al., 2016).
This shift can subsequently result in a weakened immune system,

making the animal more susceptible to numerous pathogens
(Vandana et al., 2019). Additionally, HS can lead to oxidative
stress in various livestock, such as dairy cattle (Bernabucci et al.,
2002), pigs (Liu et al., 2016), sheep (Chauhan et al., 2016), and
poultry (Shakeri et al., 2019). This heightens their vulnerability to
numerous pathogens and production-related illnesses.

TABLE 2 Significantly enriched (P < 0.05) Gene Ontology (GO) terms identified for CR indicators.

Indicatora Categoryb Term P-value

LnVar(Ave) BP GO:0031334, positive regulation of protein complex assembly 0.03

BP GO:0033138, positive regulation of peptidyl-serine phosphorylation 0.07

LnVar(Med) BP GO:0007155, cell adhesion 0.00

BP GO:0050918, positive chemotaxis 0.01

BP GO:0050930, induction of positive chemotaxis 0.01

BP GO:0006310, DNA recombination 0.02

BP GO:0006302, double-strand break repair 0.02

BP GO:0050731, positive regulation of peptidyl-tyrosine phosphorylation 0.02

BP GO:0001501, skeletal system development 0.03

BP GO:0007417, central nervous system development 0.03

BP GO:0033138, positive regulation of peptidyl-serine phosphorylation 0.04

MF GO:0005540, hyaluronic acid binding 0.00

MF GO:0042056, chemoattractant activity 0.02

MF GO:0005509, calcium ion binding 0.03

CC GO:0005576, extracellular region 0.06

Nor_avevar BP GO:0009086, methionine biosynthetic process 0.01

BP GO:0031401, positive regulation of protein modification process 0.02

BP GO:0051403, stress-activated MAPK cascade 0.02

BP GO:0070613, regulation of protein processing 0.03

BP GO:0010762, regulation of fibroblast migration 0.03

BP GO:0006357, regulation of transcription from RNA polymerase II promoter 0.03

MF GO:0047150, betaine-homocysteine S-methyltransferase activity 0.01

CC GO:0005829, cytosol 0.00

CC GO:0005769, early endosome 0.02

CC GO:0008021, synaptic vesicle 0.03

CC GO:0098978, glutamatergic synapse 0.04

HSUA BP GO:0015711, organic anion transport 0.00

BP GO:0015732, prostaglandin transport 0.01

BP GO:0005975, carbohydrate metabolic process 0.02

MF GO:0022857, transmembrane transporter activity 0.00

CC GO:0016323, basolateral plasma membrane 0.02

CC GO:0005654, nucleoplasm 0.03

aIndicators: LnVar(Ave): log-transformed variance of the deviations between each observation and the average values frommoving windows that contains six continuous observations with 10-

mins interval in between; LnVar(Med), log-transformed variance of the deviations between the median values from moving windows that contains six continuous observations with 10-mins

interval in between; Nor_avevar, normalized average TV, multiplies the normalized TV, variance; HSUA: sum of Tv values above the HS, threshold during the whole data collection period.
bCategory: BP, biological process; MF, molecular function; CC, cellular component.
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In addition, studies have shown that the immune responses in
organisms are extremely sensitive to DNA damage that is caused by
stressors (Nakad and Schumacher, 2016). The PI3K/AKT signaling
pathway is involved in intracellular responses by reactive oxygen
species (ROS) and inflammation caused by DNA fragmentation
(Datta et al., 2023). Heat stress-induced testicular damage could be
alleviated with melatonin, a potent antioxidant, in dairy goats by
inhibiting the PI3K/AKT signaling pathway (Liu et al., 2022).
Previous research has indicated that thermal stress leads to a
reduction in glutamatergic synapse transmission (Popoli et al.,
2012). Besides, glutamatergic synapses have been demonstrated
to play roles in HSPs synthesis. This synthesis aids in repairing
stress-induced synaptic protein damage and bolsters
neuroprotective mechanisms (Kiang and Tsokos, 1998). Heat
tolerance, defined as the rate of decline in milk production (slope
traits) in response to a rising temperature–humidity index, is
significantly associated with the enrichment of the glutamatergic
synapse pathway in Holstein cows (Cheruiyot et al., 2021).

A total of 13, two, 17, eight, and one significant GO terms were
enriched for Lnvar(Med), Lnvar(Ave), Nor_avevar, HSUA, and HSUB,
respectively. The functions of enriched GO terms are similar to those of
KEGG pathways. These GO terms are related to DNA damage and
repair (e.g., DNA recombination, double-strand break repair), stress
responses (e.g., stress-activated MAPK cascade), protein modifications
(e.g., positive regulation of peptidyl-serine phosphorylation, positive
regulation of peptidyl-tyrosine phosphorylation, and positive regulation
of protein complex assembly), nervous system (e.g., central nervous
system development, glutamatergic synapse, and synaptic vesicle), and
cell structure and mechanics. Various types of DNA damage, including
the induction of double-strand breaks inDNA (Ning et al., 2021; Habibi
et al., 2022), are directly affected by HS. DNA recombination is one
mechanism cells use to repair certain types of DNA damage. Previous
research showed that the upregulated genes are mainly involved in
DNAor protein damage/recombination, cell cycle processes, biogenesis,
and stress and immune responses using transcriptome analysis in heat-
stressed finishing pigs (Ma et al., 2019).

A substantial number of phosphorylation changes are induced
by severe heat stress and occur with kinetics similar to the inhibition
of protein synthesis (Duncan and Hershey, 1989). This has been
evidenced by the detection of phosphorylation-related GO terms
and functions in various species under HS conditions, including
buffalos (Muthukumar et al., 2014), broilers (Kim et al., 2022), and
swine (Yu et al., 2010; Cross et al., 2018). Notably, phosphorylation
is crucial for the transcriptional activity of the heat shock
transcription factor 1 and for triggering the heat shock response
(Holmberg et al., 2001). Moreover, HS has been shown to activate

MAPK phosphorylation in different cell types, such as intestinal
cells, lung fibroblasts, and chondrocytes (Liu et al., 2019), and it has
also been associated with cell and tissue injury (Banerjee Mustafi
et al., 2009).

The genomic regions around candidate SNPs are shown to be
linked with QTL regions associated with different traits. The major
fraction of QTL annotated in this study belonged to the “Meat and
Carcass” type, which accounts for 43.75% of the total QTL, and
average daily gain and bone weight were the most traits that we
enriched for Meat and Carcass QTL. Meanwhile, the genomic
regions identified overlapped with several QTLs previously
related to production, reproduction, health, and exterior traits
(conformation and appearance), as shown in Table 4.

This is the first GWAS for CR indicators derived from
automatically measured TV. These significant SNPs hold great
potential for enhancing genomic predictions for CR in pigs, by
incorporating more SNPs located in the regions of these significant
SNPs into existing commercial SNP panels to improve the
prediction accuracy. Small sample size may limited the power of
analysis, this analysis should be conducted in a larger population.
Besides, different weights for these important SNPs or genes could
be given through biology-driven genomic prediction methods [e.g.,
different subsets of SNPs were used for genomic predictions (Li
et al., 2018)]. However, even though using different significance
thresholds for GWAS, identifying the causal mutations for these CR
indicators remains challenging due to the linkage disequilibrium. It
would be better to use whole genome sequencing data to fully
capture LD patterns, thereby achieving higher GWAS power
compared to array-based GWAS (Pengelly et al., 2015). Thus,
future research efforts should prioritize additional biological
validations. In our study, we used a crossbred population. Similar
analyses should be conducted in other populations with different
genetic backgrounds to determine if the CR indicators are
universally applicable.

4 Conclusion

The study focuses on sows and explores various CR indicators to
better understand the genetic factors and biological mechanisms
behind climatic resilience. We identified multiple genetic regions
associated with different CR indicators, revealing that CR is a highly
polygenic trait with small effect sizes distributed across the genome.
Furthermore, many heat tolerance or HS related genes in our study,
such as HSP90AB1, DMGDH, and HOMER1, have been identified.
Additionally, the functional analyses showed the complexity of CR,

TABLE 3 Significantly enriched (P < 0.05) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways identified for CR indicators.

Indicatora Term P-Value

LnVar(Ave) ssc04659, Th17 cell differentiation 0.02

LnVar(Med) ssc05207, Chemical carcinogenesis - receptor activation 0.02

ssc04151, PI3K-Akt signaling pathway 0.03

Nor_avevar ssc04724, Glutamatergic synapse 0.04

aIndicators: LnVar (Ave), log-transformed variance of the deviations between each observation and the average values frommoving windows that contains six continuous observations with 10-

mins interval in between; LnVar (Med), log-transformed variance of the deviations between the median values from moving windows that contains six continuous observations with 10-mins

interval in between; Nor_avevar, normalized average TV, multiplies the normalized TV, variance.
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involving various adaptive responses, from behavioral to cellular.
These findings highlight the possibility of selecting more
heat-tolerant individuals based on the identified SNP for CR
indicators.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: The phenotypic and genomic data used in

TABLE 4 Significantly enriched (P < 0.05) QTL identified for CR indicators.

Indicatora SSCb QTL typec Trait

LnVar(Ave) 6 Meat_and_Carcass Bone weight

6 Exterior Maternal infanticide

7 Production Body weight

7 Production Average daily gain

7 Production Average daily gain

7 Meat_and_Carcass Skin weight

Skew (Ave) 13 Meat_and_Carcass Acid flavor

HSUA 2 Meat_and_Carcass Muscle conductivity

2 Meat_and_Carcass Average chain length

2 Reproduction Number of stillborn

2 Reproduction uterine horn weight

HSUB 6 Meat_and_Carcass Bone weight

6 Exterior Maternal infanticide

6 Meat_and_Carcass Bone weight

6 Exterior Maternal infanticide

9 Meat_and_Carcass Carcass length

Nor_avevar 2 Health Insulin-like growth factor 1 level

2 Health Hemolytic complement activity (classical pathway)

2 Meat_and_Carcass Shear force

2 Meat_and_Carcass tenderness score

2 Reproduction Teat number

3 Meat_and_Carcass Fat androstenone level

LnVar(Med) 2 Meat_and_Carcass Shear force

6 Meat_and_Carcass Bone weight

6 Exterior Maternal infanticide

7 Production Body weight

7 Production Average daily gain

7 Production Average daily gain

7 Meat_and_Carcass Skin weight

16 Reproduction Teat number

16 Exterior Lumbar vertebra number

16 Exterior Lumbar vertebra number

aIndicators: LnVar(Ave), log-transformed variance of the deviations between each observation and the average values frommoving windows that contains six continuous observations with 10-

mins interval in between; Skew (Ave), skewness of the deviations between each observation and the average values frommoving windows that contains six continuous observations with 10-mins

interval in between; LnVar(Med), log-transformed variance of the deviations between the median values frommoving windows that contains six continuous observations with 10-mins interval

in between; Nor_avevar, normalized average TV, multiplies the normalized TV, variance; HSUA: sum of Tv values above the HS, threshold during the whole data collection period; HSUB: sum of

Tv values below the HS, threshold during the whole data collection period.
bSSC, sus scrofa chromosome.
cQTL, type: main type of QTL, trait group previously identified.
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