
GTasm: a genome assembly
method using graph transformers
and HiFi reads

Junwei Luo1, Ziheng Zhang1, Xinliang Ma1, Chaokun Yan2 and
Huimin Luo2*
1School of Software, Henan Polytechnic University, Jiaozuo, China, 2School of Computer and
Information Engineering, Henan University, Kaifeng, China

Motivation: Genome assembly aims to reconstruct the whole chromosome-
scale genome sequence. Obtaining accurate and complete chromosome-scale
genome sequence serve as an indispensable foundation for downstream
genomics analyses. Due to the complex repeat regions contained in genome
sequence, the assembly results commonly are fragmented. Long reads with high
accuracy rate can greatly enhance the integrity of genome assembly results.

Results: Here we introduce GTasm, an assembly method that uses graph
transformer network to find optimal assembly results based on assembly
graphs. Based on assembly graph, GTasm first extracts features about vertices
and edges. Then, GTasm scores the edges by graph transformer model, and
adopt a heuristic algorithm to find optimal paths in the assembly graph, each path
corresponding to a contig. The graph transformer model is trained using
simulated HiFi reads from CHM13, and GTasm is compared with other
assembly methods using real HIFI read set. Through experimental result,
GTasm can produce well assembly results, and achieve good performance on
NA50 and NGA50 evaluation indicators. Applying deep learning models to
genome assembly can improve the continuity and accuracy of assembly
results. The code is available from https://github.com/chu-xuezhe/GTasm.

KEYWORDS

genome assembly, graph transformer, HiFi read, deep learning, sequencing technique

1 Introduction

The genome sequence forms the foundation for research on species growth,
development, morphology, disease, and lifespan. The completion of the Human
Genome Project has provided us with a deeper understanding of genetic variations,
disease treatment, and various aspects of human growth and development (Li et al.,
2020; Wang T. et al., 2022). Genome assembly has become a significant issue in the field of
genomic research. Genome assembly is the process of reconstructing a genome sequence
from read set coming from different sequencing technologies (Sohn and Nam, 2018;
Shyamli et al., 2021; Mwamburi et al., 2024). High-quality chromosome-scale genome
sequences are an important basis for downstream studies in genomics.

The problem of complex and repetitive regions of genome sequence hinder genome
assembly method from producing accurate results (Li and Durbin, 2024). Second-
generation sequencing technology is characterized by high accuracy and high
throughput, making it widely applicable in various fields of bioinformatics (Margulies
et al., 2005; Satam et al., 2023). However, the main drawback of second-generation

OPEN ACCESS

EDITED BY

Wen Zhang,
Huazhong Agricultural University, China

REVIEWED BY

Hailin Chen,
East China Jiaotong University, China
Bolin Chen,
Northwestern Polytechnical University, China
Minzhu Xie,
Hunan Normal University, China

*CORRESPONDENCE

Huimin Luo,
luojunwei@hpu.edu.cn,
luohuimin@henu.edu.cn

RECEIVED 13 September 2024
ACCEPTED 14 October 2024
PUBLISHED 25 October 2024

CITATION

Luo J, Zhang Z, Ma X, Yan C and Luo H (2024)
GTasm: a genome assembly method using
graph transformers and HiFi reads.
Front. Genet. 15:1495657.
doi: 10.3389/fgene.2024.1495657

COPYRIGHT

© 2024 Luo, Zhang, Ma, Yan and Luo. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Methods
PUBLISHED 25 October 2024
DOI 10.3389/fgene.2024.1495657

https://www.frontiersin.org/articles/10.3389/fgene.2024.1495657/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1495657/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1495657/full
https://github.com/chu-xuezhe/GTasm
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1495657&domain=pdf&date_stamp=2024-10-25
mailto:luojunwei@hpu.edu.cn
mailto:luojunwei@hpu.edu.cn
mailto:luohuimin@henu.edu.cn
mailto:luohuimin@henu.edu.cn
https://doi.org/10.3389/fgene.2024.1495657
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1495657

sequencing technology is that, the length of read it sequenced ranges
approximately from 150 to 400 base pairs (bp) (Goodwin et al.,
2016). The ability to assemble high-quality genome sequence has
been dramatically improved with the advent and development of
third-generation sequencing technologies. In contrast to short-read
sequencing, long-read sequencing technologies can generate reads
with thousands of base pairs in length, significantly simplifying the
assembly process (Wang et al., 2023). Although long reads can span
most repeat regions in genome sequence, its sequencing error rate
usually is high (Wenger et al., 2019). In past few years, HiFi reads
sequencing by the third generation sequencing technology are
characterized by being both long and accurate. According to
current standards for long-read sequencing, HiFi reads have a
moderate length—often exceeding 50 kb. In contrast, ultra-long
ONT data can exceed 100 kb, but ONT data generally has a higher
error rate, typically over 5%. HiFi reads, on the other hand,
are highly accurate, with a median accuracy exceeding 99.9%
(>Q30) (Marks et al., 2019; Wenger et al., 2019; Zhang et al.,
2022). Therefore, this study chooses to use HiFi reads for
genome assembly.

Currently, de novo genome assembly mainly involves two types
of method: De Bruijn graph-based methods (Idury and Waterman,
1995) and Overlap-Layout-Consensus (OLC) methods (Myers
et al., 2000).

The De Bruijn graph-based assembly method is a widely utilized
strategy in genome assembly, particularly effective for handling
high-throughput short reads. This method involves fragmenting
the DNA sequences from sequencing reads into fixed-length k-mers
and constructing a De Bruijn graph using these k-mers to capture
the overlapping relationships among reads. In the graph, each k-mer
serves as a node, and the overlap between adjacent k-mers is
represented as a directed edge. By traversing this graph, the
original genome sequence can be efficiently reconstructed. This
method demonstrates superior performance in handling
repetitive regions within the genome and is capable of efficiently
processing large-scale genomic data. However, selecting an
appropriate k-mer length is crucial; a k value that is too small
may result in an overly complex graph structure, while a k value that
is too large may lead to graph discontinuities. Additionally,
constructing and operating a De Bruijn graph typically requires
substantial memory due to the need to store a large number of
k-mers and edges. The De Bruijn graph-based method has become a
cornerstone technique in modern genome assembly, finding broad
application across data generated by various sequencing platforms
(Huang and Liao, 2016). Flye (Lin et al., 2016; Kolmogorov et al.,
2019; Kolmogorov et al., 2020) Canu (Koren et al., 2017) Verkko
(Rautiainen et al., 2023) are good assembly methods based on De
Bruijn graph method.

Flye is an efficient long-read genome assembly method
specifically designed to handle PacBio and Oxford Nanopore
reads. It employs a unique iterative overlap graph algorithm that
enables the rapid generation of high-quality genome assembly
results. Flye features robust error correction capabilities,
significantly reducing the error rate in long-read data through a
multi-step correction process, thereby improving
assembly accuracy.

Canu is a high-accuracy genome assembly method specifically
designed for handling high-noise long-read data from PacBio and

Oxford Nanopore. HiCanu (Nurk et al., 2020) is an improved
version of Canu, specifically optimized for the assembly of high-
accuracy long-read data. Through multi-step error correction,
overlap computation, assembly, and fine-tuning correction
processes, it effectively reduces the error rate and enhances both
the accuracy and continuity of the assembly.

Verkko is a new method designed for telomere-to-
telomere (T2T) genome assembly. By integrating components
such as Canu, MBG (Rautiainen and Marschall, 2021),
GraphAligner (Rautiainen and Marschall, 2020), and Rukki,
Verkko enables automated processing of input third-
generation sequencing reads to achieve high-contiguity and
high-accuracy haplotype-resolved genomes. With high-quality
third-generation sequencing reads, Verkko can achieve T2T
assembly level genomes.

The Overlap-Layout-Consensus (OLC) paradigm for sequence
assembly is an overlap-based sequence assembly method. In this
method, the input sequences are first aligned pairwise to find
overlapping regions between them. Then, using these overlapping
regions, the sequences are stitched together into a longer sequence,
known as the layout. Then, the layout undergoes consensus analysis
and correction to generate the final sequence (Pevzner et al., 2001).
The OLC paradigm typically consists of three main steps: overlap
detection, layout construction, and consensus analysis. This method
works well for handling long sequences because it can fully leverage
the overlap information between sequences, enhancing the accuracy
and reliability of sequence assembly. The advantage of the OLC
paradigm is its ability to handle long sequences and make full
use of overlap information between sequences. Therefore, when
dealing with sequence data that contains overlap information, it can
typically produce accurate assembly results. However, the OLC
method also faces some challenges, such as difficulties in
handling highly repetitive sequences or large-scale datasets,
and it has relatively high computational complexity. Hifiasm
(Cheng et al., 2021; Cheng et al., 2022; Cheng et al., 2024) Raven
(Vaser and Sikic, 2021) are good assembly methods based on
OLC method.

Hifiasm uses high-precision long read for genome assembly,
especially for PacBio HiFi data. Hifiasm takes advantage of the low
error rate and high accuracy of HiFi reads, and employs highly
efficient graph-structure construction and optimization algorithms
to achieve fast and precise genome assembly. It is designed with the
goal of providing high-quality genome assembly results, and excels
especially when working with complex genomes and highly
repetitive sequences.

Raven is an assembly method for de novo assembly using long
reads, based on the overlap-layout-consensus (OLC) paradigm. It is
specifically designed to handle high-noise long-read data from
PacBio and Oxford Nanopore. It employs advanced assembly
algorithms that can quickly and efficiently produce high-quality
genome assembly results.

GNNome (Vrček et al., 2022; Vrček et al., 2024) is the
first method to use deep learning methods to address the
layout stage in sequence assembly. GNNome produces
assembly results that surpass those of traditional assembly
methods. GNNome uses Graph Convolutional Networks
(GatedGCN) to score the edges in the assembly graph, and
extract path to form contigs.

Frontiers in Genetics frontiersin.org02

Luo et al. 10.3389/fgene.2024.1495657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

Although existing genome assembly methods have greatly
improved the development of genomics research, we still need to
further analyze the characteristics of long reads and develop new
algorithms to resolve the problems caused by complex and repetitive
regions. In De-Bruijn graph or assembly graph, complex and
repetitive regions usually lead to more complex links, which is
difficult to find accurate paths. Deep learning methods have
demonstrated strong performance in solving problems that
involve finding the correct path in complex graph structures.
Although GNNome has adopted deep learning method for
genome assembly, the Graph Convolutional Networks (GCNs)
are effective for processing information from short-range
neighboring vertices but are less effective at handling information
from distant vertices. In this work, we use Graph Transformer
network to further simultaneously process short-range and long-
range relationship among vertices in assembly graph. And Graph
Transformer network has achieved success in addressing the
Traveling Salesman Problem (TSP) (Yang et al., 2023).

Here, we introduce a genome assembly method, GTasm, based
on graph transformer model and assembly graph. GTasm can score
edges in an assembly graph to identify the optimal path for
reconstructing the genome sequence. The reads along the
obtained path are assembled to produce the final assembly
results. We construct a dataset using simulated data to train
Graph Transformer (Vaswani et al., 2017; Dwivedi and Bresson,
2020; Yang et al., 2023). Compared to other assembly methods,
GTasm can achieve well assembly results. Using the QUAST
(Mikheenko et al., 2018) evaluation tool to assess the assembly
results, GTasm has shown good performance in evaluation metrics
such as misassemblies, NA50, and NGA50.

2 Methods

GTasm is a method for de novo genome assembly based on graph
transformer model and HiFi reads. GTasm uses HiFi read set (FASTA
OR FASTQ format) as input, and contig set (FASTA format) as output.
GTasm primarily includes the following steps: (i) Generating initial
assembly graph. The input HiFi read set is used to generate an assembly
graph by Hifiasm, and the graph is stored in a GFA file. (ii) Feature
Extraction. Node features and edge features are extracted from the
initial assembly graph, and a fully connected layer is utilized to elevate
the dimensionality of these features. (iii) Scoring the edges in the
assembly graph. The generated initial assembly graph is converted
into a DGL graph, which facilitates the processing of the graph using
deep learning models. The converted DGL graph is Then input into the
graph transformer model for scoring the edges in the initial assembly
graph. (iv) Obtaining assembly paths and contigs. A greedy search
algorithm is employed to search the assembly graph with edge scores,
identifying assembly paths and assembling the reads along these paths
to obtain the final contigs. The specific processing steps are illustrated
in Figure 1.

2.1 Generating initial assembly graph

The first step of GTasm is to generate an initial assembly graph
from the input set of reads. In the assembly graph, each vertex

represents a long read, and the edges indicate the overlap
relationships between corresponding long reads. The assembly graph
is used to represent and analyze the overlaps among long reads,
facilitating the correct connection and alignment of these long reads
during genome assembly, ultimately constructing longer contiguous
sequences (contigs) (Luo et al., 2021; Ding and Luo, 2022).

To construct the assembly graph, each pair of long reads is aligned
to identify overlapping regions. The overlap length, starting position,
and orientation are determined, and this information is used to create
the edges in the assembly graph. The edge direction typically extends
from the left end of the overlap to the right end, indicating that one long
read overlaps with another in a specific direction. The assembly graph
provides the foundation for subsequent assembly algorithms, and the
quality of the initial assembly graph has a significant impact on the final
assembly results. GTasm utilizes Hifiasm to generate the initial
assembly graph (Gao et al., 2023).

2.2 Feature Extraction

After constructing the assembly graph G, GTasm extract the node
features and edge features. For ith node vi, GTasm constructs its node
feature vector [xi, yi], xi is the out-degree of vi, yi is the in-degree of vi.
After getting features for all vertices, these feature vectors can form a
matrix VMmp2, m is the number of the vertex in G, the ith row in
VMmp2 refers to the feature of vi. Similarly, we obtain the edge feature
matrix EMnp2, where oli is the overlap length of the ith edge, osi is the
overlap similarity of the ith edge, and n denotes the number of edges in
the assembly graph G. Edge features consist of the overlap length and
overlap similarity between the nodes connected by the edge. The
overlap length can be obtained from the CIGAR string in the initial
GFA file. The GFA file stores the ID information of each read, chain
information, base information of the reads, read lengths, information on
which reads have overlaps, and the lengths of those overlaps. The
method for calculating overlap similarity is as follows:

overlap similarity � overlap length − edit distance

overlap length

Edit Distance, also known as Levenshtein Distance, is a measure
of the similarity between two strings. It represents the minimum
number of edit operations required to transform one string into
another. Common edit operations include inserting a character,
deleting a character, and substituting one character for another. Edit
Distance is calculated using the Edlib library (Šošić and Šikić, 2017).
Then, GTasm uses three fully connected layers to transform the
obtained node features and edge features into higher-dimensional
representations, resulting in the node feature matrix VMmpi and the
edge feature matrix EMmpi,where i = 64, The activation function
used is ReLU.

2.3 Scoring the edges in the assembly graph

Scoring the edges in the assembly graph is a core step in the
entire processing flow. We conduct subsequent searches for
assembly paths based on the probability scores of the edges in
the assembly graph. The core problem we aim to address is finding

Frontiers in Genetics frontiersin.org03

Luo et al. 10.3389/fgene.2024.1495657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

an optimal assembly path in the assembly graph to achieve the best
assembly result. Since this is a graph-related problem, it naturally
leads us to consider using graph neural networks (GNNs) to tackle
the issue, as GNNs have proven to be an effective neural network
architecture for graph datasets. Transformers have achieved great

success in the field of natural language processing (NLP). They
excel in handling long-range sequence issues, which is achieved
through the use of attention mechanisms. Graph transformers are
the application of transformers in graph neural networks, allowing
them to focus on the relationships between distant nodes in the

FIGURE 1
Detailed Processing Steps of GTasm. (A) Generating initial assembly graph. (B) Feature Extraction. (C) Scoring the edges in the assembly graph. (D)
Obtaining assembly paths and contigs.

Frontiers in Genetics frontiersin.org04

Luo et al. 10.3389/fgene.2024.1495657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

graph and demonstrating strong performance in solving graph-
related problems (Yun et al., 2022; Boadu et al., 2023; Cai et al.,
2023; Corrias et al., 2023; Zhao et al., 2023). Using the graph
transformer model to score the edges in the initial assembly graph
helps address the issue of repetitive regions in genome assembly.
The graph transformer model can utilize multi-head attention
mechanisms to compute the importance weights of the edges in the
graph, effectively processing information from distant nodes to
uncover relationships between nodes that are not directly
connected. The main structure of the Graph Transformer layer
is shown in Figure 2.

The graph information and extracted node feature matrix VMmpi

and edge feature matrix EMnpi are fed into a Graph Transformer layer
for processing, with the Graph Transformer layer preserving the
dimensionality of the feature matrices. The processed node and edge
feature matrices are then used to update the edge feature matrix.
Specifically, the features of the source and target nodes connected by
each edge are combined with the edge’s own features to generate a new
edge feature matrix EMmp3i.This updated edge feature matrix EMmp3i

is then passed through a three-layer Multi-Layer Perceptron (MLP) to
produce a score matrix SMnp1 (Savalia and Emamian, 2018).The values
in the score matrix SMnp1 correspond to the probability scores of each
edge in the assembly graph G. These scores are then written back into
the assembly graph, resulting in an assembly graph annotated with edge
probability scores. Next, we introduce the process of Graph
Transformer model to obtain the probability scores of edges in the
assembly graph. First, we input the processed node features and edge
features into the Graph Transformer. The update formula for the l-th
layer is as follows:

ĥ
l+1
i � Ol

h ‖H
k�1

∑
j∈Ni

wk,l
ij V

k,lhlj⎛⎝ ⎞⎠
êl+1ij � Ol

e ‖
H

k�1
ŵk,l

ij()
wk,l

ij � softmax j ŵk,l
ij()

ŵk,l
ij � Qk,lhli · Kk,lhlj		

dk

√() · Ek,lelij

Where, Qk,l, Kk,l, Vk,l, Ek,l ∈ Rdk×d, Ol
h, O

l
e ∈ Rd×d, k = 1 to H

represents the number of attention heads, and || denotes
concatenation, h and e are the node and edge features input to
the graph Transformer, whileQ, K, andV are the parameters used to
compute the attention scores. For numerical stability, the outputs of
the SoftMax function are clamped to the range of −5 to +5 after
exponentiation. The attention output is then passed to the feed-
forward network (FFN), with residual connections and
normalization layers applied before and after the FFN.

^̂
h
l+1

� Norm hli + ĥ
l+1
i()

^̂
ĥ
l+1

i � Wl
2ReLU Wl

1
^̂h
l+1
i()

hl+1i � Norm ^̂h
l+1
i + ^̂

ĥ
l+1

i
⎛⎝ ⎞⎠

where Wl
e,1 ∈ R2d×d,Wl

e,2 ∈ Rd×2d, ̂̂el+1ij , ̂̂̂el+1ij represents intermediate
representations, and Norm refers to Batch Normalization.

^̂e
l+1
ij � Norm elij + êl+1ij()

^̂
ê
l+1
ij � Wl

e,2ReLU Wl
e,1
^̂e
l+1
ij()

el+1ij � Norm ^̂e
l+1
ij + ^̂

ê
l+1
ij()

where Wl
e,1 ∈ R2d×d,Wl

e,2 ∈ Rd×2d, ^̂e
l+1
ij ,

^̂
ê
l+1
ij represents intermediate

representations, and Norm refers to Batch Normalization.
After getting edge matrix, for each directed edge s→t, its feature

vector refers to one row in the edge matrix, the formula for
calculating its probability score pst is:

pst � σ MLP EMn*3i()()
where σ is the sigmoid function.

FIGURE 2
Network structure diagram of the transformer. The Graph
Transformer framework uses Laplacian eigenvectors (λ) as positional
encodings (LapPE). LapPE is added to the input node embeddings
before passing the features into the first layer. The Graph
Transformer operates on node features and edge features to compute
attention scores.

Frontiers in Genetics frontiersin.org05

Luo et al. 10.3389/fgene.2024.1495657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

2.4 Obtaining assembly paths and contigs

GTasm runs an iterative greedy search algorithm on the
assembly graph with edge probability scores. Our greedy search
algorithm has lower space complexity, making it more suitable for
resource-constrained environments. Specifically, we first randomly
select the N edges with the highest probability scores from the
assembly graph. Then, starting from these N edges, we perform
forward and backward greedy searches sequentially, connecting the
paths obtained from forward and backward traversals to form paths
starting from these edges. We then mark the nodes that have already
been traversed to prevent them from being revisited. After N rounds
of traversal, we obtain N paths. The reads from the nodes in each
path are then concatenated to form a contig for each path. We then
select the longest contig among these N contigs as our contig and
mark the nodes in this contig’s path to prevent them from being
revisited. This process is repeated by selecting new N starting edges
to obtain new contigs, and the iteration continues until the length of
the obtained paths falls below a certain threshold. After obtaining all
the assembly paths, GTasm extracts the nodes along the paths and
records each node’s read length and overlap length in the GFA file.
Using the read lengths and overlap lengths with other reads, the
reads along the assembly paths can be concatenated to form the
contig for that specific assembly path.

2.5 Model training

2.5.1 Dataset
We train Graph Transformer using HiFi reads. HiFi reads are

characterized by being both long and highly accurate, with median
read accuracy exceeding 99.9% (>Q30). For training and validation,
we use a simulated dataset generated from the CHM13 (Nurk et al.,
2022) human genome sequence. Real HG002 HiFi read datasets are
used for testing.

The generation of the simulated reads is inspired by the
approach used in GNNome. First, the CHM13 reference
sequence is obtained and then divided into 23 chromosomes:
chromosomes 1 to 22 and the X chromosome. Next, simulated
reads are generated from the chromosomes using a read simulator
pbsim3 (Ono et al., 2022). We adopt pbsim3 to generate simulated
reads using CHM13 reference sequence and CHM13 real read
dataset. The simulated reads are annotated with their positions
relative to the reference sequence, which helps us label the assembly
graph based on the relative positions of the reads. By using the
relative positions of the reads, we can easily determine if there are
overlaps between reads, allowing us to label the edges in the
assembly graph.

We generate simulated reads in the form of single chromosomes,
allowing us to easily divide the data into training and validation sets
using individual chromosomes. Each simulation generates different
read sets, resulting in different assembly graphs. This ensures a
sufficient amount of data for training the Graph Transformer, which
is why we use simulated reads for training rather than real reads. We
simulated reads for chromosomes 1 to 22 of CHM13. Chromosomes
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 were used as the training set,
while chromosomes 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22 were used
as the validation set. For the training set, seven simulated read sets

were generated for each chromosome. For the validation set, three
simulated read sets were generated for each chromosome. The test
set uses real datasets. The selection of chromosomes for the training
and validation sets, as well as the number of datasets generated for
each chromosome, was done entirely at random. The details about
all datasets are shown in Supplementary Table S1 of the
Supplementary Material.

After generating simulated reads for the chromosomes, we use
Hifiasm to create assembly graphs from these simulated reads. Then, we
label the generated assembly graphs. Each read in the simulated datasets
is annotated with information about its start position, end position, and
strand orientation relative to the reference sequence. We perform an
initial simplification of the assembly graph. If two reads have the same
strand orientation and overlap, we retain the corresponding edge. Edges
that do not meet this criterion are removed from the assembly graph.
Specifically, if there is a directed edge eab from node A to node B, and
the following conditions are met: The start position of node A is less
than the start position of node B. The end position of node A is greater
than the start position of node B. The end position of node B is greater
than the end position of node A. Then, the directed edge eab is retained.

In the retained edges, there may be some tips. To remove these
tips, first identify the node with the lowest start position relative to
the reference sequence. Perform a breadth-first search (BFS) starting
from this node (Li, 2016). Then, select the node with the highest
position among all visited nodes and perform a backward breadth-
first search starting from this node. If an edge is traversed both
forward and backward, it is marked as positive; otherwise, it is
marked as negative. Repeat this process until all edges are labeled.

2.5.2 Training
Set a random seed during training to ensure the reproducibility

of experiments. Graph Transformer is trained using the Adam
optimizer (Tang et al., 2021). Due to the extreme imbalance
between positive and negative samples in the dataset, we
calculate the ratio of positive to negative samples to balance the
weights during scoring. We use the simulated CHM13 dataset,
which consists of HiFi reads with 32× coverage depth, as the
training and validation sets. Even for a single chromosome, the
generated assembly graph has tens of thousands of nodes and
hundreds of thousands of edges. This large graph imposes high
computational resource requirements for direct training. Therefore,
we use the METIS (Mitchell et al., 2005) graph partitioning
algorithm to divide the assembly graph for each chromosome
into several subgraphs, and perform training on these subgraphs.
The learning objective of the model is a binary edge classification
task. During training, we compute the binary cross-entropy loss
between the model’s predictions and the labels. The formulation is
expressed as follows:

Loss � BCE p, edge label()
where BCE represents binary cross-entropy, and p denotes the
probability score computed after processing through the Graph
Transformer. The initial learning rate is set to 1e-4. We use
pytorch 1.7 and DGL 2.1 (Wang, 2019) to implement the
network. The server is equipped with an NVIDIA RTX
4090 GPU, an Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, and
512 GB of RAM.

Frontiers in Genetics frontiersin.org06

Luo et al. 10.3389/fgene.2024.1495657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

3 Results

We evaluate GTasm, GNNome, Hifiasm, Flye, Raven, Verkko,
and HiCanu on HiFi datasets from the human genome CHM13, the
human genome HG002 (Wang T. et al., 2022), the inbred genome of
A. thaliana, and the maternal genome of G. gallus (Wang B. et al.,
2022). The command lines of all methods are supplied in the
Supplementary Material.

We used the QUAST evaluation tool to assess the assembly results,
comparing and evaluating them using the following metrics: Contigs,
Largest contig, Misassemblies, Genome fraction, NA50, and NGA50.
Contigs indicate the number of contigs in the assembly results, while
Largest contig refers to the length of the longest contig. Misassemblies
refer to errors in the genome assembly process that leads to
discrepancies between the assembled genome sequence and the
actual genome sequence. These errors can arise from various causes,
including sequencing errors, repetitive sequences, and insufficient
coverage. Genome fraction represents the proportion of the
reference genome covered by the assembled sequences. NA50 and
NGA50 are important metrics for assessing genome assembly quality.
NA50 is based on the alignment of the assembly sequences to the
reference genome. NA50 is calculated based on the alignment results of
the genome assembly. The calculation method involves aligning the
assembled contigs to the reference genome and sorting the aligned
blocks by length in descending order. The NA50 value is the length of
the shortest block such that the cumulative length of these blocks is at
least 50% of the total length of the assembly result. It reflects the

continuity of aligned blocks within the assembly. NGA50 is calculated
based on the length of the reference genome. The calculation method
involves aligning the assembled contigs to the reference genome and
sorting the aligned blocks by length in descending order. The
NGA50 value is the length of the shortest block such that the
cumulative length of these blocks is at least 50% of the length of the
reference genome. It reflects the coverage of aligned blocks within the
reference genome, taking into account gaps in the alignments.

As shown in Table 1, we can see that GTasm demonstrates well
continuity, as evidenced by the NG50 and NGA50 metrics. On the
human CHM13 HiFi dataset, GTasm’s NG50 and NGA50 metrics are
better than those of HiCanu, nearly twice those of Flye, and almost three
times those of Raven andVerkko. Compared toHifiasm andGNNome,
GTasm also shows superior performance in terms of continuity. In
terms of misassemblies, Verkko performs the best, which can be
attributed to its built-in polishing process. GTasm shows similar
performance to GNNome but is slightly inferior to Hifiasm. Verkko,
Flye, andHiCanu all have built-in polishing processes, which contribute
to their strong performance on themisassemblies metric, although their
runtime is correspondingly longer. The runtime and memory
consumption of each method are shown in Table 5. For genome
fraction, all seven methods perform well, with Hifiasm, GNNome,
Verkko, HiCanu, and GTasm all achieving over 99.5%.

Table 2 shows the test results on the HG002 dataset, GTasm also
demonstrates strong performance. In terms of misassemblies,
HiCanu shows the best results, while Flye also performs well.
Raven, which lacks a polishing step, performs the worst,

TABLE 1 Results on real CHM13 HiFi data.

Dataset SW Contigs LC (Mbp) Mis GF (%) NA50 (Mbp) NGA50 (Mbp)

CHM13 Hifiasm 385 201.07 132 99.646 67.92 67.92

GNNome 119 160.74 174 99.592 63.72 63.72

Flye 1,461 114.66 266 97.775 36.32 35.41

Raven 1945 103.48 1,519 97.17 22.13 21.94

Verkko 2,112 109.34 93 99.8 26.04 26.04

HiCanu 7,976 142.32 185 99.683 41.48 47.40

GTasm 195 191.34 174 99.681 70.83 70.83

Note: DS, dataset; SW, software; LC, Largest contig.; Mis, Misassemblies.

The bold items in the table indicate the optimal results for that metric.

TABLE 2 Results on real HG002 HiFi data.

Dataset SW Contigs LC (Mbp) Mis GF (%) NA50 (Mbp) NGA50 (Mbp)

HG002 Hifiasm 5,660 138.38 1,009 73.036 2.64 1.11

GNNome 4,727 138.99 1,449 84.317 2.17 2.01

Flye 29,666 40.40 880 64.013 0.38 0.11

Raven 3,923 45.10 3,709 51.449 3.69 —

Verkko 58,926 45.24 1,513 92.808 0.27 0.28

HiCanu 30,081 121.36 869 81.873 0.89 0.93

GTasm 4,676 104.70 1705 84.517 2.00 1.86

Note: The bold items in the table indicate the optimal results for that metric

Frontiers in Genetics frontiersin.org07

Luo et al. 10.3389/fgene.2024.1495657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

highlighting the importance of polishing for assembly accuracy. For
assembly completeness, Verkko achieves the best performance, with
a genome fraction of 92.808%. GTasm and GNNome perform
similarly and both outperform Hifiasm, while significantly
exceeding the results of other methods. Notably, Raven
assembled only half the length of the reference genome. In terms
of continuity, GTasm has a slightly lower NA50 compared to
Hifiasm but a higher NGA50, showing similar results to
GNNome. Compared to Flye, Verkko, and HiCanu, GTasm
excels in continuity, with nearly six times higher NA50 and
NGA50 than Verkko, despite similar misassemblies. Although
Raven has the highest NA50, its poor assembly completeness led
to QUAST not calculating an NGA50 value. Overall, GTasm
significantly outperforms other traditional assembly methods in
terms of continuity.

Table 3 shows the test results on the non-human dataset A.
thaliana, GTasm performs well. GTasm generates the fewest contigs
and the longest contig length. For misassemblies, Flye shows the best
performance, far surpassing other methods. GTasm’s performance is
second only to Flye and Raven, with fewer errors compared to other
methods. In terms of genome fraction, all seven methods perform well,
with Flye at 98.8%, Raven at 99.5%, and the remaining methods
achieving results above 99.9%. GTasm has the best performance in
continuity. InNA50 values, GTasm is nearly 6 times better thanVerkko
and nearly twice as good as Hifiasm, Flye, Raven, and HiCanu, showing
even better results compared to GNNome. In NGA50 values, GTasm

achieves results similar to Hifiasm and GNNome, and significantly
outperforms Flye, Raven, Verkko, and HiCanu. Overall, GTasm
demonstrates the best performance on the A. thaliana dataset.

Table 4 shows the assembly results of different methods on G.
gallus HiFi reads. For misassemblies, Flye performs the best, while
GTasm performs poorly. In terms of genome fraction, the methods
exhibit similar performance. In continuity, GTasmhas the best results.
GTasm shows better NA50 and NGA50 values than Hifiasm. For
NA50 andNGA50 values, GTasm is nearly 5 times better than Verkko
and Flye, and nearly twice as good as Raven. HiCanu crashed after
running for 10 days, and no results were obtained. Overall, GTasm
and GNNome show similar performance on the G. gallus data.

In summary, GTasm demonstrates well results across all four
human and non-human datasets. The Graph Transformer can
capture relationships between distant nodes, which is why we
observe GTasm performing better in terms of continuity on
most datasets.

Table 5 records the time and memory consumption of different
methods across various datasets. For GNNome andGTasm, since they
require the assembly graph generated by Hifiasm as a prerequisite, the
recorded time includes the time spent runningHifiasm. If thememory
required by subsequent steps of these methods is less than that
consumed by Hifiasm, the memory usage of Hifiasm is recorded
as their memory requirement. The server configuration for running
the above methods is as follows: CPU: Intel(R) Xeon(R) Gold
6330 CPU @ 2.00GHz, with 512 GB of RAM.

TABLE 4 Results on real G.gallus HiFi data.

Dataset SW Contigs LC (Mbp) Mis GF (%) NA50 (Mbp) NGA50 (Mbp)

G.gallus Hifiasm 1866 47.52 7,241 98.516 1.61 3.09

GNNome 1,516 28.16 7,443 98.239 2.03 4.20

Flye 7,463 10.54 5,151 98.056 0.47 0.91

Raven 2,117 14.06 5,343 96.801 1.32 1.54

Verkko 9,156 3.62 6,027 97.176 0.47 0.93

HiCanu — — — — — —

GTasm 1,534 31.46 7,644 98.229 2.04 4.21

Note: The bold items in the table indicate the optimal results for that metric

TABLE 3 Results on real A.thaliana HiFi data.

Dataset SW Contigs LC (Mbp) Mis GF (%) NA50 (Mbp) NGA50 (Mbp)

A.thaliana Hifiasm 1724 22.93 131 99.988 6.99 12.75

GNNome 98 22.93 147 99.987 8.64 12.75

Flye 99 15.94 35 98.868 6.39 6.39

Raven 179 11.49 113 99.565 5.08 5.19

Verkko 3,809 12.70 238 99.966 2.56 6.01

HiCanu 1,587 22.93 154 99.943 6.39 8.57

GTasm 92 22.93 124 99.957 12.75 12.75

Note: The bold items in the table indicate the optimal results for that metric

Frontiers in Genetics frontiersin.org08

Luo et al. 10.3389/fgene.2024.1495657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

4 Conclusion and discussion

In this study, we developed a deep learning-based genome
assembly method. GTasm extracts node and edge features from
the assembly graph and uses Graph Transformer to analyze these
features. The processed features are then scored using a three-layer
MLP, which assigns scores to the edges in the assembly graph. These
scores are used to traverse the graph and obtain assembly paths and
contigs. We evaluated GTasm’s performance on multiple datasets
and compared it with six state-of-the-art methods. GTasm
demonstrated good performance across different HiFi read datasets.

In this paper, our work focuses on scoring the edges in the assembly
graph and using a search algorithm to obtain assembly paths and contigs.
The quality of the initial assembly graph has a significant impact on the

final assembly results, and in this study, we have not yet completed the
independent generation of the assembly graph. DNA sequences contain
rich information for genome assembly, which we have not yet effectively
utilized. We will address these issues in the future work.

Data availability statement

The CHM13 HiFi dataset used in this study can be accessed at
https://github.com/marbl/CHM13. The HG002 HiFi dataset is
available at https://github.com/human-pangenomics/HG002_
Data_Freeze_v1.0. The A. thaliana HiFi dataset can be found at
https://ngdc.cncb.ac.cn/gsa/browse/CRA004538/CRX257574. The
G. gallus HiFi dataset is available at https://www.genomeark.org/
genomeark-all/Gallus_gallus.html. Download link for the CHM13
reference sequence: https://s3-us-west-2.amazonaws.com/human-
pangenomics/T2T/CHM13/assemblies/chm13.draft_v1.1.fasta.
gz. Download link for the HG002 reference sequence: https://s3-us-
west-2.amazonaws.com/human-pangenomics/T2T/HG002/assemblies/
hg002v0.7.fasta. Download link for the A. thaliana reference sequence:
https://download.cncb.ac.cn/gwh/Plants/Arabidopsis_thaliana_
AT_GWHBDNP00000000.1/GWHBDNP00000000.1.genome.
fasta.gz. Download link for the G. gallus reference sequence: https://
www.ncbi.nlm.nih.gov/datasets/genome/GCF_016699485.2/.

Author contributions

JL: Conceptualization, Funding acquisition, Methodology,
Supervision, Writing–review and editing. ZZ: Methodology,
Software, Writing–original draft. XM: Investigation, Software,
Writing–review and editing. CY: Investigation, Methodology,
Writing–review and editing. HL: Conceptualization,
Methodology, Validation, Writing–review and editing.

Funding

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this article. This
research was supported by the National Natural Science Foundation of
China (Grant No. 62372156), Innovative Research Team of Henan
Polytechnic University (Grant No. T2021-3), and Henan Provincial
Department of Science and Technology Research Project (Grant No.
232102211046, 242102210110).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of
the authors and do not necessarily represent those of

TABLE 5 Time and memory for different datasets.

Dataset Software Time (H:M:S) Memory (GB)

CHM13 Hifiasm 9:56:10 126.32

GNNome 15:8:46 126.32

Flye 20:56:59 151.62

Raven 9:55:46 96.13

Verkko 56:21:20 73.54

HiCanu 53:54:11 96.43

GTasm 16:07:32 126.32

HG002 Hifiasm 8:40:44 153.09

GNNome 47:17:1 179.50

Flye 22:43:41 203.88

Raven 9:16:53 106.59

Verkko 54:02:29 28.64

HiCanu 60:29:45 73.34

GTasm 48:13:27 179.50

A.thaliana Hifiasm 6:21:09 52.30

GNNome 6:37:23 52.30

Flye 5:45:39 61.00

Raven 3:09:24 49.55

Verkko 16:06:41 21.33

HiCanu 41:14:17 19.91

GTasm 6:53:12 52.30

G.gallus Hifiasm 2:42:07 50.29

GNNome 5:03:37 50.29

Flye 7:35:12 111.84

Raven 2:40:15 53.08

Verkko 8:41:20 19.05

HiCanu — —

GTasm 5:33:17 50.29

Frontiers in Genetics frontiersin.org09

Luo et al. 10.3389/fgene.2024.1495657

https://github.com/marbl/CHM13
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://ngdc.cncb.ac.cn/gsa/browse/CRA004538/CRX257574
https://www.genomeark.org/genomeark-all/Gallus_gallus.html
https://www.genomeark.org/genomeark-all/Gallus_gallus.html
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/chm13.draft_v1.1.fasta.gz
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/chm13.draft_v1.1.fasta.gz
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/chm13.draft_v1.1.fasta.gz
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/HG002/assemblies/hg002v0.7.fasta
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/HG002/assemblies/hg002v0.7.fasta
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/HG002/assemblies/hg002v0.7.fasta
https://download.cncb.ac.cn/gwh/Plants/Arabidopsis_thaliana_AT_GWHBDNP00000000.1/GWHBDNP00000000.1.genome.fasta.gz
https://download.cncb.ac.cn/gwh/Plants/Arabidopsis_thaliana_AT_GWHBDNP00000000.1/GWHBDNP00000000.1.genome.fasta.gz
https://download.cncb.ac.cn/gwh/Plants/Arabidopsis_thaliana_AT_GWHBDNP00000000.1/GWHBDNP00000000.1.genome.fasta.gz
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_016699485.2/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_016699485.2/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

their affiliated organizations, or those of the publisher, the
editors and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1495657/
full#supplementary-material

References

Boadu, F., Cao, H., and Cheng, J. (2023). Combining protein sequences and structures
with transformers and equivariant graph neural networks to predict protein function.
Bioinformatics 39 (39 Suppl. 1), i318–i325. doi:10.1093/bioinformatics/btad208

Cai, H., Gao, Y., and Liu, M. (2023). Graph transformer geometric learning of brain
networks using multimodal MR images for brain age estimation. IEEE Trans. Med.
Imaging 42 (2), 456–466. doi:10.1109/TMI.2022.3222093

Cheng, H., Asri, M., Lucas, J., Koren, S., and Li, H. (2024). Scalable telomere-to-
telomere assembly for diploid and polyploid genomes with double graph. Nat. Methods
21 (6), 967–970. doi:10.1038/s41592-024-02269-8

Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., and Li, H. (2021). Haplotype-
resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18
(2), 170–175. doi:10.1038/s41592-020-01056-5

Cheng, H., Jarvis, E. D., Fedrigo, O., Koepfli, K.-P., Urban, L., Gemmell, N. J., et al.
(2022). Haplotype-resolved assembly of diploid genomes without parental data. Nat.
Biotechnol. 40 (9), 1332–1335. doi:10.1038/s41587-022-01261-x

Corrias, R., Gjoreski, M., and Langheinrich, M. (2023). Exploring transformer and
graph convolutional networks for human mobility modeling. Sensors (Basel) 23 (10),
4803. doi:10.3390/s23104803

Ding, H., and Luo, J. (2022). MAMnet: detecting and genotyping deletions and
insertions based on long reads and a deep learning approach. Brief. Bioinform 23 (5).
doi:10.1093/bib/bbac195

Dwivedi, V. P., and Bresson, X. J. a.p.a. (2020). A generalization of transformer
networks to graphs.

Gao, R., Luo, J., Ding, H., and Zhai, H. (2023). INSnet: a method for detecting
insertions based on deep learning network. BMC Bioinforma. 24 (1), 80. doi:10.1186/
s12859-023-05216-0

Goodwin, S., McPherson, J. D., and McCombie, W. R. (2016). Coming of age: ten
years of next-generation sequencing technologies. Nat. Rev. Genet. 17 (6), 333–351.
doi:10.1038/nrg.2016.49

Huang, Y. T., and Liao, C. F. (2016). Integration of string and de Bruijn graphs for
genome assembly. Bioinformatics 32 (9), 1301–1307. doi:10.1093/bioinformatics/
btw011

Idury, R. M., and Waterman, M. S. (1995). A new algorithm for DNA sequence
assembly. J. Comput. Biol. 2 (2), 291–306. doi:10.1089/cmb.1995.2.291

Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., et al.
(2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat.
Methods 17 (11), 1103–1110. doi:10.1038/s41592-020-00971-x

Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P. A. (2019). Assembly of long, error-
prone reads using repeat graphs. Nat. Biotechnol. 37 (5), 540–546. doi:10.1038/s41587-
019-0072-8

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M.
(2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res. 27 (5), 722–736. doi:10.1101/gr.215087.116

Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics 32 (14), 2103–2110. doi:10.1093/bioinformatics/btw152

Li, H., and Durbin, R. (2024). Genome assembly in the telomere-to-telomere era. Nat.
Rev. Genet. 25, 658–670. doi:10.1038/s41576-024-00718-w

Li, H., Feng, X., and Chu, C. (2020). The design and construction of reference
pangenome graphs with minigraph. Genome Biol. 21 (1), 265. doi:10.1186/s13059-020-
02168-z

Lin, Y., Yuan, J., Kolmogorov, M., Shen, M. W., Chaisson, M., and Pevzner, P. A.
(2016). Assembly of long error-prone reads using de Bruijn graphs. Proc. Natl. Acad. Sci.
U. S. A. 113 (52), E8396-E8405–E8405. doi:10.1073/pnas.1604560113

Luo, J., Ding, H., Shen, J., Zhai, H., Wu, Z., Yan, C., et al. (2021). BreakNet: detecting
deletions using long reads and a deep learning approach. BMC Bioinforma. 22 (1), 577.
doi:10.1186/s12859-021-04499-5

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., et al.
(2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature
437 (7057), 376–380. doi:10.1038/nature03959

Marks, P., Garcia, S., Barrio, A. M., Belhocine, K., Bernate, J., Bharadwaj, R., et al.
(2019). Resolving the full spectrum of human genome variation using Linked-Reads.
Genome Res. 29 (4), 635–645. doi:10.1101/gr.234443.118

Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., and Gurevich, A. (2018).
Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34 (13),
i142–i150. doi:10.1093/bioinformatics/bty266

Mitchell, A. L., Divoli, A., Kim, J. H., Hilario, M., Selimas, I., and Attwood, T. K.
(2005). METIS: multiple extraction techniques for informative sentences.
Bioinformatics 21 (22), 4196–4197. doi:10.1093/bioinformatics/bti675

Mwamburi, S. M., Kawato, S., Furukawa, M., Konishi, K., Nozaki, R., Hirono, I., et al.
(2024). De novo assembly and annotation of the Siganus fuscescens (houttuyn, 1782)
genome: marking a pioneering advance for the siganidae family.Mar. Biotechnol. (NY).
doi:10.1007/s10126-024-10325-9

Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan, M. J.,
et al. (2000). A whole-genome assembly of Drosophila. Science 287 (5461), 2196–2204.
doi:10.1126/science.287.5461.2196

Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., et al.
(2022). The complete sequence of a human genome. Science 376 (6588), 44–53. doi:10.
1126/science.abj6987

Nurk, S., Walenz, B. P., Rhie, A., Vollger, M. R., Logsdon, G. A., Grothe, R., et al.
(2020). HiCanu: accurate assembly of segmental duplications, satellites, and allelic
variants from high-fidelity long reads. Genome Res. 30 (9), 1291–1305. doi:10.1101/gr.
263566.120

Ono, Y., Hamada, M., and Asai, K. (2022). PBSIM3: a simulator for all types of PacBio
and ONT long reads.Nar. Genom Bioinform 4 (4), lqac092. doi:10.1093/nargab/lqac092

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An Eulerian path approach to
DNA fragment assembly. Proc. Natl. Acad. Sci. U. S. A. 98 (17), 9748–9753. doi:10.1073/
pnas.171285098

Rautiainen, M., andMarschall, T. (2020). GraphAligner: rapid and versatile sequence-
to-graph alignment. Genome Biol. 21 (1), 253. doi:10.1186/s13059-020-02157-2

Rautiainen, M., and Marschall, T. (2021). MBG: Minimizer-based sparse de Bruijn Graph
construction. Bioinformatics 37 (16), 2476–2478. doi:10.1093/bioinformatics/btab004

Rautiainen, M., Nurk, S., Walenz, B. P., Logsdon, G. A., Porubsky, D., Rhie, A., et al.
(2023). Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat.
Biotechnol. 41 (10), 1474–1482. doi:10.1038/s41587-023-01662-6

Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S., et al. (2023).
Next-generation sequencing technology: current trends and advancements. Biol. (Basel)
12 (7), 997. doi:10.3390/biology12070997

Savalia, S., and Emamian, V. (2018). Cardiac arrhythmia classification by multi-layer
Perceptron and convolution neural networks. Bioeng. (Basel) 5 (2), 35. doi:10.3390/
bioengineering5020035

Shyamli, P. S., Pradhan, S., Panda, M., and Parida, A. (2021). De novo whole-genome
assembly of moringa oleifera helps identify genes regulating drought stress tolerance.
Front. Plant Sci. 12, 766999. doi:10.3389/fpls.2021.766999

Sohn, J. I., and Nam, J. W. (2018). The present and future of de novo whole-genome
assembly. Brief. Bioinform 19 (1), 23–40. doi:10.1093/bib/bbw096

Šošić, M., and Šikić, M. J. B. (2017). Edlib: a C/C++ library for fast, exact sequence
alignment using edit distance. Bioinformatics 33 (9), 1394–1395. doi:10.1093/
bioinformatics/btw753

Tang, A. D., Tang, S. Q., Han, T., Zhou, H., and Xie, L. (2021). A modified slime
mould algorithm for global optimization. Comput. Intell. Neurosci. 2021, 2298215.
doi:10.1155/2021/2298215

Vaser, R., and Sikic, M. (2021). Time- and memory-efficient genome
assembly with Raven. Nat. Comput. Sci. 1 (5), 332–336. doi:10.1038/s43588-021-
00073-4

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need, 30.

Vrček, L., Bresson, X., Laurent, T., Schmitz, M., Kawaguchi, K., and Šikić, M. J. b.
(2024). Geometric deep learning framework for de novo genome assembly. 2024.2003.
2011.584353.

Vrček, L., Bresson, X., Laurent, T., Schmitz, M., and Šikić, M. J. a.p.a. (2022). Learning
to untangle genome assembly with graph convolutional networks.

Wang, B., Yang, X., Jia, Y., Xu, Y., Jia, P., Dang, N., et al. (2022a). High-quality
Arabidopsis thaliana genome assembly with Nanopore and HiFi long reads. Genomics
Proteomics Bioinforma. 20 (1), 4–13. doi:10.1016/j.gpb.2021.08.003

Frontiers in Genetics frontiersin.org10

Luo et al. 10.3389/fgene.2024.1495657

https://www.frontiersin.org/articles/10.3389/fgene.2024.1495657/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1495657/full#supplementary-material
https://doi.org/10.1093/bioinformatics/btad208
https://doi.org/10.1109/TMI.2022.3222093
https://doi.org/10.1038/s41592-024-02269-8
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1038/s41587-022-01261-x
https://doi.org/10.3390/s23104803
https://doi.org/10.1093/bib/bbac195
https://doi.org/10.1186/s12859-023-05216-0
https://doi.org/10.1186/s12859-023-05216-0
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1093/bioinformatics/btw011
https://doi.org/10.1093/bioinformatics/btw011
https://doi.org/10.1089/cmb.1995.2.291
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1038/s41576-024-00718-w
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1073/pnas.1604560113
https://doi.org/10.1186/s12859-021-04499-5
https://doi.org/10.1038/nature03959
https://doi.org/10.1101/gr.234443.118
https://doi.org/10.1093/bioinformatics/bty266
https://doi.org/10.1093/bioinformatics/bti675
https://doi.org/10.1007/s10126-024-10325-9
https://doi.org/10.1126/science.287.5461.2196
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1101/gr.263566.120
https://doi.org/10.1101/gr.263566.120
https://doi.org/10.1093/nargab/lqac092
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1093/bioinformatics/btab004
https://doi.org/10.1038/s41587-023-01662-6
https://doi.org/10.3390/biology12070997
https://doi.org/10.3390/bioengineering5020035
https://doi.org/10.3390/bioengineering5020035
https://doi.org/10.3389/fpls.2021.766999
https://doi.org/10.1093/bib/bbw096
https://doi.org/10.1093/bioinformatics/btw753
https://doi.org/10.1093/bioinformatics/btw753
https://doi.org/10.1155/2021/2298215
https://doi.org/10.1038/s43588-021-00073-4
https://doi.org/10.1038/s43588-021-00073-4
https://doi.org/10.1016/j.gpb.2021.08.003
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

Wang, J., Veldsman, W. P., Fang, X., Huang, Y., Xie, X., Lyu, A., et al. (2023).
Benchmarking multi-platform sequencing technologies for human genome assembly.
Brief. Bioinform 24 (5). doi:10.1093/bib/bbad300

Wang, M. Y. (2019). “Deep graph library: towards efficient and scalable deep
learning on graphs,” in ICLR workshop on representation learning on graphs and
manifolds.

Wang, T., Antonacci-Fulton, L., Howe, K., Lawson, H. A., Lucas, J. K., Phillippy, A.
M., et al. (2022b). The Human Pangenome Project: a global resource to map genomic
diversity. Nature 604 (7906), 437–446. doi:10.1038/s41586-022-04601-8

Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P. C., Hall, R. J., Concepcion, G. T.,
et al. (2019). Accurate circular consensus long-read sequencing improves variant
detection and assembly of a human genome. Nat. Biotechnol. 37 (10), 1155–1162.
doi:10.1038/s41587-019-0217-9

Yang, H., Zhao, M., Yuan, L., Yu, Y., Li, Z., and Gu, M. (2023). Memory-efficient
transformer-based network model for traveling salesman problem. Neural Netw. 161,
589–597. doi:10.1016/j.neunet.2023.02.014

Yun, S., Jeong, M., Yoo, S., Lee, S., Yi, S. S., Kim, R., et al. (2022). Graph transformer
networks: learning meta-path graphs to improve GNNs. Neural Netw. 153, 104–119.
doi:10.1016/j.neunet.2022.05.026

Zhang, T., Zhou, J., Gao, W., Jia, Y., Wei, Y., and Wang, G. (2022). Complex genome
assembly based on long-read sequencing. Brief. Bioinform 23 (5). doi:10.1093/bib/
bbac305

Zhao, Y., Zhao, Y., Gong, Q., and Wang, Z. (2023). Graph transformer with
convolution parallel networks for predicting single and binary component
adsorption performance of metal-organic frameworks. ACS Appl. Mater Interfaces
15 (42), 49527–49537. doi:10.1021/acsami.3c10951

Frontiers in Genetics frontiersin.org11

Luo et al. 10.3389/fgene.2024.1495657

https://doi.org/10.1093/bib/bbad300
https://doi.org/10.1038/s41586-022-04601-8
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1016/j.neunet.2023.02.014
https://doi.org/10.1016/j.neunet.2022.05.026
https://doi.org/10.1093/bib/bbac305
https://doi.org/10.1093/bib/bbac305
https://doi.org/10.1021/acsami.3c10951
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1495657

	GTasm: a genome assembly method using graph transformers and HiFi reads
	1 Introduction
	2 Methods
	2.1 Generating initial assembly graph
	2.2 Feature Extraction
	2.3 Scoring the edges in the assembly graph
	2.4 Obtaining assembly paths and contigs
	2.5 Model training
	2.5.1 Dataset
	2.5.2 Training

	3 Results
	4 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

