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Background: In a randomized clinical controlled trial (PA.3) conducted by the
Canadian Cancer Trials Group, the effects of gemcitabine combined with the
targeted drug erlotinib (GEM-E) versus gemcitabine alone (GEM) on patients with
unresectable, locally advanced, or metastatic pancreatic cancer were studied.
This trial statistically demonstrated that the GEM-E combination therapy
moderately improves overall survival (OS) of patients. However, real-world
analysis suggested that GEM-E for pancreatic cancer was not more effective
than GEM. The heterogeneity in outcomes or treatment effect exist. Thus, we
tried to find predictive biomarkers to identifying the heterogeneous patients.

Methods: Of the 569 eligible patients, 480 patients had plasma samples.
Univariate and multivariate Cox proportional hazards model were used to
identify baseline characteristics related to OS, and a risk adjusted
Exponentially Weighted Moving Average (EWMA) control chart based on a
weighted score test from the Cox model was constructed to monitor patients’
survival risk. Maximally selected rank statistics were constructed to identifying the
predictive biomarkers, in addition, a risk adjusted control chart based on a
weighted score test from the Cox model was constructed to validating the
predictive biomarkers, discover the patients who sensitive to the GEM-E or GEM.

Results: Three baseline characteristics (ECOG performance status, extent of
disease, and pain intensity) were identified related to prognosis. A risk-
adjusted EWMA control chart was constructed and showed that GEM-E did
improve OS in a few patients. Three biomarkers (BMP2, CXCL6, and HER2)
were identified as predictive biomarkers based on maximum selected rank
test, and using the risk-adjusted EWMA control chart to validate the reality
and discover some patients who are sensitive to the GEM-E therapy.

Conclusion: In reality, GEM-E has not shown a significant advantage over GEM in
the treatment of pancreatic cancer. However, we discovered some patients who
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are sensitive to the GEM-E therapy based on the predictive biomarkers, which
suggest that the predictive biomarkers provide ideas for personalized medicine in
pancreatic cancer.

KEYWORDS

pancreatic cancer, COX proportional hazards regression model, score test, risk-adjusted
control chart, predictive biomarkers

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a common
gastrointestinal malignancy with a 5-year survival rate of less
than 10%. Locally advanced and metastatic PDAC accounts for
70%–80% of cases, with only about 10% of patients being eligible
for surgical resection (Kung and Yu, 2023). Even with surgical
treatment, patients still face high risks of recurrence and
metastasis, and these recurrent and advanced patients typically
respond poorly to treatment (Neoptolemos et al., 2004). Despite
advancements in surgical techniques, the introduction of new
drugs, and optimization of comprehensive treatment plans over
the past decade, the prognosis for PDAC patients has not
significantly improved.

In 1997, gemcitabine was approved by the U.S. Food and Drug
Administration for the treatment of PDAC. It not only directly
affects tumor cells by inhibiting their growth and division but also
alters the tumor microenvironment, making it more sensitive to
immunotherapy (Hochster et al., 2006; Burris 3rd et al., 2023).
Subsequently, eight phase III trials involving new cytotoxic drugs
(Berlin et al., 2002; Rocha Lima et al., 2004; Richards et al., 2004;
Moore et al., 2007) or biological agents (Bramhall et al., 2002; Van
Cutsem et al., 2004) combined with gemcitabine showed no
significant improvement in survival compared to gemcitabine
alone. In pancreatic tumors, the epidermal growth factor
receptor type 1 (EGFR) is often overexpressed, meaning these
signaling pathways are excessively activated, leading to the
excessive growth and spread of tumor cells (Fja€llskog et al.,
2003; Tobita et al., 2003). Erlotinib is an EGFR tyrosine kinase
inhibitor that inhibits tumor cell proliferation and survival by
blocking the EGFR signaling pathway. The EGFR signaling
pathway is also associated with immune suppression in the
tumor microenvironment, and blocking this pathway may
reduce tumor immune evasion (Ng et al., 2002). In a double-
blind, international phase III trial (PA.3) conducted by the
Canadian Cancer Trials Group, combination of gemcitabine
with erlotinib (GEM-E) in treating patients with unresectable,
locally advanced, or metastatic PDAC was studied and compared
with GEM. The results showed a small increase in the median
survival patients treated by GEM-E (6.24 months versus
5.91 months when treated by GEM; Moore et al., 2007).
Although this increase was statistically significant and GEM-E
was also approved by the U.S. Food and Drug Administration for
the treatment of advanced pancreatic cancer in patients who have
not received previous chemotherapy based on these results (Kelley
and Ko, 2008), it did not significantly outperform monotherapy in
terms of objective response rates and was accompanied by mild to
moderate side effects. Furthermore, real-world analysis suggested
that GEM-E for pancreatic cancer is not more effective than GEM,

and it does not provide reasonable cost-effectiveness over GEM
(Shin et al., 2016).

Predictive biomarkers help optimize treatment decisions by
providing information on the likelihood of response to a given
chemotherapy (Ballman, 2015). MSI can serve as a predictive
biomarker for fluorouracil treatment in colorectal cancer patients
(Ribic et al., 2003). EGFR kinase domain mutations can serve as a
predictive biomarker for tyrosine kinase inhibitor treatment in non-
small cell lung cancer patients (Riely et al., 2006). The analysis of the
HER2 gene amplification is the basic genetic test used in cancer
diagnostics for the evaluation of the eligibility of breast cancer
patients for treatment with trastuzumab or lapatinib (Mitra et al.,
2009). Molecular characterization of CTCs can help predict therapy
response. For example, Reinholz et al. showed that decreased
mammaglobin 1 (MGB1) mRNA levels in CTCs from metastatic
breast cancer patients may predict therapy response (Reinholz et al.,
2011). The assessment of the mutation status in codons 12 and 13 of
the KRAS gene is a standard predictive biomarker in the evaluation
of the eligibility of patients with advanced CRC for targeted therapy
using monoclonal antibodies such as cetuximab or panitumumab
(Lewandowska et al., 2012). Significant correlations between high
TMB and response to immune checkpoint inhibitors have been
reported in several cancer types, including urothelial carcinoma,
small cell lung cancer, melanoma, and HPV-negative, according to
studies (Bai et al., 2020). BRCA1/2 mutations to guide treatment
with olaparib in breast cancer (Gennari et al., 2021). For a more
detailed review of predictive biomarkers, please refer to the study of
Cooper and Tan (2024).

Identifying predictive biomarkers related to PDAC is crucial.
Previous studies have validated some biomarkers as being associated
with prognosis, which can help predict the PDAC progression and
the patient survival. CA19-9 is currently the most commonly used
serum marker for PDAC, with high levels of CA19-9 usually
associated with poorer prognosis, although it may be falsely
elevated in patients with obstructive liver disease or pancreatitis,
limiting its specificity and sensitivity (Steinberg, 1990). CEA is
another commonly used tumor marker, although its sensitivity
and specificity are not as high as CA19-9, high levels of CEA are
also associated with poorer prognosis (Kato et al., 2022). In addition,
gene mutations or deletions such as KRAS, TP53, and SMAD4 are
common in PDAC and are associated with poorer prognosis and
higher risk of metastasis (Stefanoudakis et al., 2024). Changes in the
expression levels of certain microRNAs (miRs) are associated with
PDAC prognosis. For example, high levels of miR-21 and miR-155
are usually associated with poorer prognosis (Barrera et al., 2023).
These biomarkers influence the prognosis of PDAC by regulating
tumor growth, invasion, and metastasis. Predictive biomarkers may
modify the effect of, or have an interaction with a specific treatment,
is used to identify the patients with different effects for this
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treatment. The identification of predictive biomarkers has been
an active area of clinical research since it can provide guidance on
the best treatment for patients. Shultz et al. (2016) used a
multivariable Cox model with an additional interaction term
between the treatment (GEM-E vs. GEM) and the binary
biomarker expression level (whether it was greater than the
median) to find the predictive biomarker. However, the
method of splitting the continuous biomarker into the binary
biomarker by the median limited them to finding only one
predictive biomarker. Hothorn and Zeileis (2008) proposed a
predictive biomarker search method to find the optimal cut-point
by maximizing the difference between the survival curves of the
two groups (whether it was greater than the cut-point), which is
employed to search for a high-risk group of rectal cancer patients
treated with a neoadjuvant chemoradiotherapy. However, the
underlying assumption of the above approach is that treatment
effect was invariant for patients in the high-risk or low-risk
subgroup, but due to the complexity of the disease, this
assumption does not necessarily hold true and there were
unobservable factors that may lead to inconsistent.

Statistical process control methods have become increasingly
popular in survival analysis due to their advantages in detecting
unobserved changes, the purpose of control charts is to promptly
detect abnormal changes in process parameters and trigger alarm
signals for appropriate action. The most commonly used control
chart is the EWMA control chart, which smooths data fluctuations
by assigning more weight to recent data points, thereby highlighting
potential changes with the small and medium-scale deviations
(Lucas and Saccucci, 1990). The control chart operates in two
phases. In Phase I, a set of historical observations is used to
estimate the baseline hazard, and regression parameters (Jones-
Farmer et al., 2014), yielding the chart statistic. Generally, control
limits are determined using a given expected false alarm rate. In
Phase II, as new observations are collected, the chart statistic is
calculated. If the chart statistic is above the upper control limit, the
risk of survival increases significantly, and if the chart statistic is
below the lower control limit, the risk of survival decreases
significantly. If the chart statistic exceeds the control limits, an
out-of-control alarm signal is triggered; otherwise, new data
continue to be accumulated. To assess patient survival risk,
Woodall et al. (2015) adopted a risk-adjusted model
incorporating surgical factors to account for heterogeneity at the
patient level, and then used chart statistics to monitor adjusted
survival risks. Liu et al. (2018) proposed an online weighted score
test for binary survival outcomes to detect changes in the mean and
variance of postoperative risk. Lai et al. (2021) proposed a risk-
adjusted control chart based on a weighted score test for the Cox
model to monitor changes in average surgical risk and the existence
of its variance, which could be of interest in practical surgical
monitoring programs. Therefore, Statistical process control
methods help us validate the reality of the predictive biomarker
and discover some patients who are sensitive to the GEM-E therapy.

In this study, we utilized a two-sided risk-adjusted control chart
to monitor survival risk in PDAC patients after receive GEM-E or
GEM therapy. Initially, using the pre-processed PA.3 dataset,
univariate and multivariate Cox proportional hazards regression
models were employed to identify the baseline characteristics
associated with OS. Subsequently, a risk-adjusted control chart

based on the weighted score test was constructed to monitor
patient survival risk online (Lai et al., 2021) and compare the
efficacy of the two treatment regimens (GEM-E and GEM). We
identified the predictive biomarkers based on maximizing the rank
statistics (Lausen and Schumacher, 1992). Furthermore, A risk-
adjusted EWMA control chart based on a weighted score test from
the Cox model was constructed to validate the predictive
biomarkers, discover the patients who sensitive to the GEM-E or
GEM. The study could potentially unveil key predictive biomarkers
for personalized medicine of pancreatic cancer.

2 Materials and methods

2.1 Data source

The Canada Cancer Trials Group (CCTG) PA.3 is an
international double-blind phase III clinical trial in which
patients were randomized in a 1:1 ratio to receive gemcitabine
plus erlotinib or matching placebo after signing a written
informed consent form, with the primary endpoint being OS
(Moore et al., 2007). In a previous study, the levels of 35 key
proteins selected from global genetic analysis of pancreatic cancer
were quantified in the plasma of 20uL patients using proximity
ligation assays based on a standard protocol including quality
control for measurements (Fredriksson et al., 2007; Shultz et al.,
2016). Of the 569 eligible patients randomized, 480 had plasma
cases prior to treatment, age (years), sex (female vs. male), pain
intensity (a scale of 0–100), extent of disease (locally advanced vs.
distant metastases), as ECOG performance status (0 or 1) were
covariates included in the CCTG clinical database. 15 biomarkers
were included in the analysis of this paper from the
database (Table 1).

2.2 Statistical methods and analyses

2.2.1 Identification of baseline characteristics
significantly affecting patient OS

We removed samples with missing biomarkers as done by Shultz
et al. (2016). The final dataset consists of 480 cases, with 246 patients
treated with GEM and 234 patients treated with GEM-E. Data are
presented as the medians (Med) and interquartile ranges (IQR) for
continuous variables and as counts and proportions for categorical
variables. Baseline differences between the GEM-E and GEM groups
were assessed using the Mann-Whitney test (Wilcoxon Rank test)
for continuous variables and the exact Fisher test for categorical
variables. Univariate and multivariate Cox proportional hazards
regression models were employed to identify baseline characteristics
related to OS.

2.2.2 Risk-adjusted control chart based on a
weighted score test for monitoring survival risks
and comparing efficacy of GEM-E vs. GEM

Since the Cox model does not require any prior distributional
assumptions about the data and allows for non-parametric
estimation of the baseline hazard function, we used a Cox
regression model to adjust for individual patient heterogeneity.
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We use the Schoenfeld residual test to check whether the assumption
holds (Grambsch and Therneau, 1994), the result shown in
Supplementary Table S1 of the Supplementary Material A1, the
p-values were all larger than 0.05, indicating that the assumption of
the univariate and multivariate Cox proportional hazards regression
model holds. To account for the volatility of survival risk, we
incorporated random effects into the Cox regression model to
indirectly describe abnormal shifts in the survival risk function: a
random effects variance of zero indicates stable efficacy, while a
variance greater than zero indicates unstable efficacy. We used a
weighted score test statistic derived from homogeneity tests to
examine whether the variance of the random effects is
significantly zero (Liang, 1987). To effectively detect small to
moderate changes in survival risk, an EWMA control chart was
constructed using the above-mentioned score test statistic to
monitor changes and volatility in patient survival risk online
(RAES chart). The expected false alarm rate of the control chart
parameters determines the control limits (Ll, Lu) of the chart,
distinguishing between common cause variation and special cause
variation. In practical applications, the control limits (i.e., the
expected false alarm rate) can be adjusted according to specific
situations in order to meet different quality control requirements.
Given that the sample size of the test set (GEM-E) is 234, the
expected false alarm rate was set at 0.5%. This implies that, under
controlled conditions, one false alarm (Type I error) is anticipated
on average every 200 monitoring instances. This approach strikes a
balance between the false alarm rate (Type I error) and the missed
detection rate (Type II error) (Lai et al., 2021).

2.2.3 Identification of predictive biomarkers for
PDAC using maximum log-rank statistics

We used the “surv_cutpoint” function to select the optimal cut-
points for 15 biomarkers based on their expression levels, aiming to

maximize the differences between the survival curves of the two
groups (i.e., the cut-point that yields the maximum log-rank statistic;
Hothorn and Zeileis, 2008). This allowed us to stratify patients into
high-risk and low-risk groups, and for each biomarker, we tested its
effect in predicting for improved survival due to GEM-E using a
multivariable Cox model including an additional interaction term
between the treatment (GEM-E vs. GEM) and the binary biomarker
expression level (based on whether it was greater than the optimal
cut-points). The binary biomarker with a significant interaction
term with the treatment was the potentially predictive biomarker.

2.2.4 Monitoring patient survival risk using the
RAES chart to identify treatment-sensitive
population types

Based on the biomarkers identified in the previous section that
could predict the efficacy of specific treatment regimens, we used the
RAES chart to monitor the survival risk of PDAC patients. The
RAES chart calculated patient survival risk based on cumulative
hazard, using PDAC patients treated with GEM therapy as the
training set and those treated with GEM-E therapy as the test set. We
would analyze the survival risk of patients in both high and low
expression cases of these biomarkers. First, we would calculate the
baseline cumulative hazard for patients using the training set data.
Then, using the test set data, we would calculate the cumulative risk
for each case based on patients’ survival outcomes, survival times,
and significant influencing factors. Subsequently, we would use the
EWMAmethod to calculate the adjusted survival risk value for each
case and plot a line graph showing changes in risk values along the
case sequence. The chart would also include horizontal reference
lines to visually compare patient risk levels, and indexes would be
used to identify cases with survival risk values exceeding a given
threshold, thereby identifying populations sensitive to treatment for
further analysis of their characteristics.

TABLE 1 Fifteen biomarkers included in the analysis.

Abbreviation Full name Relevant function

CXCL6 Chemokine (C-X-C motif) ligand 6 Promotes chemotaxis of immune cells

CEA Carcinoembryonic antigen Often associated with cancer progression and poor prognosis

CA19-9 Carbohydrate associated antigen 19–9 Its level changes may reflect tumor burden

HIF1-alpha Hypoxia inducible factor 1-alpha Promotes tumor cell survival under low oxygen conditions

IL6 Interleukin 6 Promotes immune suppression in the tumor microenvironment

IL8 Interleukin 8 Promotes tumor growth, angiogenesis, and metastasis

REG4 Regenerating islet-derived family, member 4 Associated with cell growth, survival, and anti-apoptosis

CXCL9 Chemokine (C-X-C motif) ligand 9 Related to immune cell recruitment and tumor immune response

IGF2 Insulin-like growth factor 2 Promotes tumor cell growth

MMP1 Matric metallopeptidase 1 Degrades extracellular matrix, promoting tumor invasion and metastasis

PF4 Platelet factor 4 Associated with platelet activation and inflammatory response

HER2 erb-b2 receptor tyrosine kinase 2 Highly expressed in certain types of cancer

AXL AXL receptor tyrosine kinase Promotes tumor cell survival and immune evasion

BMP2 Bone morphogenetic protein 2 Plays a role in bone formation and the tumor microenvironment

GAS6 Growth arrest specific 1 Involved in cell growth and survival
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2.2.5 Statistical analysis
All statistical analyses and plotting would be conducted using R

software (version 4.3.1) and RStudio (2023.09.1 + 494). The level of
statistical significance was set at p or adjusted p < 0.05.

3 Results

3.1 Patient characteristics

Of the 569 eligible patients randomized, 480 had plasma cases
prior to treatment, baseline characteristics were well-balanced
between the GEM-E and GEM cohorts. As shown in Table 2,
there were no significant differences between the two groups in
terms of age, sex, ECOG performance status (ECOG), extent of
disease (EOD), and pain intensity (PI). Specifically, the median age
of the GEM and GEM-E groups were 63.800 (IQR: 55.850–70.775)
and 64.100 (IQR: 56.550–71.950), respectively (p-value = 0.698), the
median PI was 25.215 (IQR: 7.392–48.990) in the GEM group and
23.070 (IQR: 5.950–44.210) in the GEM-E group (p-value = 0.205).
In terms of sex distribution, 57.3% of the GEM group were male,
compared to 49.1% in the GEM-E group (p-value = 0.082).
Regarding ECOG scores, the majority of patients in both groups
had a score of 1, with a p-value of 0.728. For EOD, 73.2% of the GEM
group and 75.2% of the GEM-E group had distant metastasis
(p-value = 0.677). Overall, these baseline characteristics showed
no significant differences between the two treatment groups,
indicating that they were comparable at the start of treatment
and providing a solid foundation for subsequent efficacy
comparisons.

3.2 Identification of baseline characteristics
significantly affecting patient OS

A univariate and a multivariate Cox regression model were
used to identify the baseline characteristics significantly affecting
patient OS. After performing multivariate Cox regression, the

p-values were adjusted using the Benjamini–Hochberg
correction to control the false positive rate (Palomino-
Fernández et al., 2024). As shown in Table 3, ECOG (Hazard
Ratio (HR) = 0.481, 95% Confidence Interval (CI): 0.372–0.623,
p-value <0.001), EOD (HR = 2.084, 95% CI: 1.581–2.749,
p-value <0.001) and PI (HR = 1.005, 95% CI: 1.002–1.009,
p-value = 0.006) were important factors affecting OS in the
univariate cox regression, after adjust for other characteristics,
these three variables were still associated with OS (ECOG (HR =
0.521, 95% CI: 0.399–0.680, adjusted p-value <0.001), EOD (HR =
2.054, 95% CI: 1.557–2.709, adjusted p-value <0.001), PI (HR =
1.004, 95% CI: 0.999–1.008, adjusted p-value = 0.021)).

3.3 Comparison of the efficacy of GEM-E
and GEM treatment regimens

We compared the survival outcomes of PDAC patients
under the two treatment regimens using Kaplan-Meier
survival curve analysis. As shown in Figure 1A, the overall
survival in the GEM-E group was not significantly prolonged
(p-value = 0.077). Furthermore, to account for patient
heterogeneity, we used the RAES chart to assess the survival
performance of patients treated with GEM-E based on the
survival performance of patients treated with GEM.
Figure 1B showed the chart statistics of the patients
accepting GEM-E therapy based on the weighted score test,
the chart statistics used to measure the patient’s survival risk.
Specifically, there would be a significant improvement in GEM-
E assignment when the chart statistic was below Ll and a
significant deterioration when the chart statistic was upper
Lu. It could be concluded that the majority of GEM-E
patients were within the upper and lower control limits
except the 53, 55 and 62 cases exceeding the lower control
limits and triggering alarms. This suggested that although
there was no significant improvement in overall survival,
three case showed significant improvement, highlighting the
heterogeneity in treatment exist.

TABLE 2 Baseline Characteristics of the GEM vs. GEM-E cohorts based on 480 patients.

Characteristics GEM GEM-E p-value

(n = 246) (n = 234)

Age, Med (IQR) 63.800 (55.850–70.775) 64.100 (56.550–71.950) 0.698

Sex

1, Male 141 (57.3%) 115 (49.1%) 0.082

0, Female 105 (42.7%) 119 (50.9%)

ECOG

1, Limited activity 201 (81.7%) 188 (80.3%) 0.728

0, Fully active 45 (18.3%) 46 (19.7%)

EOD

1, Distant metastatic 180 (73.2%) 176 (75.2%) 0.677

0, Locally advanced 66 (26.8%) 58 (24.8%)

PI, Med (IQR) 25.215 (7.392–48.990) 23.070 (5.950–44.210) 0.205
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3.4 Identification of predictive biomarkers

We constructed maximally selected rank statistics to determine
the optimal cut-point for each biomarker, and then identified
predictive biomarkers that exhibited a significant interaction
effect between GEM-E treatment and the binary biomarker, with
the findings provided in Supplementary Figure S1 of the
Supplementary Material A2. To overcome overfitting, we employ
the internal bootstrap method to assess the stability of the cut-point
(He et al., 2018; Santagata et al., 2024). For each bootstrap sample
obtained from resampling with replacement from the data for all
480 patients, the patients were divided into two subsets based on the
cut-point. Subsequently, a conventional proportional hazards model
was fitted using the interaction term between the binary biomarker
and treatment. In 1,000 bootstrap samples, the results exhibiting a
significant interaction between the binary HER2, CXCL6, BMP2 and
treatment with a proportion of 90.6%, 88.7% and 85.2%,
respectively. These findings suggest that the cut-point is stable.
As shown in Figure 2, patients with BMP2 levels lower than
103,836 had improved survival when treated with GEM-E

(median OS: 8.214 vs. 5.684 months, HR: 0.630, 95% CI:
0.477–0.832, p-value: 0.001**) whereas no significant difference
between GEM-E and GEM was found from patients with
BMP2 levels above than 103,836 (median OS: 5.914 vs.
7.162 months, HR: 1.149, 95% CI: 0.873–1.512, p-value: 0.320)
(Figures 2A, D); Patients with CXCL6 levels above than
4,08,510 had improved survival when treated with GEM-E
(median OS: 7.491 vs. 4.468 months, HR: 0.572, 95% CI:
0.405–0.807, p-value: 0.001**) whereas no significant difference
between GEM-E and GEM was found from patients with
CXCL6 levels lower than 4,08,510 (median OS: 5.815 vs.
6.538 months, HR: 1.169, 95% CI: 0.879–1.555, p-value: 0.290)
(Figures 2B, E); Patients with HER2 levels above than 6,718 had
improved survival when treated with GEM-E (median OS: 7.228 vs.
5.881 months, HR: 0.659, 95% CI: 0.515–0.844, p-value <0.001***)
whereas no significant difference between GEM-E and GEM was
found from patients with HER2 levels lower than 6,718 (median OS:
5.799 vs. 7.359 months, HR: 1.341, 95% CI: 0.946–1.900, p-value:
0.097) (Figures 2C, F). We have added the Kaplan-Meier curve
stratify for the biomarker-class within the two treatment groups, the

TABLE 3 Results of univariate Cox regression and multivariate Cox regression.

Variable Univariate analysis Multivariable analysis

HR 95% CI p-value HR 95% CI Adjusted p-value

Age 1.006 (0.996–1.017) 0.318 — — —

Sex 1.081 (0.868–1.348) 0.486 — — —

ECOG 0.481 (0.372–0.623) <0.001*** 0.521 (0.399–0.680) <0.001***

EOD 2.084 (1.581–2.749) <0.001*** 2.054 (1.557–2.709) <0.001***

PI 1.005 (1.002–1.009) 0.006** 1.004 (0.999–1.008) 0.021*

FIGURE 1
Results of the comparison. (A) Survival curves comparing the GEM-E and GEM treatments. (B) RAES chart comparing the GEM-E and GEM
treatments.

Frontiers in Genetics frontiersin.org06

Zhao et al. 10.3389/fgene.2024.1497254

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1497254


results also demonstrate the predictive capabilities of these three
biomarkers, with the findings provided in Supplementary Figure S2
of the Supplementary Material A3. In summary, HER2, CXCL6, and
BMP2 were identified as potential predictive biomarkers for GEM-E
in our study.

Although our study is a correlative study linking the biomarker
measures with clinical outcomes and there was no experimental and
functional studies to validate the biological mechanisms and
substantiate that the predictive value of identified biomarkers

(BMP2, CXCL6, and HER2), we conducted a literature review
and found relevant experimental and functional studies that
illustrate the role of these biomarkers. HER2 is a transmembrane
tyrosine kinase receptor that belongs to the EGFR family. By
activating multiple downstream signaling pathways, such as
PI3K/AKT, RAS/RAF/MEK/ERK, and JAK/STAT pathways,
HER2 promotes cell proliferation, survival, and metabolic
regulation, while also enhancing tumor cell migration and
invasiveness. These functions enable HER2 to play a critical role

FIGURE 2
Results of the comparison. (A) Log-rank Survival Analysis of GEM vs. GEM-E Efficacy by high BMP2 Expression Level. (B) Log-rank Survival Analysis of
GEM vs. GEM-E Efficacy by high CXCL6 Expression Level. (C) Log-rank Survival Analysis of GEM vs. GEM-E Efficacy by high HER2 Expression Level. (D)
Log-rank Survival Analysis of GEM vs. GEM-E Efficacy by low BMP2 Expression Level. (E) Log-rank Survival Analysis of GEM vs. GEM-E Efficacy by low
CXCL6 Expression Level. (F) Log-rank Survival Analysis of GEM vs. GEM-E Efficacy by low HER2 Expression Level.
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in tumor initiation, progression, and metastasis. The overactivation of
HER2 not only leads to uncontrolled proliferation and resistance to
apoptosis in tumor cells but also increases the tumor’s resistance and
metastatic potential, making the cancer more difficult to treat (Moasser,
2007). HER2 was identified as a potential predictive biomarker for
GEM-E in Shultz et al. (2016), suggesting that we could use HER2 to
select patients most likely to respond to GEM-E. In addition, we found
two other predictive biomarkers that were not detected by Shultz et al.
(2016). CXCL6 was identified as a potential predictive biomarker for
hepatocellular carcinoma patients undergoing trans arterial
chemoembolization in Kinzler et al. (2023); CXCL6 is an
inflammatory chemokine that plays a crucial role in immune
response and cancer progression. It promotes tumor growth and
enhances metastasis by recruiting immune cells to the tumor
microenvironment. CXCL6 exerts its effects by interacting with its
main receptors, CXCR1 and CXCR2, activating downstream signaling
pathways that regulate cell migration, invasion, and survival. In cancer,
CXCL6 is often upregulated, and its expression is associated with poor
prognosis in various malignancies, including colorectal cancer, gastric
cancer, and others. Additionally, CXCL6, together with other immune
modulators such as CXCL8 and IL-8, contributes to the formation of an
immunosuppressive microenvironment that facilitates tumor escape
from immune surveillance, thereby promoting cancer progression and
resistance to therapy (Fernandez-Avila et al., 2023). BMP2 was
identified as a predictive biomarker for patients with advanced non-
small cell lung cancer undergoing chemotherapy in Fei et al. (2013).
BMP2 is a member of the transforming growth factor-beta (TGF-β)
superfamily and is implicated in embryonic development and postnatal
homeostasis in tissues and organs. Experimental research in the
contexts of physiology and pathology has indicated that BMP2 can
induce macrophages to differentiate into osteoclasts and accelerate the
osteolytic mechanism, aggravating cancer cell bone metastasis (Li et al.,
2022). The potential predictive roles of HER2, CXCL6 and BMP2 as
biomarkers in the treatment of different cancers had suggested that they
may have played significant roles in cancer biology. Extending the
research on these biomarkers to the context of PDAC patients who
received GEM-E combination therapy held significant implications.

However, we assumed that the patients in the same subgroup
enjoy the same treatment effect, there may be heterogeneity even
within the same subgroup due to unobserved factors. We tried to use
the RAES chart to assess the survival performance of patients treated
with GEM-E based on the survival performance of patients treated
with GEM in each subgroup.

3.5 Identification of treatment-sensitive in
each subgroup

For each of the predictive biomarkers what we identified in the
previous section (BMP2, CXCL6 and HER2), we grouped patients into
high-expression level groups and low-expression level groups, and then
used RAES charts tomonitor the survival risk of patients receivingGEM-
E therapy compared to those receiving GEM therapy. The monitoring
results were shown in Figure 3. When BMP2 was highly expressed, the
majority of GEM-E patients were within the upper and lower control
limits, except for the 4, 5, and 6 cases that exceeded the lower control
limits and triggered an alarm. This suggested that although there was no
significant improvement in overall survival, three cases showed a

significant improvement (Figures 3A–C). When CXCL6 was lower
expressed, the survival risk of patients under the GEM-E therapy was
generally within the upper and lower control limits, with case
30 exceeding above the upper control limit (Figures 3D–F). When
HER2 was lower expressed, the survival risk of patients under the
GEM-E therapy was generally higher compared to the GEM therapy,
with cases 38, 39, 40, 41, 42, 49, and 50 exceeding above the upper control
limit (Figures 3G–I). For other groups, such as those with low
BMP2 expression, high CXCL6 expression, and high
HER2 expression, the majority of the survival risk of GEM-E patients
was negative, suggesting that there was an improvement in overall
survival when they accepted GEM-E. The conclusion was consistent
with the forest plot in Figure 3. The RAES control charts not only
validated the predictive biomarkers but also identified the treatment-
sensitive patients in each subgroup. Further research could analyze the
reasons for their sensitivity, which may have helped healthcare
professionals to develop more targeted and effective treatment strategies.

3.6 Sensitivity analysis

To test the sensitivity of the three variables (ECOG performance
status (ECOG), extent of disease (EOD), and pain intensity (PI)), we
divided the dataset into different subgroups based on Sex (0, female vs.
1, male) and Age (≤65 vs. >65) (Hammel et al., 2016), and conducted
univariate and multivariate Cox regression analysis within each
subgroup to confirm the independence and robustness of the key
variables in themodel. The results are shown in Supplementary Tables
S2, S3 of the Supplementary Materials A4, where the three variables
are significantly associated with patient prognosis in each subgroup,
confirming the robustness of the findings.

4 Discussion

PDAC is a highly invasive and poor-prognosis malignant tumor
(Halbrook et al., 2023). Traditional chemotherapy drugs like GEM
constitute the cornerstone of PDAC treatment. With advances in
medicine, combination therapies such as GEM-E have been
proposed to enhance treatment efficacy. However, if combination
therapy does not significantly improve objective response rates over
monotherapy and is accompanied by side effects, reassessment of the
treatment regimen is necessary to ensure patients receive the most
effective treatment while minimizing unnecessary risks and burdens.
Additionally, considering that clinical trials are typically conducted
under stringent conditions whereas real-world patient populations are
more complex and diverse, any treatment regimen showing promise in
clinical trials requires further validation of its effectiveness and safety in
real clinical settings. This is particularly crucial for PDACdue to its high
heterogeneity, where different patients may respond very differently to
treatment. On the other hand, with the popularization of precision
medicine and personalized treatment concepts, research into tumor
biomarkers has become increasingly important. Certain biomarkers
may indicate a patient’s sensitivity or resistance to specific drugs,
thereby guiding clinical decisions. Modern medical technologies
such as gene sequencing, proteomics, and metabolomics provide
powerful tools for identifying and validating biomarkers (Dar et al.,
2023). With the development of big data and artificial intelligence
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technologies, clinical data can be analyzed more effectively to identify
and validate biomarkers predictive of treatment efficacy, thus offering
more personalized treatment options for patients.

The aim of this study was to use data from the PA.3 trial to
compare the actual treatment effects of GEM-E and GEM
treatments in the context of patient heterogeneity and to identify
predictive biomarkers. Beyond this specific context, this method can
be adapted to other clinical trails with biomarkers to find the
treatment-sensitive subgroups. Firstly, univariate and multivariate
Cox proportional hazards models were used to identify baseline
characteristics associated with OS. Then, a risk-adjusted control
chart based on a weighted score test from the Cox model was
constructed to monitor patients’ survival risk. Next, maximally
selected rank statistics were constructed to identifying the
predictive biomarkers. Finally, a risk adjusted control chart based

on a weighted score test from the Cox model was constructed to
validate the predictive biomarkers to discover the patients who
sensitive to the GEM-E. These findings help healthcare providers
offer more precise treatment strategies for PDAC patients, thereby
providing a reference for improving patient survival outcomes.

Our study found that BMP2, CXCL6, and HER2 serve as
predictive biomarkers for GEM-E, suggesting that we can use
them to select patients most likely to respond to GEM-E. The
following are the steps for the Application of these findings to
clinical practice: Prior to treatment, measure the levels of the three
biomarkers (BMP2, CXCL6, and HER2) in patients. Based on the
threshold values determined in this trial, patients with low
BMP2 levels, high CXCL6 levels, or high HER2 levels are more likely
to respond to combination therapy, thereby recommending combination
therapy for these patients. Prior to this, Shultz et al. (2016) identified

FIGURE 3
Results of the comparison. (A) Interaction of BMP2 levels with Therapy. (B) Survival risk of patients with high BMP2 levels treated with GEM-E. (C)
Survival risk of patients with low BMP2 levels treated with GEM-E. (D) Interaction of CXCL6 levels with Therapy. (E) Survival risk of patients with high
CXCL6 levels treated with GEM-E. (F) Survival risk of patients with low CXCL6 levels treated with GEM-E. (G) Interaction of HER2 levels with Therapy. (H)
Survival risk of patients with high HER2 levels treated with GEM-E. (I) Survival risk of patients with low HER2 levels treated with GEM-E.

Frontiers in Genetics frontiersin.org09

Zhao et al. 10.3389/fgene.2024.1497254

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1497254


HER2 as a potential predictive biomarker for GEM-E, Kinzler et al.
(2023) identified CXCL6 as a potential predictive biomarker for
hepatocellular carcinoma patients undergoing trans arterial
chemoembolization, and Fei et al. (2013) identified BMP2 as a
predictive biomarker for patients with advanced non-small cell lung
cancer undergoing chemotherapy. The potential predictive roles of these
biomarkers in the treatment of different cancers indicate that they play
significant roles in cancer biology. Our study also identified populations
sensitive to GEM-E therapy. Specifically, in cases where the effects of the
two therapies did not significantly differ (such as high BMP2 expression
cases, low CXCL6 expression cases, and low HER2 expression cases), we
had discovered patients sensitive to GEM-E therapy based on predictive
biomarkers. Identifying sensitive cases helps healthcare professionals
analyze the underlying reasons for their sensitivity, thereby enabling
the development of more targeted and effective treatment strategies.

However, our study has several limitations. Firstly, this study is
prospective–retrospective study based on data from a single clinical
trial. Therefore, the results may be applicable only to patients who
satisfy the eligibility criteria of the trial and receive similar treatments.
The method used in this paper could be used, however, to identify
predictive biomarkers from data in other trials when the data on
biomarkers are available. The original design of the trial was only
powered to detect the difference between two treatment groups and
may not be able to identify some important subgroups. Some
important confounding variables, such as genetic factors, lifestyle,
and environmental factors (Maisonneuve and Lowenfels, 2015), were
not collected from the trial and, therefore, could not be adjusted,
which may make our conclusions less reliable. Secondly, the study
only utilized expression data from 15 biomarkers, whichmay not fully
reflect the complexity of PDAC and may miss other important
predictive factors. In addition, the proposed approach is based
solely on data from the patients in this study, this makes the
suggested cutoff values unable to be thoroughly validated in
different clinical settings. Finally, the study could not consider
possible variations in biomarker levels over time throughout the
treatment process since only baseline measurements of biomarkers
were available. If the biomarker levels over time are avaiable, we could
utilize quality control measures to monitor the changes in biomarker
levels in real time and provide early warnings for any abnormal
fluctuations, thereby preventing the deterioration of the patient’s
condition in advance. Finally, The expected false alarm rate
directly influences the setting of the upper and lower control
limits. To balance Type I and Type II errors, we selected an
optimal empirical value for the false alarm rate based on existing
research (Lai et al., 2021). However, although this empirical value
effectively controls both types of errors in practice, there is a certain
discrepancy between it and the theoretical value. Therefore, although
this empirical value is useful in practice, it may not fully reflect all real-
world situations in different datasets or control environments.

In summary, our study demonstrated that GEM-E treatment for
pancreatic cancer did not show significant superiority over GEM in
reality, with only moderate differences in survival observed between
the two. We identified several predictive biomarkers, and these
results were consistent with previous studies. Additionally, we
used control chart methods to identify population types sensitive
to the treatment regimens based on the results of the maximally
selected rank statistics. These findings provide hope for individuals
who may derive greater benefits from either treatment regimen.
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