
ZINQ-L: a zero-inflated quantile
approach for differential
abundance analysis of
longitudinal microbiome data

Shuai Li1, Runzhe Li1, John R. Lee2,3, Ni Zhao1* and Wodan Ling4*
1Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD,
United States, 2Division of Nephrology and Hypertension, Department of Medicine, Weill Medical
College of Cornell University, New York, NY, United States, 3Department of Transplantation Medicine,
New York Presbyterian Hospital–Weill Cornell Medical Center, New York, NY, United States, 4Division of
Biostatistics, Department of Population Health Sciences, Weill Medical College of Cornell University,
New York, NY, United States

Background: Identifying bacterial taxa associated with disease phenotypes or
clinical treatments over time is critical for understanding the underlying biological
mechanism. Association testing formicrobiome data is already challenging due to its
complex distribution that involves sparsity, over-dispersion, heavy tails, etc. The
longitudinal nature of the data adds another layer of complexity - one needs to
account for the within-subject correlations to avoid biased results. Existing
longitudinal differential abundance approaches usually depend on strong
parametric assumptions, such as zero-inflated normal or negative binomial.
However, the complex microbiome data frequently violate these distributional
assumptions, leading to inflated false discovery rates. In addition, the existing
methods are mostly mean-based, unable to identify heterogeneous associations
such as tail events or subgroup effects, which could be important biomedical signals.

Methods: We propose a zero-inflated quantile approach for longitudinal (ZINQ-
L) microbiome differential abundance test. A mixed-effects quantile rank-score-
based test was proposed for hypothesis testing, which consists of a test in mixed-
effects logistic model for the presence-absence status of the investigated taxon,
and a series of mixed-effects quantile rank-score tests adjusted for zero inflation
given its presence. As a regression method with minimal distributional
assumptions, it is robust to the complex microbiome data, controlling false
discovery rate, and is flexible to adjust for important covariates. Its
comprehensive examination of the abundance distribution enables the
identification of heterogeneous associations, improving the testing power.

Results: Extensive simulation studies and an application to a real kidney transplant
microbiome study demonstrate the improved power of ZINQ-L in detecting true
signals while controlling false discovery rates.

Conclusion: ZINQ-L is a zero-inflated quantile-based approach for detecting
individual taxa associated with outcomes or exposures in longitudinal
microbiome studies, providing a robust and powerful option to improve and
complement the existing methods in the field.
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1 Introduction

The human microbiome plays a pivotal role in numerous
diseases and health conditions, including diabetes (Qin et al.,
2012), inflammatory bowel disease (Simrén et al., 2013), and
HIV infections (Nowak et al., 2015). A central focus of
microbiome research is the identification of specific taxa whose
abundances significantly vary across different groups or conditions.
Differential Abundance (DA) analysis offers crucial insights into the
intricate interactions between microbial communities, their hosts,
and their environments. This analysis enables researchers to
discover microbial signatures linked to health and disease states,
assess the effects of treatments or interventions, and accelerate the
identification of potential therapeutic targets.

In past decades, various methods (Ritchie et al., 2015; Robinson
et al., 2010; Love et al., 2014; Martin et al., 2020; Paulson et al., 2013)
have been developed for differential abundance (DA) analysis,
predominantly tailored for cross-sectional studies. In recent
years, longitudinal study designs, which involve collecting
repeated samples from the same subjects over time, are
increasingly employed in microbiome research. Investigators
benefit from the longitudinal studies as they facilitate the
investigation of temporal dynamics of microbial communities,
elucidate the forces that shape and sustain the microbiome, and
thus enable the development and evaluation of microbiota-based
interventions.

However, DA analysis of longitudinal microbiome data is
particularly challenging due to its unique characteristics. The
difficulties inherent to cross-sectional DA methods are also
common in longitudinal studies. For instance, microbiome data
is often sparse with considerable zeros in the Operational
Taxonomic Unit (OTU) table. Additionally, the distribution of
microbiome data tends to be heavy-tailed or skewed, which
complicates modeling assuming parametric distributions. These
challenges persist in longitudinal studies. Beyond these
challenges, longitudinal designs introduce additional complexity
that most DA methods, which do not account for the within-
subject correlation structure, fail to address. While numerous DA
approaches exist for cross-sectional microbiome data, there is a
relative lack of methods accommodating longitudinal designs. In a
recent benchmark study, Yang and Chen (2023) summarized the
existing methods for correlated microbiome data into three broad
categories. The first category employs classic linear mixed-effects
models (LMM) on transformed data, with transformations
including log transformation, centered log-ratio transformation
(CLR), arcsine-square root transformation, etc. For instance, the
default configuration of Microbiome Multivariable Association with
Linear Models (MaAslin2) (Mallick et al., 2021) fits an LMM on the
relative abundance data, and Linear models for Differential
Abundance analysis (LinDA) (Zhou et al., 2022) applies an LMM
to centered log-ratio-transformed data. The second category directly
models the microbial relative abundance using parametric
distributions supported on the interval [0,1], such as the beta
distribution. An example is the two-part zero-inflated beta
mixed-effects model (ZIBR) (Chen and Li, 2016), which fits a
mixed-effects logistic model for the zero component and a
mixed-effects beta regression model for the nonzero component.
The third category encompasses a range of methods that model the

taxonomic count via generalized linear mixed-effects models
(GLMM). For example, Zhang and Yi (2020) proposed a series of
GLMM-based approaches. One of their methods employs the
negative binomial mixed-effects model (NBMM) to model the
OTU counts, and another method extends it to the zero-inflated
negative binomial mixed-effects model (ZINBMM) to accommodate
the inflated zeros. Most of the methods, however, have limitations.
First, they rely on specific probabilistic distributions, such as the
negative binomial or Poisson distributions, which can be easily
violated by the complexity of real microbiome data. Second, these
methods typically identify the mean shift of taxa w.r.t. the clinical
variable of interest, potentially overlooking heterogeneous
associations arising from differences in distribution. For instance,
even if the overall average is similar, differences in distributions
could stem from tail events or subgroup effects that these methods
may fail to detect. Thirdly, as noted by Yang and Chen (2023), many
of these methods struggle to control the false discovery rate (FDR).
Consequently, there is a pressing need for a method that is
distribution-free, powerful, and robust (i.e., with well-controlled
FDR), while also accommodating the correlation structure present
in longitudinal data.

We introduce ZINQ-L, a zero-inflated quantile regression
approach for DA analysis of longitudinal microbiome data.
ZINQ-L extends the ZINQ framework (Ling et al., 2021) by
incorporating adjustments for within-subject correlations in
longitudinal studies. In the first component, a logistic mixed-
effects regression models the zero inflation inherent in
microbiome data, and the second component involves quantile
mixed-effects regression models the nonzero data. Investigating
multiple quantiles of the nonzero part, we utilize a quantile rank-
score test adjusted for zero inflation to derive p-values, which are
then integrated with the p-value from the logistic mixed-effects
model to form the final inference. Unlike traditional methods, our
approach does not rely on specific distributional assumptions and is
compatible with various normalization procedures. Extensive
simulations demonstrate that ZINQ-L achieves well-controlled
type I error, robust FDR control, and superior or comparable
power relative to existing methods. Furthermore, ZINQ-L is
capable of detecting heterogeneous associations arising from
complex mechanisms beyond mere mean shifts. We applied
ZINQ-L to a longitudinal kidney transplant cohort, successfully
identifying promising novel taxa associated with antibiotic
treatments, beyond conventional analysis which we have
previously performed (Dong et al., 2024).

2 Methods

Consider a longitudinal microbiome study comprising m
subjects, with each subject i providing ni repeated measurements.
Consequently, the total number of observations across all subjects is
N � ∑m

i�1ni. The resulting microbiome data is organized into a count
table with dimensions N × K, where K represents the number of
microbial taxa (amplicon sequence variants, operational taxonomic
units, species, genera, or other taxonomic level). For each sample
from subject i and visit j, we let Yijk denote the normalized
abundance (relative abundance, rarefied count, etc.) of taxon k,
and let Sij � (Xij,Z⊤

ij)⊤ denote the covariates, whereXij is the scalar
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phenotype of interest (continuous or dichotomous exposure or
outcome) and Zij � (1, Zij1, . . . , Zij(q−1))⊤ is a q × 1 vector of
adjusting covariates including the intercept. Because ZINQ-L
analyzes individual taxa independently, we will omit the subscript
k in the rest of the paper for simplicity.

2.1 Two-part quantile regression model for
longitudinal data

To model the zero-inflated taxon abundance, we decompose the
conditional distribution as

F Yij|Sij( ) � P Yij � 0|Sij( ) + F Yij|Sij, Yij > 0( ) P Yij > 0|Sij( ),

and model the two components, P(Yij > 0|Sij), the probability of
presence in subject i and visit j, and F(Yij|Sij, Yij > 0), the
conditional distribution of abundance given the taxon is present
in subject i and visit j, separately.

In the first part, we assume the probability of presence to follow a
logistic mixed-effects model that accounts for the within-subject
correlations,

logit P Yij > 0|Sij( ){ } � γXij + Z⊤
ijξ + hLi

where γ, ξ are fixed effects associated with the interested phenotype
and covariates, and hLi ~ N(0, σLh)2 is the subject-specific
random intercept.

In the second part, as an alternative to mean-based methods that
rely on parametric assumptions, a non-parametric quantile-based
model is assumed for the non-zero abundance Yij|Yij > 0. To
account for within-subject correlations, we add the random effect
such that

Yij|Yij > 0 � βXij + Z⊤
ijα + hi + ϵij, (1)

where hi is the subject-specific random intercept without
distributional assumptions, and the error term ϵij has no
distributional assumptions as well. We adopt the marginal
longitudinal quantile regression model (Wang and He, 2007),
which defines uij � hi + ϵij as the composite error and assumes
the τth conditional quantile of uij is zero, i.e.,Quij(τ|Sij, Yij > 0) � 0,
to avoid identifiability issues. Since no distributional assumptions
are made for uij and Equation 1 is quantile-specific, i.e., the quantile
coefficients and error can be represented as β(τ), α(τ), and uij(τ)
and change with the quantile level τ, we can rewrite the quantile
part as

QYij τ|Sij, Yij > 0( ) � β τ( )Xij + Z⊤
ijα τ( ),

where β(τ), α(τ) are fixed effects associated with the interested
phenotype and covariates at the τ’s conditional quantile of the
non-zero abundance, e.g., the conditional median,
QYij(0.50|Sij, Yij > 0), or the third conditional quartile,
QYij(0.75|Sij, Yij > 0). If Yij is a count variable such as the
rarefied count, to break ties and achieve valid inference, we
add a perturbation Wij � Yij + U, U ~ U(0, 1), and model the
conditional quantiles of Wij instead. This is the standard
technique to apply quantile regression for counts (Machado
and Silva, 2005). β(τ) and α(τ) can then be estimated by

minβ,α ∑
m

i�1
∑
ni

j�1
ρτ Yij − βXij − Z⊤

ijα( ) · I Yij > 0( ),

where ρτ(u) � u{τ − I(u< 0)} is the quantile loss function (Koenker
and Bassett Jr, 1978). Though the model specification with the
composite error seems to be the same as the cross-sectional quantile
regression model, the testing procedure will incorporate within-
subject correlations (Section 2.2).

In DA analysis, our goal is to identify individual taxa whose
abundance varies according to the variable of interest over time,
which, based on the two-part longitudinal model, can be decomposed
into whether the taxon’s presence-absence status is associated with X
over time (captured by γ) and whether the distribution of abundance
is associated with X over time given the presence of the taxon
(captured by β(τ), ∀τ ∈ (0, 1)). Mathematically, we can
formulate the DA analysis into the following hypothesis testing.

H0: γ � 0 and β τ( ) � 0, ∀τ ∈ 0, 1( ), (2)
H1: γ ≠ 0 or ∃τ* ∈ 0, 1( ), s.t. β τ*( ) ≠ 0.

To test γ � 0, theWald test or likelihood ratio test (LRT) is readily
available for the logistic mixed-effects regression. Here, we choose LRT
to achieve a better finite-sample power (Paek, 2009; Hauck and
Donner, 1977). However, no existing methods can be directly
applied to test β(τ) � 0 under the zero-inflated longitudinal
quantile regression model. Therefore, we propose a quantile
rank-score test that accounts for both the longitudinal
structure and zero inflation (Section 2.2). To test
β(τ) � 0, ∀τ ∈ (0, 1), we conduct the proposed test at multiple
quantile levels, 0< τ1 < τ2 </< τL < 1, which cover the entire
distribution of the non-zero part and a usual pick could be
τ � 0.10, 0.25, 0.50, 0.75, 0.9. Finally, we use an omnibus test
(Section 2.3) to combine the marginal tests, including both the
longitudinal logistic test and the series of longitudinal quantile
tests, and obtain the final p-value that indicates whether the
taxon’s abundance distribution is differential according to the
interested phenotype over time.

2.2 Zero-inflated quantile rank-score test for
longitudinal microbiome data

Existingtools for longitudinal quantile regression are not
suitable for microbiome studies. Some approaches ignore the
zero inflation, which can lead to an underestimation of the
uncertainty associated with observing non-zero outcomes,
resulting in biased results (Wang and He, 2007). Others (Wang
and Fygenson, 2009) address this issue by analyzing the underlying
unconstrained outcomes within a censored longitudinal quantile
regression framework but do not model the presence-absence
status. These approaches are inapplicable to microbiome data
because both the presence-absence status and the distribution of
non-zero values are of analytical interest. To bridge this
methodological gap, we propose an advanced rank-score test for
β(τ) � 0 within a two-part quantile regression model for
longitudinal data. This novel approach adeptly adjusts for zero
inflation, enhancing the accuracy and reliability of inferences in
scenarios where zero-inflated data are prevalent.
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Since the quantile regression part is restricted to the non-zero
abundances, we let ~Xij � Xij · I(Yij > 0) and ~Zij � Zij · I(Yij > 0)
denote the nominal variables of the interested phenotype and the
adjusting covariates. It follows that ~XN×1 �
( ~X11, ~X12, . . . , ~X1n1, . . . , ~Xm1, ~Xm2, . . . , ~Xmnm)⊤ and ~ZN×q �
(~Z11, ~Z12, . . . , ~Z1n1, . . . , ~Zm1, ~Zm2, . . . , ~Zmnm)⊤ are the design vector
and matrix associated with ~Xij’s and ~Zij’s. We denote
~X* � (I − PZ) ~X, where PZ � ~Z(~Z⊤ ~Z)−1 ~Z⊤

and I is the N × N
identity matrix. This orthogonal transformation ensures the
asymptotic independence between ~X* and ~Z.

We construct a quantile rank score for β(τ) � 0 by

SN τ( ) � N−1
2 ∑

m

i�1
∑
ni

j�1
~Xij* ψτ ûij τ( ){ }I Yij > 0( ),

whereψτ(u) � τ − I(u< 0) is the score function, which is the piecewise
first derivative of the quantile loss function ρτ(u), ûij(τ) � Yij − ~Z

⊤
ijα̂ is

the residual of (4) under the null with β � 0, and ~Xij* is the element of ~X*
corresponding to the ith subject and the jth measurement. By design,
SN(τ) measures the independent contribution of X onto the τth
quantile of Y|Y> 0, which is close to 0 when β(τ) � 0 and its
deviation from 0 indicates associations. Letting

QN τ( ) � N−1τ 1 − τ( )∑
m

i�1
∑
ni

j�1
~Xij*

2 +N−1 ∑
m

i�1
∑
j1≠j2

~Xij1* ~Xij2* δ̂ij1j2, (3)

where δ̂ij1j2 � τ2I(Yij1 > 0, Yij2 > 0) − 2τI{ûij1(τ)< 0, Yij1 > 0, Yij2

> 0} + I{ûij1(τ)< 0, ûij2(τ)< 0, Yij1 > 0, Yij2 > 0}, we can have the
τth quantile rank-score test statistics and its asymptotic
distribution under mild conditions (Appendix) such that as
m → ∞ therefore N → ∞,

TN τ( ) � S2N τ( )/QN τ( ) →d χ21.

We note that the second term of Equation 3 accounts for the
correlation within a subject, which is estimated block-wisely within
each subject and then averaged across the subjects. Different from
Ling et al. (2021), Wang and He (2007), Wang and Fygenson (2009),
the proposed test simultaneously accommodates the within-subject
correlations of longitudinal data and the two-part framework for
zero-inflated microbiome data.

Similarly, we can obtain the asymptotic joint distribution of quantile
rank scores at multiple τ’s, WN � (SN(τ1), SN(τ2), . . . , SN(τL))⊤,
which is useful for combining the marginal tests. Given β(τ1) � β(τ2) �
/ � β(τL) � 0 and m → ∞ therefore N → ∞, WN→

d
N(0,V),

where V can be estimated by VN � (v(ab)N ) such that v(ab)N �
N−1(min {τa, τb} − τa τb)∑m

i�1∑ni
j�1 ~Xij2* +N−1∑m

i�1∑j1≠j2
~Xij1* ~Xij2*

δ̂ij1j2(τa, τb) and δ̂ij1j2 (τa, τb) � τaτbI(Yij1 > 0, Yij2 > 0) − τbI(uij1
(τa)< 0, Yij1 > 0, Yij2 > 0) − τaI(uij2(τb)< 0, Yij1 > 0, Yij2 > 0) + I
(uij1(τa)< 0, uij2(τb)< 0, Yij1 > 0, Yij2 > 0).

2.3 Omnibus test for marginal tests
combination

Finally, to obtain a single p-value for testing the null hypothesis
Equation 2, which indicates whether there is a differential distribution
of the taxon abundance over time, we conduct an omnibus test that
combines the marginal longitudinal logistic and quantile tests.

As discussed above, we conduct LRT, TL, for βL � 0 under the
logistic mixed-effects regression model (2) and obtain a p-value pL,
and then conduct the proposed zero-inflated quantile rank-score test
for longitudinal data at multiple quantile levels,
TN(τi), 0< τ1 < τ2 </< τl < 1, for β(τ) � 0, ∀τ ∈ (0, 1) under
the quantile mixed-effects regression model (4) and obtain p-values
pτ1, pτ2, . . . , pτL. To combine them together, we use either the MinP
procedure or the truncated Cauchy combination test.

The MinP test (Lee et al., 2012; He et al., 2017) picks the smallest
p-value from pL, pτ1, pτ2, . . . , pτL as the test statistic, and rejects the
null hypothesis if it is unlikely to observe an even smaller minimum
p-value under the null. Specifically, the omnibus p-value is
computed by.

pMinP � P min pL, pτ1, pτ2, . . . , pτL( )≤pobs|H0( )
� 1 − P pL >pobs, pτl >pobs ∀l � 1, . . . , L|H0( )
� 1 − P pL >pobs|H0( ) × P pτl >pobs ∀l � 1, . . . , L|H0( )

(4)
� 1 − 1 − pobs( ) × P TN τ l( )≤Qχ21

1 − pobs( ) ∀l � 1, . . . , L( ), (5)

where Equation 4 is due to the conditional independence between
TL and TN(τl)’s, (Equation 5) is based on the fact that pL ~ U(0, 1)
and the asymptotic distribution of TN(τl)’s under the null, and
P(TN(τi)≤Qχ21

(1 − pobs) ∀i � 1, . . . , L) can be estimated by
resampling the joint limiting distribution of WN under the null.

The truncated Cauchy combination test (Fang et al., 2023)
computes a weighted sum of the tangent-transformed p-values as
the test statistic while taking special care of extreme p-values.
Specifically,

TZINQ−L tCauchy � r̂ng pL( ) + L−1 1 − r̂n( )∑
L

l�1
g pτl( ),

where g(p) � (pπ)−1 · I(p< 10−15) + tan{(0.5 − p)π}·
I(10−15 ≤p≤ δ) + tan{(0.5 − δ)π} · I(p> δ) and δ → 1, and r̂n is
the zero rate of the investigated taxon. We note that for extremely
small p-values, their transformation is approximated by the first
term of the Taylor expanded tangent transformation, while for the
extremely large p-values, they are truncated first by a predefined
threshold δ before the tangent transformation, where δ is usually set
to be 0.99. The omnibus p-value can be computed given that
TZINQ−L tCauchy converges to the standard Cauchy distribution
under the null. This truncated Cauchy combination approach
(Fang et al., 2023) has been shown to be more powerful than the
classic Cauchy combination approach (Liu and Xie, 2020) when
some of the individual p-values are very close to one.

In general, ZINQ-LMinP is more rigorous than ZINQ-L tCauchy
as it leverages the correlation structure between the marginal tests. By
design, ZINQ-L tCauchy performs well primarily at the tail. However,
since ZINQ-L tCauchy avoids resampling from the joint limiting
distribution, it is more computationally efficient, making it appealing
for large-scale data analysis.

3 Overview of KTx data

The Kidney Transplant study (KTx) (Magruder et al., 2019)
aims to investigate the association between gut microbiota and post-
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transplant complications among the immunosuppressed kidney
transplant recipients. It comprises 510 fecal samples collected
from 168 kidney transplant recipients in the first 3 months after
transplantation between August 2015 and November 2016. Each
recipient provided between 1 and 6 fecal samples, with an average of
3 samples per individual. These samples underwent gut microbiome
profiling via 16S rRNA gene sequencing of the V4-V5 hypervariable
region. Patient-level characteristics were also collected, covering
demographic information such as gender and age, transplant-
related information such as prior transplantation history, and
granular therapy data such as antibiotic usage.

We filtered out samples with less than 10,000 total counts of
microbes and rarefied the remaining samples to 10,000 library size,
resulting in 429 samples from 160 patients. Our primary variable of
interest is antibiotic treatment within the first 120 days after
transplantation, in addition to preoperative antibiotic prophylaxis
and Pneumocystis jirovecii (PJP) prophylaxis. We treated antibiotic
(denoted by Abx) administrations as a time-ever event. For example,
if a kidney transplant recipient had repeated measurements of gut
microbiota at post-transplant day 30, 45, and 60 and antibiotic
treatment at post-transplant day 40, the antibiotic exposures at the
3 measurements were then defined as No Abx, Abx, and Abx. In
total, there were 117 samples exposed to antibiotics and 312 samples
without prior antibiotic administrations, with 61 patients having at
least one measurement exposed to the treatment. The average age in
Abx samples is 54 and that in NoAbx samples is 53. There is a higher
proportion of female in the Abx group (60%) than in the No Abx
group (39%), with a Fisher’s exact test p-value < 0.001, suggesting
that gender can be a potential confounder.

We aggregated the microbiome data to the genus level and
removed the rare genera that were present in less than 90% of the
samples. The final processed data contained 119 taxa.

4 Simulation experiments

We conducted extensive simulations to evaluate the
performance of ZINQ-L compared to commonly used competing
methods. The simulations were based on the filtered and rarefied
KTx data (Section 3). The starting dataset comprised themost recent
visits of 143 patients who had multiple visits. It is worth noting that
we restricted the starting data to contain only a single sample per
patient, thus the 143 patients were independent. Of these
143 patients, those with any prior antibiotic treatment before
their last visit were labeled as Abx (n = 54), while the remainder
were labeled as No Abx (n = 89). We excluded rare taxa that were
present in less than 10% of the patients, resulting in a final dataset
containing 118 taxa. In both Simulation 1 and 2, we generated data
with different numbers of subjects, m � 200, 500, by sampling the
143 patients with replacement. For each subject, we then expanded
the single observation to different numbers of visits, ni � 3, 5, 7, 9.

4.1 Simulation 1 - unadjusted analysis on
individual taxon

We first aimed to evaluate the performance of ZINQ-L at the
individual taxa level by investigating the association between four

representative taxa and Abx treatment in a longitudinal setting,
without adjusting for other covariates. The four selected taxa were
Blautia, Dorea, Enterococcus, and Anaerofustis, all of which were
differentially abundant between the Abx and No Abx groups based
on the starting data. Specifically, the mean differences for Blautia
and Dorea were minimal (two-sample t-test p-values = 0.4637 and
0.3643) while their distributional differences were apparent when
examined through their empirical quantiles (Figure 1). In contrast,
Enterococcus and Anaerofustis primarily exhibited (marginal) mean
differences (two-sample t-test p-values = 0.0573 and 0.0019). The
zero inflation rates for Blautia, Dorea, Enterococcus, and
Anaerofustis were approximately 3%, 42%, 48%, and 59%,
respectively, representing a range from common to relatively rare
taxa. It is worth noting that three of the four taxa, Blautia, Dorea,
and Enterococcus, are important bacteria in antibiotic treatment
literature (Jenq et al., 2015; Shi et al., 2018; Ubeda et al., 2010),
highlighting the real-world relevance of this simulation study.

We first sampled m (200 or 500) subjects based on each of the
four taxa observations from the KTx-based starting data. For the
type I error assessment, m subjects were randomly sampled with
replacement from a mixture of Abx and No Abx patients, and then
m/2 of them were randomly assigned to the Abx group. This
procedure ensured that the abundance of the representative taxa
was not differentiated between the Abx and No Abx subjects. For the
power assessment, m/2 subjects were randomly sampled with
replacement from the Abx group (n = 54), while the remaining
m/2 subjects were randomly sampled with replacement from the No
Abx group (n = 89). This approach preserved the associations
between the abundance of the taxa and antibiotic treatment in
the simulated data.

Next, longitudinal effects were introduced to them independent
subjects obtained for either the type I error or power assessment. Let
Ai denote the microbial count of subject i. The ni repeated measures
were then generated by expanding and perturbing Ai. Specifically,
the taxonomic count Aij for subject i at visit j was generated using
the formulaAij � exp{log(Ai + 1) + ϵij} − 1, where j � 1, . . . , ni and
i � 1, . . . , m, with the resulting value rounded to the nearest integer.
If the resulting Aij was smaller than zero, we assigned it as zero. The
random perturbation ϵij followed a standard normal distribution.
The log-exponentiation transformation ensured non-negative
microbial counts, while a pseudo-count of 1 (subtracted after
exponentiation) was added to avoid zeros in the logarithm. This
procedure was repeated ni times to represent ni visits for each
subject, ensuring that the repeated measurements for the same
subject were correlated, with variations over time incorporated.
The Abx status for each subject remained consistent across
multiple visits. No other covariates were considered in this
simulation.

In addition to ZINQ-L tCauchy and ZINQ-L MinP, we applied
three competing methods to the simulated data: LMM, zero-inflated
Gaussian mixed model (ZIGMM), and ZINBMM, with the latter
two from the NBZIMM package (Zhang and Yi, 2020). MaAsLin2
(Mallick et al., 2021) and LinDA (Zhou et al., 2022) were excluded
from this simulation as they are only applicable to OTU tables, not
individual taxa. Furthermore, since both are linear model-based
approaches, LMM served as a representative for their kind.

The simulation was conducted independently for each of the
four representative taxa. In each simulation run, differential
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abundance over time was identified if the corresponding p-value
was less than 0.05. We assessed type I error control on the null
data by calculating the percentage of differentially abundant
cases over 10,000 runs and evaluated power on the alternative
data by the proportion of positive calls among 2,000 replicates.

4.2 Simulation 2 - adjusted analysis on OTU
table with partial null and alternative
(FDR control)

The second simulation aims to mimic a real OTU count table,
where all taxa are analyzed against the phenotype of interest with
covariates adjusted, while only a subset of the taxa are truly
associated. By applying ZINQ-L to these simulated OTU tables,
we can evaluate whether ZINQ-L effectively controls the false
discovery rate (FDR) while maintaining a reasonable true positive
rate (TPR).

We simulated the read counts for each taxon in the community
using a zero-inflated quantile regression model and then combined
them to form a community. For each of the 118 taxa in the KTx-
based starting data, we fitted the zero-inflated quantile regression
model with two covariates: Abx (the key variable of interest) and Age

(the adjusting covariate). The logistic regression component
obtained was: logit{P(Di � 1|Si)} � γ̂Abxi + ξ̂0 + ξ̂1Agei, where
Di � I(Yi > 0) represented the presence-absence status, Age was
normalized before fitting, and γ̂, ξ̂0, ξ̂1 were the fitted coefficients.
The quantile regression component obtained was:
QYi(τ|Si, Yi > 0) � β̂(τ)Abxi + α̂0(τ) + α̂1(τ)Agei, where
τ � 0.01, . . . , 0.99, and the fitted coefficient functions,
β̂(τ), α̂0(τ), α̂1(τ), were interpolated to ensure that the entire
abundance distribution, given the taxon’s presence, could be
generated in the simulation step.

Next, before data generation, we categorized the 118 taxa into rare
and common groups based on their prevalence in the starting data.
The categorization resulted in 60 rare taxa (average zero inflation rate
of 91%) and 58 common taxa (average zero inflation rate of 40%). We
conducted three simulation scenarios: (1) only the common taxa were
differentially abundant, (2) only the rare taxa were differentially
abundant, and (3) a randomly selected mixture of 30 rare taxa and
29 common taxa was differentially abundant.

We first simulated the covariates for m (200 or 500) subjects,
with each subject having ni repeated visits (ni � 3, 5, 7, 9). We
initiated by simulating covariates (Abx status and Age) for the
first visits. From the starting data based on the KTx study, we
randomly sampled Abx status and initial Age for m subjects with

FIGURE 1
The plot of empirical quantiles (stratified by Abx and No Abx patients) of the four representative taxa selected from the KTx-based starting data for
Simulation 1.
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replacement. For each subsequent visit j, the Abx status remained
constant while the Age increased by 0.1 per follow-up. Note that Age
was normalized in the original study to have mean 0 and variance 1.

Next, we simulated the microbiome OTU tables. For each taxon,
we generated the binary variableDij for visit j of subject i, indicating
the taxon’s presence-absence. Dij is derived from a Bernoulli
distribution with probability pij, where logit(pij) � γAbxij + ξ̂0 +
ξ̂1Ageij + hLi and hLi ~ N(0, 1). Here, we set γ � 0 if the taxon’s
presence or absence was not associated with Abx, and γ � γ̂, the
estimate from the starting data without repeated measures, for each

associated taxon. Following this setting, if Dij � 0, we assigned
Yij � 0. If Dij � 1, we simulated Yij using the inverse cumulative
distribution function method. Specifically, we randomly drew
Uij ~ U(0, 1), and then generated Yij � β(Uij)Abxij + α̂0(Uij) +
α̂1(Uij)Ageij + hi with hi ~ N(0, 1), and rounded Yij to the
nearest integer. Again, if this taxon was in the null set, we set
β(τ) � 0, τ ∈ (0, 1), and when the taxon was in the alternative set,
we used its corresponding fitted value β̂(τ), τ ∈ (0, 1) based on the
starting data. The simulated taxa were then concatenated to form an
OTU table for analysis.

FIGURE 2
Type I error and power by unadjusted analysis on simulated individual taxa. The left panels show the type I error under the null cases, while the right
panels show the power under alternative cases. Each row corresponds to each of the four representative taxa. Various samples sizes and number of visits
were investigated.
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In addition to the proposed ZINQ-L, we applied the competing
methods LMM, ZIGMM, ZINBMM, LinDA, and MaAsLin2 to the
simulated OTU table. The resulting p-values were adjusted using the
Benjamini–Hochberg (BH) procedure (Benjamini and Hochberg,
1995). A taxon was considered differentially abundant over time if
its adjusted p-value was less than 0.05. Accordingly, FDR was
calculated as the proportion of rare taxa detected among all
detected taxa, and TPR was calculated as the percentage of
common taxa detected. The simulation was repeated 1,000 times.
To evaluate the performance of the different methods, we computed
the average FDR and TPR over the 1,000 runs.

5 Simulation results

5.1 Result of simulation 1

Regarding type I error control (Figure 2, left panels), LMM
effectively controlled type I error in all settings, followed by ZINQ-L
MinP, which adhered to the nominal level of 0.05 in most cases.
ZINQ-L tCauchy showed slight inflation across all settings.
However, ZINQ-L tCauchy demonstrated preferable
computational efficiency compared to ZINQ-L MinP (Table 1)
and valid FDR control (see Simulation 2), making it suitable for
large-scale data analysis.

ZINBMM showed pronounced type I error inflation for Blautia,
Dorea, and Enterococcus, while ZIGMM exhibited type I error
inflation for Anaerofustis, particularly when the number of
repeated measures was small. The consistent robustness of
ZINQ-L can be attributed to its non-parametric nature, making
it resilient to the complex distributions of taxa abundances.

For the power assessment (Figure 2, right panels), all methods
exhibited increased power as the sample size (m) and the number of
visits (ni) increased, demonstrating the consistency of all
approaches. Notably, both ZINQ-L tCauchy and ZINQ-L MinP
outperformed the competitors in detecting differences for Blautia
and Dorea, while showing comparable performance for the
remaining two taxa where mean differences were present. This
indicates that ZINQ-L excels in identifying distributional
differences, particularly when crossing effects occur. The

improved power of ZINQ-L arises from its comprehensive
examination of differences at multiple locations of the abundance
distribution. As Figure 1 illustrates, Blautia and Dorea are depleted
with Abx at lower quantiles but enriched at upper quantiles.
However, the mean difference, which is the integrated effect
across the entire distribution, is cancelled out. Unlike the mean-
based competitors, the quantile-based ZINQ-L can identify and
aggregate signals at different quantiles rather than relying solely on
mean shifts.

Overall, ZINQ-L is a robust method that effectively controls type
I error and demonstrates comparable or improved power in
detecting longitudinal associations when mean or quantile
differences are present for the key variable of interest.

5.2 Result of simulation 2

The upper panels of Figure 3 present the FDR results across all
scenarios in Simulation 2. In situations where the differentially
abundant taxa were either all common or rare, all tested methods
successfully controlled the FDR below the 0.05 threshold. However,
in scenarios where a mixture of common and rare taxa were
differentially abundant, ZIGMM and ZINBMM reported inflated
FDRs, especially as the sample size or the number of repeated
measurements increased. Conversely, all other methods
appropriately controlled the FDR.

Further analysis was conducted to identify the cause of the FDR
inflation in mixed-taxa scenarios. FDR was calculated separately for
the common and rare taxa within this simulation scenario. As
illustrated in Supplementary Figure S1, this FDR inflation is
primarily driven by the FDR inflation among the common taxa.
This suggests that the incorrect distributional assumptions of
ZIGMM and ZINBMM make them sensitive to the varying signal
profiles within the microbiome community.

Notably, ZINQ-L tCauchy did not inflate the FDR when
analyzing the entire OTU table with different scenarios of
differential abundant taxa. This suggests that ZINQ-L tCauchy
can enhance its robustness by averaging over heterogeneous
signals. Additionally, this finding alleviates concerns about its
slight type I error inflation observed in Simulation 1, as in real-

TABLE 1 Computation time (min) to analyze simulated OTU tables and KTx data 10 times.

Dataset Simulated OTU table KTx

m 200 500 —

ni 3 5 7 9 3 5 7 9 —

LMM 0.83 0.89 0.96 1.02 1.2 1.34 1.42 1.43 0.64

LinDA 0.85 0.92 0.99 1.04 1.23 1.38 1.43 1.5 0.76

MaAsLin2 1.01 1.11 1.2 1.29 1.51 1.74 1.85 1.93 0.89

ZINBMM 8.32 8.62 10.62 12.59 17.71 18.73 21.0 25.69 8.9

ZIGMM 4.97 5.63 6.03 6.5 10.45 11.21 12.31 13.84 4.79

ZINQ-L MinP 13.18 16.46 19.17 21.78 50.01 54.24 65.7 74.13 11.37

ZINQ-L tCauchy 10.71 13.69 16.12 18.61 47.06 51.44 59.52 66.58 9.36
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world analysis, researchers typically work with OTU tables and use
FDR control to evaluate the reliability of their discoveries.

Figure 3, bottom panels, shows that the TPR of all methods
increased with the sample size (m) and the number of visits (ni),
further validating the consistency of all approaches. It is evident that
ZINQ-L tCauchy and ZINQ-LMinP demonstrated the highest TPR,
with their dominance being more pronounced when the rare taxa or
a mixture of common and rare taxa were simulated with signals.
This greater power gain arises because the sparsity of rare taxa
typically leads to diminished mean differences while pushing signals
to the tail, reducing the power of mean-based methods, whereas
quantile-based approaches are sensitive to tail events. Among the
competing methods, LinDA, particularly when common taxa had
signals, provided remarkably low FDR while maintaining an
acceptable TPR (Figure 3, bottom panels). Although its TPR was
inferior to ZINQ-L, it ranked among the top competitors, similar
to ZIGMM.

The results further highlight the advantages of ZINQ-L in
realistic settings involving OTU tables and adjusted longitudinal
analysis. Its FDR is comparable to existing methods, imposing no
additional burden of false discoveries. At the same time, it
significantly enhances TPR, primarily by identifying
heterogeneous longitudinal associations, such as crossing effects
and tail events.

6 Application

We applied ZINQ-L to the KTx study to assess the associations
between individual taxa and antibiotic treatment over time,
adjusting for age and gender. Age was normalized prior to the
analysis. Detailed data pre-processing has been described in Section

3. For comparison, we also applied LMM, LinDA, MaAsLin2, and
ZIGMM methods, but excluded ZINBMM due to its inflated type I
error in Simulation 1. Individual taxa p-values were adjusted using
the BH procedure, and taxa with adjusted p-values less than
0.05 were considered differentially abundant over time.

Figure 4 shows that a total of five taxa were identified by ZINQ-L
tCauchy and ZINQ-L MinP but not by any competing methods.
These taxa are Dorea, Parasutterella, Fusobacterium,
Bifidobacterium, and Parvibacter. We plotted their empirical
quantiles, stratified by Abx and No Abx samples, in Figure 5.
Most of the unique taxa identified by ZINQ-L are rare,
consistent with Simulation 2, which shows ZINQ-L’s superiority
in identifying tail differences in rare taxa. For example,

FIGURE 3
FDR and TPR for by adjusted analysis on simulated OTU tables. The top panels show FDR, while the bottom panels show TPR. The left, middle, and
right panel represent the scenarios where the rare taxa, the common taxa, or half of the common taxa as well as half of the rare were simulated to be
differentially abundant, respectively.

FIGURE 4
UpSet plot shows the number of taxa identified by each method,
and their intersections.
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Fusobacterium is enriched by antibiotics at the tail, and while the
excessive zeros hinder mean-based detection, ZINQ-L successfully
captured it. The relatively common taxa, Dorea and Parvibacter,
show crossing effects: they are enriched by antibiotics when the
patients already have abundant Dorea and Parvibacter in their gut,
but depleted by antibiotics when bacterial abundance is low. This
finding aligns with Simulation 1, further confirming ZINQ-L’s
greater power in identifying crossing effects.

To provide a clearer demonstration, we also created an UpSet
plot for ZINQ-L MinP, MaAsLin2 and ZIGMM (Supplementary
Figure S2). ZINQ-L MinP identified five taxa that were not detected
by MaAsLin2 and ZIGMM. We also plotted the empirical quantiles
for two of these uniquely identified taxa: Enterococcus and
Eubacterium. For Enterococcus, the Abx and non-Abx groups
displayed markedly different proportions of zeros. Furthermore,
there was a notable crossing in the empirical quantiles between the
groups for Eubacterium, indicating significant differences in their
distributions.

Importantly, these uniquely identified taxa by ZINQ-L have
been reported to be associated with antibiotic usage. For instance,
Dorea has been increasingly linked to the use of macrolides as noted
by (Shah et al., 2021). Conversely, Bifidobacterium is reported to be
susceptible to penicillin and amoxicillin according to (Delgado et al.,
2005). Additionally, Fusobacterium has been documented to interact
with antibiotics in various conditions, including colorectal cancer
(Bullman et al., 2017) and respiratory infections (Li et al., 2020). The

established significance of these bacteria in relation to antibiotic
treatment highlights ZINQ-L’s value in complementing and
improving existing biomarker discovery in longitudinal
microbiome studies.

7 Discussion

In this paper, we introduce ZINQ-L, a robust and powerful
method for identifying associations between individual taxa and a
phenotype of interest in longitudinal microbiome studies. ZINQ-L
is based on a two-part quantile regression model for longitudinal
data. It includes a mixed-effects logistic regression to detect
differences in a taxon’s presence-absence status and a series of
quantile rank-score-based tests that consider within-subject
correlations and zero inflation to detect distributional
differences in abundance, given the taxon’s presence. An
omnibus p-value, which integrates the marginal tests using the
MinP procedure or the truncated Cauchy combination test,
indicates whether the distribution of taxon abundance varies
with the variable of interest over time. By design, ZINQ-L is a
non-parametric regression approach, robust to the complex
distributions of microbiome data, and flexible to adjust for
covariates. By comprehensively examining the entire abundance
distribution, ZINQ-L is also able to identify heterogeneous signals
beyond simple mean shifts.

FIGURE 5
The plot of empirical quantiles (stratified by Abx and No Abx samples) of taxa identified exclusively by ZINQ-L.
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The two options, ZINQ-L MinP and ZINQ-L tCauchy, each
have their own advantages and disadvantages. ZINQ-L MinP
leverages the dependence structure of the marginal tests, but
calculating the omnibus p-value through resampling is time-
consuming. Conversely, ZINQ-L tCauchy, which is a weighted
sum of multiple transformed p-values, is robust mainly at the tail
but not generally (Fang et al., 2023). However, its straightforward
calculation ensures computational efficiency. Simulation studies
have shown that both options successfully control the FDR below
the nominal level when analyzing the OTU table. However, when
analyzing individual taxa, ZINQ-L MinP effectively controls Type I
error, whereas ZINQ-L tCauchy exhibits slight inflation of Type I
error. Despite this, ZINQ-L tCauchy consistently demonstrates
greater power than ZINQ-L MinP. This finding is supported by
both simulation studies and real data analyses, where the taxa
identified by ZINQ-L MinP form a subset of those identified by
ZINQ-L tCauchy. Therefore, ZINQ-L MinP is recommended as the
default, while ZINQ-L tCauchy is suggested for large-scale analyses
or when computational efficiency is critical.

ZINQ-L demonstrates comparable or improved power/TPR
compared to existing methods while effectively controlling type I
error/FDR. Its enhanced power is particularly evident when
heterogeneous associations, such as crossing effects or tail events,
are present. This is supported by Simulation 1, which shows ZINQ-
L’s superior performance for Blautia and Dorea with crossing
effects, and by Simulation 2, where rare taxa are differentially
abundant with predominantly tail events, making ZINQ-L’s
improvement more pronounced.

It is important to note that the null hypotheses tested by these
methods are not identical. ZINQ-L, like its predecessor ZINQ,
assesses differential relative abundance in a general sense,
reflecting the compositional nature of the microbiome data. In
contrast, LMM, ZIGMM, and ZINBMM are generic longitudinal
methods with different distributional assumptions but similarly test
for differential relative abundance. MaAsLin2, meanwhile, analyzes
log-transformed relative abundances by default. Conversely, LinDA
operates under the assumption that the majority of taxa are not
differentially abundant; it compares the regression coefficient of
each taxon to the mode of all coefficients, thereby targeting
differential absolute abundance. These variations in the
underlying null hypotheses may partly account for the observed
differences in TPR performance among these methods.

When analyzing the KTx study, ZINQ-L identified five unique
taxa that the traditional linear mixed model and the tailored
methods, LinDA, MaAsLin2, and ZIGMM, failed to capture.
Among these taxa, Fusobacterium is enriched by antibiotics at
the tail, while Dorea and Parvibacter exhibit crossing effects in
response to antibiotic treatment. This observation is consistent with
the results from the simulation studies. Biologically, the tail and
crossing effects indicate diverse antibiotic effects that depend on the
bacteria’s abundance level. Such abundance-dependent effects are
crucial for understanding complex pathological mechanisms and
devising precision therapeutics. Moreover, the biomedical literature
has reported associations of these taxa with antibiotic usage, further
validating ZINQ-L’s value for real-world biomarker discovery in
longitudinal microbiome studies. Notably, LMM identified only
4 taxa associated with Abx, compared to 33 by LinDA and 37 by
MaAsLin2, although none of them specifically adjust for the zero

inflation. This discrepancy could stem from LMM’s reliance on the
normality assumption for count data, which does not hold in
practice due to the high skewness of microbiome data.
Conversely, LinDA and MaAsLin2 employ a log transformation
on the original counts to better approximate a normal distribution.
In contrast, ZINQ-L does not depend on any specific distributional
assumptions, potentially enhancing its power to analyze such data.

There are several limitations of ZINQ-L. First, as a non-
parametric method requiring a series of estimations across
multiple quantiles, ZINQ-L loses power with small sample sizes,
particularly when the differences are primarily mean shifts.
However, with the increasing availability of large-scale
longitudinal microbiome studies, ZINQ-L’s advantage in
identifying biologically meaningful heterogeneous effects becomes
more significant. Additionally, the current ZINQ-L framework does
not accommodate non-linear associations between the quantiles of
taxon abundance and covariates. Extending the framework to single-
index quantile regression models (Ma and He, 2016) could provide
greater flexibility and potentially higher testing power.

8 Conclusion

ZINQ-L is a novel approach for examining heterogeneous
associations between individual taxa and outcomes (or exposures)
over time in longitudinal microbiome studies. It investigates inflated
zeros using a logistic mixed-effects model and analyzes the taxon
distribution, given its presence, using a marginal quantile mixed-
effects model. The marginal tests are then combined using the MinP
procedure or the truncated Cauchy test. By design, ZINQ-L
effectively handles the complex distribution of microbiome data
and within-subject correlations in longitudinal data. Simulation
studies demonstrate that, when analyzing individual taxa or the
entire OTU table, ZINQ-L controls type I error/FDR and shows
improved power/TPR compared to existing approaches. The KTx
data analysis further reveals that ZINQ-L can uniquely identify five
taxa that have heterogeneous associations with antibiotic usage.
These diverse antibiotic effects depending on the bacteria’s
abundance level are crucial biomedical findings for uncovering
complex pathological mechanisms. Additionally, according to
existing literature, these findings are potentially critical for
devising antibiotic treatment regimens or understanding the
immune system. Overall, ZINQ-L is a robust and powerful tool
that complements and enhances current methodsfor identifying
associations between individual taxa and the phenotype of
interest in longitudinal studies.
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Appendix

Mild conditions for asymptotics of ZINQ-L

Assumption 1. Let F denote the common marginal distribution
of uij for any i � 1, . . . , m, j � 1, . . . , ni and f denote the
Lebesgue density of function F. The joint distribution of uij1 and
uij2 for any i and j1 ≠ j2, denoted by F1,2, is Lipschitz in the
neighborhood of (0, 0).

Assumption 2. Let ‖sij‖ denote the Euclidean norm of sij, where
sij � (xij, z⊤ij)⊤. Then maxij‖sij‖ � O(N1/4) and N−1∑ij‖sij‖3 �
O(1) as N → ∞.

Assumption 3. The minimum eigenvalues of E( ~X ~X
⊤) and

E(~Z ~Z
⊤) are bounded away from 0 as N → ∞.

Assumption 4. The sequence {ni, i � 1, . . . , m} is a uniformly
bounded sequence of positive integers.

Computational efficiency

Computations were performed on the Joint High Performance
Computing Exchange (JHPCE), maintained by the Department of
Biostatistics at the Johns Hopkins Bloomberg School of Public
Health. The computing node used is equipped with a 12-core
2.1 GHz Intel Xeon Silver 4310 processor. Table 1 summarizes
the total time required to run 10 random simulated OTU tables
across various combinations of m and ni, or to run the KTx analysis
10 times. ZINQ-L is less computationally efficient than its
competitors, as both the logistic mixed model and the estimation
of the rank-score variance QN(τ) under the longitudinal setting are
time-consuming. For the two options of ZINQ-L, ZINQ-L tCauchy
is faster than ZINQ-L MinP, making it more suitable for large-scale
data analysis.
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