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Recent advancements in deep learning, particularly large language models
(LLMs), made a significant impact on how researchers study microbiome and
metagenomics data. Microbial protein and genomic sequences, like natural
languages, form a language of life, enabling the adoption of LLMs to extract
useful insights from complex microbial ecologies. In this paper, we review
applications of deep learning and language models in analyzing microbiome
and metagenomics data. We focus on problem formulations, necessary datasets,
and the integration of language modeling techniques. We provide an extensive
overview of protein/genomic language modeling and their contributions to
microbiome studies. We also discuss applications such as novel viromics
language modeling, biosynthetic gene cluster prediction, and knowledge
integration for metagenomics studies.
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1 Introduction

The study of microbiomes and metagenomics has significantly advanced our
understanding of microbial communities and their complex interactions within
hosts and environments. The microbiome refers to the collective genomes of
microorganisms residing in a specific habitat, such as human body sites (e.g., gut,
skin, airway) and environments (e.g., air, soil, water). Metagenomics research involves
the direct profiling and analysis of these microbial communities’ genomic sequences,
bypassing the need for isolating and culturing individual members. This approach
allows for a comprehensive assessment of microbial diversity, functions, and dynamics
within their natural contexts.

The complex dependency encoded in metagenomic sequences represents gene/protein-,
organism-, and community-level biological structures and functions. Examples include
residue-residue contact patterns for protein 3D structures, functional relationship between
genes and their regulatory, non-coding counterparts (e.g., promoters, enhancers), mobility
for horizontal gene transfers, and genome-scale organization of functional modules (e.g.,
operons and biosynthetic gene clusters). Such dependency patterns, when interrogated at
the revolutionary scale (i.e., encompassing many diverse organisms and environments), can
capture fundamental biological properties as shaped over time by evolutionary processes,
thus representing a meaningful “language of life”. On the other hand, the availability of
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microbial genomic sequences, both annotated and unannotated for
biological properties [e.g., UniRef, Suzek et al. (2007); MGnify;
Richardson et al. (2023)], drastically increased over the past
decade due to advancements in next-generation sequencing
protocols, bioinformatics, and computational capacities. The
availability of these metagenomic “big data” suggests that, given
capable modeling architecture and capacity, microbiomes’
evolutionary and functional dependency structures can be
computationally learned, represented, and utilized for studying
the microbiome.

To this end, advances in powerful artificial intelligence (AI)
methods regarding the design and training of highly complex, large-
scale deep learning models have been adopted to characterize
microbial genes and genomes from large-scale metagenomic
sequences, offering powerful tools for extracting, interpreting,
and integrating complex microbiome data (Hernández Medina
et al., 2022). In particular, inspired by the recent breakthrough of
large language models (LLMs) in dealing with natural language
tasks, similar methods have been developed and applied for
modeling protein and genomic languages of life. To avoid
conflating nomenclature, we reserve “LLM” in this review
exclusively for large language models [e.g., ChatGPT (Liu Y.
et al., 2023)] and instead use terms such as “protein language
model” and “DNA language model” to more explicitly refer to
genomic sequence models. Indeed, whereby natural languages are

organized in sequential words and phrases which form the basic
units of modeling (“tokens”), microbial genomic elements are
similarly organized as sequences of nucleotide base pairs (for
genomic DNA) or amino acids (AA, for proteins). Given the
complexity of genomic dependency structures, metagenomic
research was fast to adopt advanced language modeling
techniques for studying microbial community sequences, with
models spanning different genomic scales (microbial proteins,
contigs, genomes, and communities) and designed for a variety
of tasks (Figure 1), yielding promising performance improvement
and novel applications.

This review aims to provide a survey of recent developments in
deep learning and language modeling for analyzing microbiome and
metagenomics data. We focus on problem formulation, the datasets
required to address these questions, and how sequence-based
language models are integrated into deep learning algorithms. In
Section 2, we briefly discuss the typical language model architecture
from recent LMM breakthroughs and how they can be applied
towards genomic sequence modeling. We discuss in Section 3 two
broad classes of language models for microbiome studies, namely,
protein language models and DNA/genomic language models,
distinguished by their drastically different range of genomic
“contexts” for sequence dependency structures. We then review
three specific applications of high interests to the field in Sections
4–6, namely, novel viromics language modeling, models for

FIGURE 1
Review of protein/DNA/genomic language models as applied to metagenomic studies. (A) Protein and genomic sequences share similar properties
as natural language sequences, with amino acids or neucleotides as units of sequences (“tokens”). The complex dependency structure of protein/gene-
level or genomic-scale sequences can then be modeled by language model techniques, such as transformer-based attention mechanism for various
downstream tasks. (B) Review of encoder- and decoder-style transformer attention mechanisms and their applications in metagenomic studies.
Decoder-style model architecture (similar to that of BERT) aims to provide a meaningful representation of genomic sequences and is useful for
downstream predictive tasks. Encoder-style model architecture (similar to that of ChatGPT) generates new sequences given past tokens and is most
useful for generative tasks such as novel protein design.
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predicting biosynthetic gene clusters (BGCs), and knowledge
integration in metagnomics studies aided by natural language
LLMs. We conclude with prospective remarks and discussions
in Section 7.

2 Brief review of LLMs and their
extension towards modeling the
language of life

LLMs are advanced foundation models specifically designed to
understand and generate human language. They can perform a wide
range of natural language processing (NLP) tasks, such as question-
answering, information extraction, and text summarization (Chang
et al., 2024; Li et al., 2024). The scalability, versatility, and contextual
understanding of LLMs can be attributed to two key factors. First,
LLMs are trained on massive datasets that encompass diverse
linguistic patterns, enabling them to learn complexities and
nuances in languages as sequences of tokens (i.e., words and
phrases). Second, LLMs are built on the transformer architecture,
which consists of an encoder and a decoder and uses self-attention
mechanisms to process input sequences. The attention mechanism
efficiently encodes dependency structures of sequential tokens,
vastly increases the learnable lengths of long-range dependencies,
and encodes tokens and sequences accounting for their upstream
and downstream neighboring “contexts”. This allows for efficient
processing of sequential data, enabling LLMs to provide meaningful
representation of input text and generate coherent and contextually
relevant output text based on input prompts (Vaswani et al., 2017).

Inspired by LLMs, language models in microbiome research
often employ a similar architectural design (Figure 1). These
language models of genomic sequences (Ligeti et al., 2024; Shang
et al., 2023; Mardikoraem et al., 2023) thus provide an improved
representation of sequences with richer context and can be scaled up
to and trained at impressive complexities (up to billions of model
parameters). Such models often include a transformer encoder
component that processes input sequences—such as protein or
DNA sequences—and converts them into high-dimensional
representations that capture essential features of input sequences
in their contexts. The attention mechanism in these models assigns
different weights to various parts of the sequence, characterizing
dependency structures shaped over evolution and allowing the
model to focus on relevant regions. This focus ensures that the
model prioritizes areas within a sequence that are most significant
for biological interpretation. Similar to the application of BERT for
various natural language tasks (Devlin, 2018), the encoded
representation can then be used for tasks such as contextualizing
microbial genes and genomic sequences in their broader genomic
neighborhoods (Hwang et al., 2024), predicting the structure and
functions of protein given their sequences (Lin et al., 2023), and
segmentation and identification of specific regulatory elements
across microbial genomes (Zhou et al., 2023). In comparison,
decoder-style models focus on generating output sequences, given
the encoded representation of past sequence tokens. This is more
similar to GPT-style LLMs (Brown, 2020), whereby the task towards
microbiome application often involves the generation of new,
functional, and viable protein sequences (Ferruz et al., 2022;
Madani et al., 2023; Jin et al., 2024).

3 Language modeling of proteins,
contigs, and genomes of the
microbiome

To facilitate the survey, we categorize existing language models
for metagenomic sequences into two classes: (1) models on the
protein/gene scale and (2) those on the genome scale. The first,
which we term protein language models (Table 1), fits well within the
context length for transformers since microbial proteins are
generally under 1,000 AAs (tokens). In contrast, DNA or genomic
language models (Table 2) often require additional techniques to
extend their operating ranges due to the large scale of microbial
contigs or whole genomes. For example, the bacterial genome
typically ranges from 0.5 to 10 million base pairs, a scale that
often far exceeds the context window of transformers. In
addition, the two classes target different applications: protein
language models are used for designing and predicting individual
proteins, while DNA/genomic language models examine genes and
proteins within their broader genomic contexts as well as
intergenic regions.

3.1 Protein language models for novel
protein generation

Existing protein language models applied towards microbiome
studies are summarized in Table 1. We highlight two specific
applications, namely, the generation of novel proteins and the
prediction of their functions and structures. The dependency
structure of amino acids across known microbial proteins is
learned and utilized to generate artificial, potentially novel
protein sequences by protein language models such as ProGen
(Madani et al., 2023) and ProtGPT2 (Ferruz et al., 2022). This is
performed in an autoregressive fashion, often with decoder-only
architecture similar to that of the GPT language models, whereby the
likely AA at the next position is predicted given the sequence of
preceding residues. If trained across a sufficiently large variation of
raw occurring microbial protein spaces (millions or more protein
sequences), models with enough flexibility can learn the inherent
evolutionary patterns that natural protein sequences harbor and
thus generate artificial proteins that are functionally viable like
natural proteins.

To this end, ProtGPT2 was based on the GPT-2 architecture and
trained on 50 million sequences spanning the entire protein space.
Proteins generated by the model in return displayed propensities of
amino acid sequences akin to those of natural proteins, but can still
cover under-explored protein sequence regions. ProGen and its
iteration (Nijkamp et al., 2023) performed similar modeling
tasks, and additionally (1) allowed the inclusion of “tags” to
specify protein properties for generating proteins in a more
controllable fashion, and (2) experimentally verified that model-
generated de novo protein sequences were sufficiently distinct from
natural proteins but demonstrated functional viability comparable
to them. Of note, while these models were typically trained to cover
the universal protein space (e.g., UniRef-50), both models highlight
good coverage of microbial protein properties. ProGen specifically
validated the antibacterial functional property of its generated novel
proteins that were comparable to natural lysozymes.
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3.2 Protein language models for function
and structure prediction

Related to, but different from the task of generating novel
protein sequences, prediction-focused protein language models
are primarily concerned with predicting proteins’ biological
properties (e.g., 3D structures, functions) based on their AA
residue sequences. Encoder-style language model architectures
such as that of BERT are of particular relevance, as these models
aim to learn the best representation of each token (i.e., AA) given the
broader sequence context and thus can represent entire sequences in
a meaningful, efficient manner. For example, Elnaggar et al. (2022)
developed several LMs for protein sequences, including two auto-
regressive models (Transformer-XL, XLNet) and four auto-encoder
models (BERT, Albert, Electra, T5) on data from UniRef and BFD
containing up to 393 billion amino acids. Transformer Uniref90 MT
from the Protein BERT project can be downloaded from the project
GitHub repository (https://github.com/nadavbra/protein_bert) and
protein sequences are embedded using the function in the protein
Bert python package. Such representations can then be fed as the
input to downstream predictive models, often also realized with
neural networks (NN), for various tasks.

For predicting protein structures, with scaling language models
from 8 million to 15 billion parameters, the ESM-2 model (Lin et al.,
2023) effectively internalizes evolutionary patterns directly from
protein sequences. The learned attention patterns provided a low-
resolution protein structure, corresponding to residue-residue
contact maps. This was further combined with a downstream
predictive module to form the ESMFold model, which offers
direct inference from sequence to protein 3D structures and
achieved comparable performances as SOTA protein structure
prediction models (e.g., AlphaFold2). Of relevance to the
microbiome, the authors applied their model to construct an

atlas of predicted structures of over 600 million metagenomic
protein sequences. Another group of predictive tasks aims to
mine biological functions based on protein sequences. As a
representative, Ma et al. (2022) focused on predicting
antimicrobial peptides (AMPs) as products of the gut
microbiome. They constructed the best combination over several
language models, including one of the BERT architecture, to
computationally mine AMP candidates from gut metagenomic
studies. With additional computational filtering and experimental
validation, they demonstrated that identified candidates were
effective against multi-drug-resistant bacteria and demonstrated
microbial membrane disruption in mechanistic studies. Such
studies represent the potential of language model-aided
computational efforts toward human and environmental
microbiome studies for high-throughput mining of microbial
structural and functional properties.

3.3 DNA language models at the
genomic scale

The full review of DNA/genomic language models is provided in
Table 2. As discussed above, microbial genomes have drastically
increased scales compared to single genes or proteins. Genomic
sequences also possess much sparser biological information than
proteins, containing intergenic regions with both functional and
junk DNA elements. The DNA sequence vocabulary also only
consists of four different types of nucleotides, less than the
20 different AAs that typically constitute protein sequences. As
such, language models that operate on the genome scale require
additional considerations than protein models and can be further
divided into two categories. The first type, often termed in literature
as DNA language models, focuses on modeling DNA sequences

TABLE 1 Protein language models.

Model Model architecture Usage Relevance to the
microbiome

Additional notes

Antimicrobial peptide
(AMP) prediction Ma
et al. (2022)

The best combination of LSTM,
attention-based and BERT models

Identifying candidate AMPs
from human microbiome data
that were further validated
experimentally

Training/validation data and
application focus on bacterial
peptides

AMPs predicted through best
ensemble of different prediction
models, suggesting robustness of
findings

ProtGPT2 Ferruz et al.
(2022)

Transformer decoder model that
matches that of GPT2

Generating novel proteins Universal training and
validation sequences include
microbial proteins

Byte Pair Encoding (BPE)
tokenization improves model
performance

ProGen Madani et al.
(2023);
Progen2 (Nijkamp et al.,
2023)

Standard transformer decoder with
left-to-right causal masking

Generating viable and novel
proteins with controlled
functions

Universal training and
validation sequences includes
microbial proteins
Generated viable and
experimentally validated
antibacterial proteins

Model size study suggests even huge
models (>6 billion parameters) are
far from overfitting. Suggested
model can traverse protein space
underexplored in naturally observed
sequences

ESM-1b Rives et al.
(2021);
ESM-2, ESMFold (Lin
et al., 2023)

ESM-1b/ESM-2: BERT-like masked
token architecture;
ESMFold: Folding NN (based on
ESM-2 representations) composed of
folding blocks + structure prediction
module

ESM-1b/ESM-2 provides
meaningful sequence
representations
ESMFold provides fast and
accurate prediction of protein
3D structure based on
sequences

Universal training and
validation sequences include
microbial proteins
Provides database with
prediction of large number of
metagenomic protein
sequences

Protein sequence attention pattern
can predict structural residue
contact probability in a zero-shot
fashion
Language model architecture allows
faster structure prediction compared
to SOTA models based on multiple
sequence alignment
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truly on the full genome scale of organisms, e.g., DNABERT (Zhou
et al., 2023), Nucleotide Transformer [NT, Dalla-Torre et al. (2024)].
As such, they adopt techniques such as specialized tokenization,
alternative attention patterns, and hierarchical modeling
architecture to drastically extend model contextual lengths. An
important advantage of this approach is that it allows for the
representation and identification of non-coding functional
elements on the DNA (e.g., promoters).

Tasked with the ambitious goal of providing a generic,
“foundation” model for genomes, models such as the DNABERT
and NT aim to provide meaningful, contextualized representations

of genome-scale DNA sequences that can be used to predict their
functional properties and molecular phenotypes. Trained on
genomes spanning hundreds of organisms (including genomes
from microbial species) and based on encoder-style model
architectures, these models are then utilized towards tasks such
as predicting genomic elements (promoter, enhancer, transcription
factor, epigenetic marks) and differentiating microbial species.
While studies of human genomes are still the focus, they do
demonstrate transferrable of learned representations across
species to metagenomes, as well as improved model performance
when the combination of diverse genomes was included during

TABLE 2 DNA/genomic language models.

Model Model architecture Usage Relevance to the
microbiome

Additional notes

DNABERT Ji et al.
(2021);
DNABERT-2
(Zhou et al., 2023)

Encoder-only transformer
architecture with masked modeling
DNABERT-2 incorporates new
techniques such as Attention with
Linear Biases to increase context
length and Flash Attention to
increase computation and memory
efficiency

Human (DNABERT) and multi-
species (DNABERT-2) for
representing genomic nucleotide
sequences applicable for
downstream tasks
Demonstrated utilities in various
tasks: genomic element prediction
(promoter, enhancer,
transcription factor, epigenetic
marks), microbial species
classification

DNABERT-2 training/validation
based on multi-species genomes
including bacteria and fungi
Evaluated for microbial gnomic
element prediction and species
classification

Also provides system of
benchmarking tasks for evaluating
DNA language models
BPE tokenization improves model
performance

gLM Hwang et al.
(2024)

RoBERTa-based transformer
architecture
Genes (embedding from ESM-2)
are tokens and microbial contigs
(15–30 genes) are sequences

Enriching microbial genes’
representations with longer-range
genomic context. Providing
contextualized gene function
prediction and characterizing
higher-order genomic features

Training/validation data and
application focus on microbial
genomes

“Contextualization” learns
representations of microbial genes in
their longer-range genomic contexts,
encoding enriched genomic
information such as mobility for
horizontal gene transfer and operon
membership

NT Dalla-Torre
et al. (2024);
SegmentNT (de
Almeida et al.,
2024)

NT: encoder-only transformer
architecture with masked modeling
SegmentNT: a segmentation NN
head based on NT embedding

NT provides human-focused and
multi-species (DNABERT-2)
representation for genomic
nucleotide sequences applicable
for downstream tasks
SegmentNT specializes in
predicting genomic elements
based NT representation

NT has multi-species version
incorporating bacterial and fungal
genomes
SegmentNT does not incorporate
microbial genomes

Performance of multi-species model
was demonstrated to match or
outperform human-only model on
tasks specific for human genomes

Species-aware DNA
language models
Karollus et al.
(2024)

Standard DNABERT architecture
was adopted

(a) to learn meaningful species-
specific and shared regulatory
features across evolution (b) to
transfer these features to unseen
species

Trained on non-coding regions
from >800 fungal species spanning
over 500 million years of evolution

Focus on non-coding DNA and
regulatory elements

FGBERTDuan et al.
(2024)

Joint objectives of (a) masked gene
modeling with a context-aware
tokenizer and (b) contrastive
learning with data augmentation
and negative sampling to capture
the functional relationships
between genes

Downstream tasks include gene
operons, functional genes,
genome pathogenes, and nitrogen
cycle prediction

Pre-trained on 100 million
metagenomic sequences

First metagenomic pre-trained
model encoding (a) context-aware
and (b) function-relevant
representations of metagenomic
sequences. Protein-based gene
representations converted from the
DNA sequence from metagenomic
sequences, to protein sequence using
ENA, and then to ESM-2
representations

ProkBERT family
Ligeti et al. (2024)

Encoder-only masked language
modeling with the newly
introduced Local Context-Aware
(LCA) tokenization

Generate nucleotide sequence
representation. Applied
downstream tasks include (a)
bacterial promoter prediction and
(b) bacteriophage identification

Bacteriophages have a significant
role in the microbiome, influencing
host dynamics and serving as
essential agents for horizontal gene
transfer

The implementation of masked
languagemodeling (MLM) with LCA
requires slight variations in masking
tokens: to prevent trivial restoration
from locality, the model needs to
ensure neighboring tokens to be
masked as well
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model training. On more reduced scales, microbial DNA
language models are focused on learning the genomic pattern
of specific organisms and specific genomic elements. Karollus
et al. (2024) for example trained a DNABERT-like model
specifically for non-coding regions up- and down-stream of
gene sequences from fungal species, and demonstrated that the
learned sequence representations can capture motifs and
regulatory properties of these elements, in contrast to the
background and non-coding sequences. While current DNA
language models are still limited in training data and model
capacity (the NT at its largest scale was trained with 2.5 billion
parameters on 850 species) to truly operate as the foundational
representation of diverse genomes, we anticipate significant
progress in the near future aided by rapid development on
language model scales and computational power.

3.4 Genomic languagemodels contextualize
genes and gene clusters

Alternatively, another group of metagenome language models
examines medium-to long-range contexts between genes, often
operating on the contig scale and excluding intergenic sequences.
We term these as genomic models as an intermediate approach
between protein and DNA language models. These models often
adopt hierarchical scaffolding across genes (genes themselves are
embedded by protein language models), to provide a
contextualized and richer representation of genes in their
broader genomic neighborhood. Gene properties such as their
differential functions across microbes and genome/community-
scale organization (horizontal gene transfer, operon membership)
can then be further interrogated, which is not possible in protein
language models where they are modeled in isolation from
each other.

In comparison to full-scale DNA language models, genomic
language models such as the gLM (Hwang et al., 2024) and FGBERT
(Duan et al., 2024) instead focus on contig-to genome-scale
organization of microbial genes (see Table 2). gLM, for example,
adopts EMS-2 protein embeddings for each gene and models their
genomic dependency structures on the contig (15–30 genes in
length) scale. This enables, first, the enrichment of each gene’s
embedding in its broader genomic texts. Genes’ “higher-order”,
genome- and community-level functional properties can be further
delineated that are indistinguishable from protein-scale language
modeling alone, such as differential gene functions in different
biomes and microbial species, as well as their self-mobility in
horizontal gene transfer events across genomes. Secondly, the
organization of gene clusters in linkage with each other on the
genome can also be represented, whereby subsets of model attention
patterns from gLM and FGBERT both demonstrated
correspondence with operon memberships. The longer-scale
organization of biosynthetic gene clusters is also relevant and
discussed in a dedicated section as a specialized task. As
population-scale studies of the microbiome often focus on gene-
or pathway-level sample profiles, such genomic language models
provide practical intermediate solutions to enrich microbiome
studies using recent language model advancement with microbial
gene elements’ broader genomic contexts.

4 Language models for virome
annotation and virome-host
interactions

The human virome consists of eukaryotic viruses that infect
eukaryotic cells and prokaryotic viruses, also known as
bacteriophages, that infects and replicates within bacteria and
archaea. The gut virome is a vital component of the human gut
microbiome, consisting mainly of viruses that infect bacteria
(bacteriophages or phages), along with other viral species that
may infect eukaryotic cells. The virome plays a crucial role in
maintaining gut health by influencing the bacterial population
dynamics, shaping immune responses, and potentially affecting
the overall metabolic environment of the gut.

Metagenomic sequencing of the gut microbiome provides a
wealth of information for identifying viruses, especially
bacteriophages, which are key players in viral-bacterial
interactions. One important method for studying these
interactions is through CRISPR spacers, which serve as a
molecular record of past viral infections in bacterial genomes.
CRISPR-Cas systems are a bacterial immune defense mechanism
that targets invading bacteriophages (Dion et al., 2021). There has
been significant interest in applying recently developed protein or
DNA sequence language models in virome sequence identification
and annotation, as well as in building predictive models for virus-
bacterium interactions based on sequence data.

4.1 Virome sequence annotation and
identification

Annotation of viral genomes in metagenomic samples is a
crucial first step in understanding viral diversity and function.
Current annotation approaches primarily rely on sequence
homology methods, such as profile Hidden Markov Model
(pHMM)-based approaches. However, these methods are limited
by the scarcity of characterized viral proteins and the significant
divergence among viral sequences. To address these challenges,
Flamholz et al. (2024) applied curated virome protein family
(VPF) databases alongside recently developed protein language
models (PLMs). They demonstrated that PLM-based
representations of viral protein sequences can capture functional
homology beyond the reach of traditional sequence homology
methods. Their reference annotations were derived from the
Prokaryotic Virus Remote Homologous Groups (PHROGs)
database, a curated library of VPFs designed to detect remote
sequence homology. PHROGs are manually annotated into high-
level functional categories and contains 868,340 protein sequences
clustered into 38,880 families, of which 5,088 are assigned to
9 functional classes. Using these data, Flamholz et al. (2024)
showed that PLM-based representations of viral proteins can
effectively predict their functions, even in the absence of close
sequence homologs.

Peng et al. (2024) developed a viral language model (ViraLM)
that adapts the genome foundationmodel DNABERT-2 (Zhou et al.,
2023) for virus detection by fine-tuning the model for a binary
classification of novel viral contigs in metagenomic data.
DNABERT-2 is pre-trained on a vast array of organisms,
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acquiring valuable representations of DNA sequences, which is
particularly useful for distinguishing viral sequences from those
of other species. To adapt the genome foundation model for virus
detection, they fine-tuned this model for a binary classification task
with two labels: viral sequences vs. others, where they constructed a
substantial viral dataset comprising 49,929 high-quality viral
genomes downloaded from the NCBI RefSeq, spanning diverse
taxonomic groups as positive samples. The negative data
(245,734 non-viral sequences) are complete assemblies of
bacteria, archaea, fungi, and protozoa, also downloaded from the
NCBI RefSeq. The genomes are randomly cut into short contigs
ranging from 300 to 2000 bp to minic variable-length contigs in the
metagenomic data. They observed that the model initialized using
the pre-trained foundation model converges faster and performs
better in virus contig identification.

4.2 Deep learning and LLM methods for
virome-host interaction

One important problem in virome research is to predict which
viruses can infect which hosts, a crucial step for understanding how
viruses interact with hosts and cause diseases. Virome-host
interactions also play a crucial role in understanding and
defining phage therapy, which uses bacteriophages to treat
bacterial infections.

Currently, there are no high-throughput experimental methods
that can definitively assign a host to the uncultivated viruses. A
number of computational approaches have been developed to
predict unknown virus-host associations. The coevolution of a
virus and its host left signals in their genomes, which have been
exploited for computational prediction of virus-host associations.
The alignment-based approaches search for homology such as
prophage (Roux et al., 2015) or CRISPR-cas spacers (Staals and
Brouns, 2013; Horvath and Barrangou, 2010). Algorithms like the
Basic Local Alignment Search Tool (BLAST) are commonly used to
align viral sequences with host genome sequences to detect
homology. This can reveal conserved regions in viral and host
proteins, such as receptor-binding domains that allow viruses to
enter host cells. In contrast, alignment-free methods use features
such as k-mer composition, codon usage, or GC content to measure
the similarity between viral and host sequences or to other viruses
with a known host. By identifying which viral genomes contain
sequences matching a bacterium’s CRISPR spacers, researchers can
infer potential virus-host interactions. However, this approach is
limited by the set of known CRISPR spacers.

As a comparison, predicting virus-host interactions based on
k-mer matching and codon usage analysis is another powerful
approach for identifying novel viral-bacterial interactions. Codon
usage refers to the frequency with which different codons are used to
encode amino acids in a genome. When a virus’s codon usage
matches that of its host, it suggests that the virus has evolved to
efficiently exploit the host’s translational machinery, enhancing its
ability to replicate within that host. This provides critical
information in predicting potential virus-host interactions. By
performing joint analysis of codon usage and other genomic
features, researchers can achieve more accurate predictions
regarding which host species are susceptible to particular viruses.

Since these genomic features are embedded in the viral or
bacterial genomes, it is possible to learn these features
automatically using machine learning and AI methods. Liu D.
et al. (2023) developed evoMIL for predicting virus-host
association at the species level from viral sequence only. They
used datasets that were collected from the Virus-Host database
VHDB, (https://www.genome.jp/virushostdb/), which contains a
manually curated set of known species-level virus-host
associations collated from a variety of sources, including public
databases such as RefSeq, GenBank, UniProt, and ViralZone and
evidence from the literature surveys (Liu D. et al., 2023). For each
known interaction, this database provides NCBI taxonomic ID for
the virus and host and the Refseq IDs for the virus genomes. The
final data set includes 17,733 associations between 12,650 viruses
and 3,740 hosts that were used to construct binary datasets for both
prokaryotic and eukaryotic hosts. For each of the hosts, an evoMIL
model is built to predict the possible interacting viruses.

Liu D. et al. (2023) then applied the pre-trained ESM-1b model
to transform protein sequences into fixed-length embedding vectors,
which serve as features for downstream binary and multi-class
classification. Additionally, they applied multiple instance
learning (MIL) (Maron and Lozano-Pérez, 1997), where multiple
instances are grouped together with a single label, and are classified
as a whole. They employed attention-basedMIL (Ilse et al., 2018) for
each host. Specifically, for each host, they collected the same number
of positive and negative viruses, and then obtained embeddings of
protein sequences from viruses obtained by the pre-trained
transformer model ESM-1b. To handle the input length of the
PLMs, they split the protein sequences of viruses to sub-
sequences for generating embeddings. An attention-based MIL
was applied to train the model for each host dataset using the
protein feature matrices of viruses. The resulting models can be used
to predict whether a new virus interacts with a host for which a
corresponding predictive model has been developed.

In addition to species-level virus-bacterium interaction
prediction, Gaborieau et al. (2023) introduced a novel dataset
and prediction model that focuses on phage-bacteria interactions
at the strain level, utilizing genomic data of 403 natural,
phylogenetically diverse, Escherichia strains and
96 bacteriophages. Their findings highlight that bacterial surface
structures, such as lipopolysaccharides (LPS) and capsules, play a
critical role in determining these interactions. Specifically, they
identified bacterial surface polysaccharides as key adsorption
factors that significantly enhance the accuracy of interaction
predictions. This offers a valuable dataset for developing phage
cocktails to combat emerging bacterial pathogens.

5 Deep learning and language models
for prediction of biosynthetic
gene clusters

Microbial secondary metabolites are chemical compounds that
exhibit a broad range of functions and have great potential in
pharmaceutical applications, such as antimicrobial agents and
anticancer therapies. These bioactive small molecules are usually
encoded by clusters of genes along the bacterial genome known as
Biosynthetic Gene Clusters (BGCs). Although accurate,
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experimental validation of BGCs is laborious and costly. High-
througput sequencing techniques, alongside advanced genome
assembly algorithms, have enabled people to access the vast
amount of bacterial genomic data. The genomic sequence data
serves as a rich resource for BGCs mining, allowing researchers
to better understand the functional potential of bacteria and discover
new secondary metabolites or natural products.

Machine learning-based algorithms have been developed for the
detection of BGCs in microbial genomes. antiSMASH (Medema
et al., 2011) identifies candidate BGCs through multiple sequence
alignment based on the profile hidden Markov model (pHMM)
library constructed from experimentally characterized signature
protein or protein domains, subsequently filtering these
candidates using curated rules based on expert knowledge.
PRISM (Skinnider et al., 2017) employs a similar approach by
searching through an HMM library. ClusterFinder (Cimermancic
et al., 2014) utilizes a hidden Markov-based probabilistic algorithm
to identify known and unknown BGCs. Extending beyond these
methods, MetaBGC (Sugimoto et al., 2019) integrates segmented
pHMM with clustering strategies, making it possible to detect BGCs
directly from metagenomic reads.

Despite the success of existing machine learning-based
algorithms, traditional machine learning models cannot handle
the long-range dependencies between genome sequences and
cannot transfer knowledge from other datasets, thereby resulting
in a lower power of detecting the new BGCs. Several machine
learning frameworks, including those with transformer-type
language modeling architecture, have been developed specifically
for predicting bacterial BGCs. These models leverage advanced
computational techniques to analyze genomic data and identify
regions that encode for biosynthetic pathways. Many existing methods
use sequences of the protein family domains (Pfams) to characterize
the BGCs and bacterial genomics. Proteins are generally composed of
one or more functional regions, commonly termed domains. Different
combinations of domains give rise to the diverse range of proteins
found in nature. The identification of domains that occur within
proteins can therefore provide insights into their function.

5.1 Deep learning methods for BGC
prediction

DeepBGC is a deep learning-based tool that uses a combination
of convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) to predict and classify BGCs in bacterial
genomes. It processes raw genomic sequences to identify BGCs
and provides detailed annotations of their functional components
(Hannigan et al., 2019). e-DeepBGC further extended DeepBGC to
incorporate functional description of protein family domains and to
utilize the Pfam similarity database in data augmentation (Liu et al.,
2022). Pfam also generates higher-level groupings of related entries,
known as clans. A clan is a collection of Pfam entries which are
related by similarity of sequence, structure or profile-HMM. Rios-
Martinez et al. (2023) developed a deep learning model that
leverages self-supervised learning to detect and classify BGCs in
microbial genomes. This approach aims to improve the accuracy
and efficiency of BGC identification and predict the types of natural
products they produce.

5.2 BGC prediction based on
language models

Lai et al. (2023) introduced BGC-Prophet, a neural network
model that leverages natural language processing (NLP) techniques
to analyze genomic sequences as linguistic data, identifying patterns
indicative of biosynthetic gene clusters (BGCs). This innovative
approach enables the model to grasp the complex syntax and
semantics inherent in genetic sequences. The input to BGC-
Prophet consists of embeddings represented by 320-dimensional
vectors, generated through ESM-2 (Lin et al., 2023). The model
architecture integrates convolutional neural networks (CNNs) with
transformer-based models, a hybrid design that effectively manages
the sequential nature of DNA data, thereby enhancing the accuracy
of BGC detection and classification. Table 3 compares these
methods, highlighting the deep learning models and primary data
sources used for training.

Figure 2 illustrates the differences in BGC prediction when
performed at the Pfam level versus the amino acid level. Positive
samples can be derived from segmenting amino acid sequences
within biosynthetic gene clusters (BGCs) in the MIBiG database,
while negative samples can be generated by randomly segmenting
bacterial genomes, excluding sequences similar to known BGCs.
Protein sequences can be obtained directly from genome datasets or
annotated from genome sequences. For Pfam-level prediction,
Pfams are first identified along the protein sequences using
bioinformatics tools, and embeddings for each Pfam are
generated using Pfam2vec. For amino acid-level prediction, pre-
trained protein language models such as ProtBert-BFD embeddings
(Elnaggar et al., 2022) are employed to embed the segmented amino
acid sequences. Once these embeddings are obtained, deep learning
models are applied to assign scores, indicating the probability that
each embedding corresponds to a BGC.

6 Public knowledge integration in
microbiome studies with LLMs

Due largely to the rapid development and growth of
metagenomics research in the last 2 decades, it is well established
that the human microbiome is associated with overall human-host
health. Many of the findings that link the gut microbiome to
complex diseases, such as IBD and Crohn’s Disease, can be
found within individual scientific publications. Manual
aggregation of these results, available in the public domain, into
an organized and searchable repository would be time-prohibitive
and limited to only a small subject of microbes and diseases (Badal
et al., 2019). Such knowledge bases can be used for downstream
analysis and discovery. NLP and text mining approaches can be used
to automate this process.

Automated extraction of microbiome-disease associations from
scientific text requires three steps. First is to identify the disease and
microbe(s) mentioned in the text. This is known as entity extraction,
where the entity is either the disease or microbe. Well-established
algorithms such as Named entity Recognizers (NERs) and linguistic
taggers can be used for this process. The second step is relationship
extraction which aims to establish the existence of a relationship
between a pair of entities (i.e., microbe-disease pair). The final step is
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to refine the categorization of identified relationships into positive or
negative associations. Several statistical models have been developed
for relationship extraction. While each step requires the use of NLP
algorithms, the integration of deep learning and LMMs into steps
two and three are of particular interest recently.

An early example of using deep learning in relationship
extraction comes from Wu et al. (2021). In this work, the
authors apply a pretrained BERE model to identify microbe-
disease associations. BERE is a deep learning model initially
developed for extracting drug-related associations (Hong et al.,
2020). The model is pretrained using a biomedical corpus. The
model converts the text into vector representation using word
embeddings with sentences represented as 200-dimensional
concatenations. Then the recurrent neural network encodes
short- and long-range dependencies, as well as semantic features
using gated recurrent units (GRUs). Finally, a classifier performs
prediction. The prediction task has four possible labels: positive in

which the microbe’s presence will increase when disease occurs,
negative in which the microbe’s presence will decrease when the
disease occurs, relate when the microbe-disease pair occurs together
but the relationship cannot be determined, and NA when there is no
relationship description in the text. The model requires a large
amount of training data. Although, the gold standard of manual
curation is difficult and costly. The authors implement a transfer
learning silver standard corpus, learned with automated tools but
potentially with error, first and then fine tune with the gold standard
manually curated corpus. This transfer learning approach results in
a reduction in the error rate.

Deep learning models like the one just described have been
recently refined to use LLMs like GPT-3 and BERT (Karkera et al.,
2023). The principal advantage of using LLMs in this setting is that
they reduce the requirement for large amounts of training data,
given that they are already pretrained with large amounts of text.
The setting where no fine-tuning or training data is used is known as

TABLE 3 Deep learning methods for BGC prediction.

Algorithm Model Pretraining Level Primary source data

DeepBGC BiLSTM No Pfam BGCs from Cimermancic et al. (2014) + MIBiG

e-DeepBGC BiLSTM No Pfam MIBiG Medema et al. (2015)

BiGCARP ByteNet Yes Pfam antiSMASH Blin et al. (2019) + MIBiG

BGC-Prophet Transformer Yes Amino acids GTDB Parks et al. (2022) + MIBiG

FIGURE 2
A comparison of BGC prediction based on pfam2vec embedding for Pfam level prediction and embedding based on PLMs for amino acid level
prediction.

Frontiers in Genetics frontiersin.org09

Yan et al. 10.3389/fgene.2024.1494474

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1494474


zero-shot learning. Karkera et al. (2023) uses the same positive,
negative, relate, and NA labels as Wu et al. (2021) with their LLMs
and find that zero- and few-shot learners do not perform very well,
particularly with the NA label. Thus indicating that out-of-the-box
implementation of LLMs for identifying microbe-disease
associations is limited. The performance of generative (e.g., GPT-
3) and discriminative (e.g., BERT) models improve with fine-tuning.
The amount of improvement is strongly dependent on the quality of
training data.

7 Discussion

The recent development of deep learning methods, and large
language models in particular, has led to many novel applications
that address significant challenges in microbiome and metagenomic
research. In this paper, we have reviewed the latest applications of
these methods in microbial function analysis, including the
identification of biosynthetic gene clusters in bacterial genomes,
annotation of virome genomes, and prediction of virus-bacteria
interactions. We have also explored the use of generic LLMs, such as
ChatGPT, for extracting microbe-disease associations from public
knowledge. We discuss challenges and future directions below.

7.1 Data underrepresentation, scarcity, and
quality issues

There still remain significant portions of microbial taxa,
functional elements, ecologies, and environments that are poorly
characterized, annotated, or cultured. These will necessarily lack
representations in the “training data” databases for AI-based model.
To further advance this promising research area, it is essential to
focus on both the collection and annotation of datasets from
multiple sources. The integration of diverse datasets—ranging
from genomic sequences to environmental metadata—will
provide a more comprehensive understanding of microbial
communities and their interactions. However, this requires
meticulous data curation, standardization, and the creation of
large, well-annotated datasets that can serve as benchmarks for
training and evaluating deep learning models. Specifically, for each
research area as covered in this review:

• DNA, protein, and genomic language models. Models will
naturally prioritize microbes and microbial genetic elements
from well-studied environments and conditions (e.g., the
human gut). On the other hand, current research has also
demonstrated microbiome genome language models are
capable of traversing genomic and protein spaces that are
entirely unexplored by existing microbiome research. For
example, ProtGPT2 shows that it produces not only
challenging targets but also previously unreported
topologies (Ferruz et al., 2022). As such, microbiome
language models hold the promise to at least partially
cover under-characterized microbes and genes.

• BGC identification. While the models have demonstrated
significant potential, this area still faces notable challenges
from data limitation. The largest experimentally validated

BGCs database, MiBIG 3.0, contains approximately
2,500 entries, which is relatively small for training the AI
models. To address this issue, Rios-Martinez et al. (2023)
expanded the dataset by using the predicted BGCs from
antismash. However, the model’s performance may be
affected by the accuracy of the predicting algorithm and
is subject to prediction bias. Moreover, most validated BGCs
belong to Polyketide and Nonribosomal peptide classes,
leaving the rest of BGC classes underrepresented. The
imbalance in the training set may lead to less prediction
power for less-characterized BGC types. Lastly, there is no
universally accepted approach for constructing negative
samples (non-BGC sequences) for training. Ideally, the
negative samples should resemble true BGCs while
avoiding false positives. The arbitrarily constructed
negative samples may also affect the model performance.
Addressing these issues of data limitation is crucial for
advancing AI-driven BGC discovery and ensuring more
accurate and robust predictions across diverse BGC classes.

• Virome. Unlike bacterial or eukaryotic genomes, viral
genome annotations are limited by the lack of
comprehensive and high-quality reference databases. This
hampers the ability of language models to learn meaningful
representations for virome data. In addition, viruses evolve
rapidly, leading to highly divergent sequences even within
closely related taxa. This makes it challenging for language
models to effectively model and predict conserved
functional elements or interactions. The NIH Human
Virome program is expected to generate a large set of
virome sequences to characterize the human virome in
longitudinal, diverse cohorts across the lifespan, which
can be used to develop virome-specific models. It is also
possible to leverage protein structure predictions (e.g.,
AlphaFold) alongside sequence-based language models to
improve virome functional annotations and virome-bacteria
interaction predictions.

• Public knowledge integration. The automated extraction is
heavily influenced by the quality of training data. Both Wu
et al. (2021) and Karkera et al. (2023) note that predictive
accuracy of such language models is tied to the quality of
training data. Therefore, the existence of high quality gold
standard corpus for training and fine-tuning are key to
model performance.

7.2 Evaluation, interpretation, and validation
of findings

Downstream interpretation and validation of findings are vital
to translate the progress made with microbiome AI research into
biological and clinical progress. This can be facilitated by, first,
benchmarking AI models against existing data resources. For
example, publicly available, high-quality microbiome cohorts,
such as those constructed under the Human Microbiome Project
(Integrative, 2014) and the American Gut Project (McDonald et al.,
2018), should serve as real-world “silver standards” to compare
recent AI models and gauge their capabilities to generate novel
insights in a meaningful application setting. There have also been
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preliminary efforts in assembling and curating computational
benchmarking tasks, such as those from Zhou et al. (2023) and
Marin et al. (2023). These resources aim to compile realistic
biological tasks for analysis of genomes and metagenomes with
known ground truth, thus facilitating fair and meaningful
comparison between AI models. However, given the nascent
nature of the field, such efforts mostly focus on tasks related to
the human genome. In the future, we anticipate the development of
similar benchmarking resources specialized for metagenomics
language models.

Second, wet-lab-based validation of new AI model discoveries is
necessary, which can be realized through biochemistry-based or
model-system-based evaluation approaches. For example, ProGen
tested 100 AI-generated novel gene sequences (sufficiently deviating
from known protein space) with cell-free synthesis and validated
their bioactivity via substrate binding and fluorescence responses
(Madani et al., 2023). MetaBGC purified and solved the structures of
five new type II polyketide molecules as the products of
characterized BGCs, two of which exhibited strong antibacterial
activities (Sugimoto et al., 2019). In the future, we anticipate
increasing cross-disciplinary collaborations to facilitate such
practices, and in particular, the development of standardized
protocols for validating AI-generated findings in real
biological systems.

7.3 Other future directions

7.3.1 Multi-domain integration
The natural large language model research has made striking

progress towards multi-domain data integration, spanning data
modalities such as texts, images, video, and audio (Wang et al.,
2024). For metagenomic AI research, we anticipate the integration
across data domains will become a similar crucial area for future
research. This involves both integrating across multi-omics data
modalities (e.g., metatranscriptomics, proteomics, metabolomics,
host genetics) with metagenomics data, and the integration of
complex biological nuances of microbiome data based on existing
knowledge (interaction of microbes with host genetics, the
environment, and among themselves). Successful LLM techniques
such as knowledge graph integration (Pan et al., 2024) and retrieval-
augmented generation (Zhao et al., 2024) can be potentially
transferred for integration tasks in metagenomics AI models.
Regardless, the capability of large-scale AI models promise their
potential to integrate across diverse microbiome data types and
existing knowledge, providing a more holistic understanding of
microbial functions and interactions.

7.3.2 Computation and model development
Given the model scales and the size of their training data,

computations related to the development of new genomic
language models can become prohibitive in order to achieve
desirable model accuracy. As an example, ESM2 reported that
their largest sized model (15 billion parameters) took 60 days to
train over 512 NVIDIA V100 GPUs (Lin et al., 2023). We anticipate
future research will develop efficient techniques to improve

computational performance, especially for adapting pre-trained
models towards domain-specific tasks (i.e., fine-tuning). To this
end, recently efficient parameter update techniques such as adapter
tuning (Houlsby et al., 2019) and Low-Rank Adaption [LoRA, Hu
et al. (2021)] hold promises. For example, DNABERT-2 adopted
LoRA to efficiently update the model parameters during its fine-
tuning stage (Zhou et al., 2023). On the architectural front, there is a
need to design models that can handle the unique challenges posed
by microbiome and metagenomic data, such as high dimensionality,
sparsity, and complex relationships between microbial species.
Innovations in model architectures, such as graph neural
networks, attention mechanisms, and hierarchical models, could
play a crucial role in capturing the intricate dependencies within the
data. Moreover, these models should be adaptable to the evolving
nature of the datasets, allowing for continuous learning and
refinement as new data becomes available.
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