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Background and Aims: The rapid and accurate detection of viruses and the
discovery of single nucleotide polymorphisms (SNPs) are critical for disease
management and understanding viral evolution. This study presents a pipeline
for virus detection, validation, and SNP discovery from next-generation
sequencing (NGS) data. The pipeline processes raw sequencing data to
identify viral sequences with high accuracy and sensitivity by integrating state-
of-the-art bioinformatics tools with artificial intelligence.

Methods: Before aligning the reads to the reference genomes, quality control
measures, and adapter trimming are performed to ensure the integrity of the data.
Unmapped reads are subjected to de novo assembly to reveal novel viral
sequences and genetic elements.

Results: The effectiveness of the pipeline is demonstrated by the
identification of virus sequences, illustrating its potential for detecting
known and emerging pathogens. SNP discovery is performed using a
custom Python script that compares the entire population of sequenced
viral reads to a reference genome. This approach provides a comprehensive
overview of viral genetic diversity and identifies dominant variants and a
spectrum of genetic variations.

Conclusion: The robustness of the pipeline is confirmed by the recovery of
complete viral sequences, which improves our understanding of viral genomics.
This research aims to develop an auto-bioinformatics pipeline for novel viral
sequence discovery, in vitro validation, and SNPs using the Python (AI) language
to understand viral evolution. This study highlights the synergy between
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traditional bioinformatics techniques and modern approaches, providing a robust
tool for analyzing viral genomes and contributing to the broader field of viral
genomics.
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1 Introduction

Viruses pose significant threats to human health, agriculture,
and the environment, causing a wide range of infectious diseases in
humans, animals, and plants. Rapid and accurate detection of viral
pathogens is crucial for effective disease management, outbreak
surveillance, and vaccine development. Traditional diagnostic
methods for virus detection, such as polymerase chain reaction
(PCR) and serological assays, have limitations in terms of sensitivity,
specificity, and throughput (Cassedy et al., 2021).

Single Nucleotide Polymorphisms (SNPs) are the most common
type of genetic variation in viruses, phages, and viroid playing a
crucial role in disease susceptibility, drug response, and evolutionary
adaptation (Zamai, 2020). However, the identification and
characterization of SNPs from genetic data is challenging due to
sequencing errors, alignment ambiguities, and genomic complexity.
Traditional SNP calling methods often rely on heuristic rules and
statistical models that can lead to false-positive or false-negative
results (Nogales and L. DeDiego, 2019).

In recent years, the advent of Next-Generation Sequencing
(NGS) technologies has revolutionized the field of genomics,
enabling researchers to obtain vast amounts of genetic data with
unprecedented speed and efficiency. NGS-based approaches offer a
promising alternative as they enable comprehensive and unbiased
characterization of viral communities in diverse biological samples.
This flood of data has opened new avenues for studying the genetic
makeup of various organisms, including viruses, and facilitated the
identification of genetic variations such as SNPs (Wang et al., 2022).
Furthermore, the integration of Artificial Intelligence (AI) tools and
algorithms into bioinformatics pipelines has improved our ability to
analyze and interpret complex genomic datasets, which has led to
significant advances in virus detection, validation and SNP discovery
(Lin et al., 2023).

In the realm of personalized medicine, pipelines can play a pivotal
role in identifying viral pathogens and genetic variations that influence
disease susceptibility and drug response in individual patients. This
capability has the potential to revolutionize treatment strategies by
enablingmore targeted and effective interventions (Albahri et al., 2020).
Moreover, pipelines in agriculture can contribute to the rapid
identification and characterization of viral pathogens infecting crops,
facilitating timely disease management and crop protection measures
(Cob-Parro et al., 2024). In addition, pipelines can help monitor and
track viral outbreaks in wildlife populations as part of environmental
monitoring, thus curbing the spread of infectious diseases in ecosystems
(Tuia et al., 2022).

In this study, we present a comprehensive pipeline for virus
detection, validation, and SNP discovery from NGS data. Our
pipeline integrates state-of-the-art bioinformatics tools to process
raw sequencing data, align it to reference genomes, and identify viral

sequences and SNPs with high accuracy and sensitivity. We
demonstrate the effectiveness of our approach through a series of
case studies and validation experiments that highlight its potential
applications in clinical diagnostics, epidemiological surveillance,
and evolutionary studies.

2 Materials and methods

The methodology begins by explaining the range of software
tools used in the comprehensive AI-powered pipeline for virus
detection, validation, and SNP discovery from NGS data. The
script uses a variety of software tools to perform different tasks.
Here is a breakdown of the tools used and whether they need to be
installed (Table 1). The script uses several software tools for data
processing and analysis. Some tools, such as cutadapt, samtools,
MegaHit, Biopython, and NCBIBlast+, must be installed separately.
Built-in Python modules (os, random, subprocess) and
functionalities within Biopython (Entrez, SeqIO) are readily
available. Commonly used tools such as gzip and pandas may
already be installed on the systems, but a check is recommended.
The code is available in the Git Hub (https://github.com/
Abozarghorbani/AI-Enabled-Virus-Detect). Figure 1 shows a
comprehensive Python-based pipeline for converting raw NGS
data into verified viral sequences (Figure 1).

2.1 Trimming paired-end reads (data
preparation, adapter trimming, and
quality filtering)

The raw paired-end sequencing data obtained from NGS
experiments were stored in compressed FASTQ format files. The
files in question contained the forward and reverse reads generated
by the sequencing platform. In the present study, we employed
RNA-Seq data (whole transcriptome sequencing) from our previous
investigations wherein we identified the Citrus tristeza virus in this
data using alternative bioinformatics tools (Ghorbani et al., 2018a;
Ghorbani et al., 2023).

Adapter sequences are often present at the ends of sequencing
reads and need to be removed to improve the accuracy of
downstream analysis. The Cutadapt tool was used for this
purpose. Cutadapt is a flexible and efficient tool for removing
adapter sequences from high-throughput sequencing reads. The
adapter sequences used for trimming were provided as input
parameters to the Cutadapt tool. These sequences were designed
to match the adapters used during library preparation for the
sequencing experiment. The tool was configured to perform
quality-based trimming with minimum quality score threshold of
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20, as recommended by Williams et al. (2016). Additionally, reads
shorter than 50 base pairs after trimming were discarded to ensure
high-quality data for subsequent analysis.

A quality filtering process was employed to remove low-quality
reads that could potentially compromise subsequent analysis. This
stage involved the application of a minimum quality threshold to the
sequencing reads, typically represented by the Phred quality score.
Reads with average quality scores below the specified threshold were
excluded from further analysis. The quality filtering process can be
represented by the following formula:

Q � −10 × log10 P( )
Where:

Q represents the Phred quality score.
P represents the probability of the base being called incorrectly.

2.2 Pairing trimmed reads

Following adapter trimming, the trimmed forward and reverse
reads were paired to reconstruct the original paired-end reads.
Correct read pairing is a prerequisite for subsequent analysis,
including mapping to a reference genome. The pairing process
entailed aligning the forward and reverse reads by their sequence
in the input files. The read pairing process can be described by the
following pseudo-code:

Python
Copy code
paired_reads = []
for each forward_read, reverse_read in zip (forward_reads,

reverse_reads):
if forward_read.name == reverse_read.name:
paired_reads.append ((forward_read, reverse_read))

TABLE 1 Software tools used in the Python script. This table summarizes the software tools used in the script, indicating whether they need separate
installation or are readily available.

Tools Version Open
source

Need to
install

Description URL

cutadapt 4.8 Yes Requires
Installationc

Trims adapter sequences from Illumina reads https://pypi.org/project/cutadapt/

gzip - Likely Availablea Likely Available Compresses and decompresses files https://docs.python.org/3/library/gzip.
html

samtools 1.12 Yes Requires
Installation

Manipulates alignments in SAM/BAM format http://www.htslib.org/download/

subprocess - Pre-installedb No Python module to run external commands https://docs.python.org/3/library/
subprocess.html

os Pre-installed No Python module for interacting with the
operating system

https://docs.python.org/3/library/os.
html

random 1 Pre-installed No Python module for generating random
numbers

https://docs.python.org/3/library/
random.html

MegaHit v1.2.9 Yes Requires
Installation

Performs de novo assembly of sequencing
reads

https://github.com/tonikelope/
megabasterd

Biopython 1.83 Yes Requires
Installation

Collection of Python tools for biological
analysis

https://biopython.org/

pandas 2.2.2 Yes Requires
Installation

Used for data manipulation and analysis https://pandas.pydata.org/

NCBIBlastn/
NCBIBlastx

BLASTn+
2.15.0

/BLASTx+
2.23.0

Yes Requires
Installation

Performs nucleotide or protein similarity
searches

https://blast.ncbi.nlm.nih.gov/

Entrez 2.1.3 Likely Available Likely Available Part of Biopython for Entrez database access https://www.ncbi.nlm.nih.gov/search/

SeqIO 1.83 Likely Available Likely Available Part of Biopython for sequence input/output https://biopython.org/wiki/
Documentation

pysam 0.22.1 Yes Requires
Installation

For manipulating alignments in SAM/BAM
format

https://pysam.readthedocs.io/en/latest/

Counter - Pre-installed No Python module for creating collections of key-
value pairs

-

Minimap2 2.28 Yes Requires
Installation

Performs alignment of sequencing reads https://github.com/samtools/www.
htslib.org

aLikely Available: These tools are commonly included in scientific computing environments and might already be on your system. Check with your package manager to confirm availability.
bPre-installed: These modules come bundled with Python and don’t require separate installation.
cRequires Installation: These tools need to be installed separately using their respective websites or package managers.
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2.3 Mapping to host reference genome

A reference genome serves as a standard template for mapping
sequencing reads and identifying genetic variation. In this case, the
sweet orange reference genome (Citrus sinensis, GCF_000317415) with
327.7 Mb genome size and 17,382 contigs from nine chromosomes was
used. The reference genome was chosen based on its relevance to the
target organism or genetic region under investigation.

The paired-end reads obtained after trimming and pairing were
mapped to the reference genome using the Minimap2 aligner.
Minimap2 is a versatile aligner capable of aligning long noisy
sequences to reference genomes quickly and accurately. It
employs an index-based approach to efficiently handle large
genomes and high-throughput sequencing data. The alignment
process can be represented by the following formula:

AlignmentScore� MatchScore×NumberofMatches( )

– MismatchPenalty×NumberofMismatches( )

Where:

Match ScoreMatch Score represents the score assigned to a
matching base pair, Mismatch PenaltyMismatch Penalty
represents the penalty assigned to a mismatched base pair.
Unmapped reads were saved and used for the next steps.

2.4 De novo assembly of unmapped reads

In this section, we have implemented a Python script for
the de novo assembly of sequencing data using the

MegaHit software. The dataset used for this analysis was a
set of unmapped reads stored in a FASTA file, located at
“/Path/outputs/unmapped.fasta.” Mapped reads belong to the
host so we use unmapped reads that may include virus reads.
The MegaHit software version 1.2.9 was downloaded and
installed on the system, with the binary executable located
at “/Path/MegaHit/MEGAHIT-1.2.9-Linux-x86_64-static/bin/
megahit.” To initiate the de novo assembly process with
MegaHit, the Python script generated a unique output
directory name by appending a random number to the base
directory “/Path/outputscontig.” This unique directory was
used to store the results of the assembly process. The
subprocess module was used to construct and run the
MegaHit command, specifying the input read file, the
output directory, and the option to continue an
interrupted assembly. The MegaHit command was
constructed as follows:

megahit_cmd = [megahit_path,
“-r”, fasta_data, # Input reads
“-o”, unique_outputs_dir, # Output directory
“--continue” # Continue an interrupted assembly]

subprocess.run (megahit_cmd, check=True)
Upon successful completion of the de novo assembly

process, a message was printed indicating the completion of
the assembly and providing the path to the output directory with
the assembled contigs. The code was executed multiple times
with different datasets to validate the assembly process and
verify the quality of the assembled contigs. The output
generated by the script was crucial in analyzing the
sequencing data and in providing valuable insights for further
research in the field.

FIGURE 1
Viral sequence and SNP discovery: A python-powered odyssey. This Python-based workflow transforms raw NGS data into verified viral sequences.
It includes quality filtering, read pairing, mapping, de novo assembly, and SNP discovery. In vitro validation ensures accuracy.
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2.5 Sequence blast similarity search from
assembled contigs

2.5.1 Database Selection
To identify potential viral sequences in the NGS data, sequence

similarity searches were performed against public databases. Three
databases were selected for this purpose:

Nucleotide Database for Viruses: This database contains
nucleotide sequences of viruses obtained from various sources,
including the National Center for Biotechnology Information
(NCBI) GenBank and other curated repositories (https://ftp.ncbi.
nlm.nih.gov/refseq/release/viral/).

Viroid Database: Viroids are small, circular RNAmolecules that
infect plants and cause disease. The viroid database contains
sequences of known viroid species and strains (https://viroids.
org/).

Protein Database for Viral Proteins: Protein sequences derived
from viral genomes have been retrieved from public databases.
These sequences represent the proteome of various viruses and
are essential for protein-level analysis (https://ftp.ncbi.nlm.nih.gov/
refseq/release/viral/).

2.5.2 BLAST parameters optimization
BLAST searches were performed with different parameters to

balance sensitivity and specificity in sequence similarity detection
(https://blast.ncbi.nlm.nih.gov/BLAST_guide.pdf). Key parameters
optimized include:

E-value Threshold: The E-value represents the expected number
of chance alignments that would occur randomly in a database of a
particular size. Lower E-values indicate higher confidence in the
match. Multiple E-value thresholds have been tested to assess their
impact on the results.

Word Size: The word size parameter determines the length of
the exact match between sequences used to initiate a local alignment.
Larger word sizes increase sensitivity but may result in slower
processing times.

Gap Penalties: Gap opening and extension penalties are
parameters that control the cost of introducing gaps into the
alignment. These penalties affect the alignment quality and
sensitivity to insertions and deletions.

The following outlines how the provided code utilizes AI tools.

2.5.3 BLAST search using AI tools
The code uses a bioinformatics tool called BLAST (Basic Local

Alignment Search Tool) to compare biological sequences. BLAST is
not considered an “AI” tool in the strict sense, but it uses heuristics
and algorithmic approaches to perform efficient similarity searches
through large databases.

NcbiblastnCommandline and NcbiblastxCommandline: These
functions from the Biopython library are used to interface with the
BLAST+ command-line tool.

Database Selection: The code defines different databases for
nucleotide and protein sequences.

E-value, Word Size, and Gap Penalties: These parameters are
used to fine-tune the sensitivity and efficiency of the BLAST search.

BLAST Execution: The blast_sequence function executes BLAST
searches with various parameter combinations for nucleotide and
protein sequences.

Overall, the code leverages BLAST to find sequences similar to a
query sequence within specified databases.

2.6 Blast result quality filtering

Following a BLAST search, the resulting alignments were
subjected to filtering steps to refine the candidate sequences
based on specific biological relevance. The filtering criteria were
established to prioritize high-quality alignments with a significant
degree of similarity between the query sequence and the subject
sequences in the BLAST database. The rationale behind each filter
criterion is described below:

Alignment Length: This criterion considers the length of the
aligned region between the query and subject sequences. Longer
alignments generally indicate a greater degree of homology and
potentially a more reliable match. A minimum alignment length
threshold has been set to exclude short alignments that may be
spurious or inconclusive.

E-value: The E-value represents the statistical significance of a
sequence alignment. Lower E-values indicate a higher statistical
likelihood that the match between the query and subject sequences is
not due to random chance. A strict E-value threshold has been
implemented to filter out alignments with low statistical significance.

Keywords in Subject Description: This criterion leverages the
textual descriptions associated with the subject sequences in the
BLAST database. Keywords relevant to the target organism or
genetic element of interest were included in the filtering process.
The subject description field often contains information about the
organism’s source, gene function, or other relevant details. The
inclusion of keywords in the filtering step helps to enrich the results
for sequences that are demonstrably related to the target of interest.

These filter criteria were tailored to the specific target
sequences under investigation. For example, a search for viral
sequences might have a stricter alignment length threshold than a
search for bacterial sequences, given the generally smaller size of
viral genomes. Similarly, the selection of keywords would be
adjusted to reflect the specific viral group or family being
targeted. The filtering process was implemented using custom
Python scripts. The scripts were designed to automate the
filtering steps and ensure consistency in the analysis. Here’s a
breakdown of the general workflow:

Load BLAST Results: The script reads the raw BLAST output
file, typically in an Excel format. The script assumes a specific format
for the BLAST output file, containing columns for essential
information such as the subject sequence description, alignment
length, and E-value.

Define Filtering Criteria: The script defines the minimum
alignment length threshold, the E-value threshold, and the list of
keywords to be used for filtering. These criteria can be specified
within the script itself or loaded from a separate configuration file for
greater flexibility.

Filter Dataframe: The script employs pandas, a Python library
for data manipulation, to work with the BLAST results stored in a
panda’s DataFrame object. The DataFrame is filtered based on
predefined criteria. For instance, rows in the DataFrame where
the alignment length falls below the threshold or the E-value
exceeds the threshold are excluded. In addition, rows are filtered
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out where the subject description does not contain any of the
specified keywords.

Save Filtered Results: The filtered DataFrame containing high-
quality BLAST hits is then saved to a new Excel file. This file can be
used for further analysis or downstream applications.

The custom scripting approach has several advantages. It
ensures the reproducibility of the filtering process, facilitates
efficient analysis of large datasets, and allows easy customization
of the filtering criteria based on the specific requirements of the
experiment.

2.7 Retrieval of virus sequences

Following the initial BLAST search, viral sequences were
identified based on specific criteria defined in the filtering
step. The accession numbers associated with these viral sequences
were then extracted from the corresponding BLAST output.
Accession numbers are unique identifiers assigned to biological
sequences deposited in public databases such as GenBank. These
identifiers serve as critical labels for retrieving and referencing
specific sequences. Also, the NCBI Entrez system provides
programmatic access to various biological databases, including
GenBank. In this study, we employed the Python library Bio to
interact with the NCBI Entrez utilities. Specifically, the Entrez.
efetch function was used to retrieve the complete nucleotide
sequences for the identified viral sequences based on their
accession numbers. (It is recommended to set the Entrez. email
variable to a valid email address. This step helps NCBI to track usage
and possibly contact you in case of problems)

Sequences retrieved are in FASTA format, a widely accepted
text-based format for representing nucleotide and protein
sequences. Each FASTA record typically begins with a single-line
header containing a greater than - symbol (“>”), followed by an
identifier (usually the accession number) and a description of the
sequence. The following lines contain the actual sequence data. The
Bio library’s SeqIO module was utilized to handle the FASTA
sequences efficiently. The SeqIO.read function parses the FASTA
file and converts each sequence record into a Python object, allowing
for further manipulation and analysis. The retrieved FASTA
sequences were saved locally for further processing and analysis.
The SeqIO.write function from the Bio library was used to write the
sequences back to a new FASTA file. The output file name was
specified to allow clear organization and identification of the
retrieved viral sequences. Additionally, it is good practice to
include error-handling mechanisms in the code to deal with
potential problems during the sequence retrieval process. For
instance, the code could check for situations where accession
numbers are not found in the NCBI database or if there are
problems connecting to the Entrez servers. The implementation
of error handling helps to ensure the robustness and reliability of
the script.

This protocol relies on the following Python libraries, Bio:
Provides functions for parsing and processing biological data
including sequences in various formats (https://biopython.org/
wiki/Documentation).

Pandas: Used to manipulate data from the Excel file containing
the BLAST results (https://pandas.pydata.org/).

2.8 Algorithm complexity analysis

Trimming and Quality Filtering (Cutadapt)
Time Complexity: O(n), where n is the total number of base pairs
in the input reads
Space Complexity: O(m), where m is the length of the longest read
Read Mapping (Minimap2)
Time Complexity: O (n log n), where n is the total length of
the reads
Space Complexity: O(n)
De Novo Assembly (MegaHit)
Time Complexity: O (n log n), where n is the total length of
the reads
Space Complexity: O(n)
BLAST Search
Time Complexity: O (mn), where m is the length of the query
sequence and n is the total length of the sequences in the database
Space Complexity: O (mn)
Filtering and Post-processing
Time Complexity: O(k), where k is the number of BLAST hits
Space Complexity: O(k)

2.9 Mapping to reference genome and
consensus sequence generation

Before mapping, the virus sequencing data was subjected to
quality control (QC) procedures to ensure optimal alignment
results. Subsequently, High-quality reads were then mapped back
to a reference genome representing the target virus strain. Here, we
employed Minimap2, an ultrafast aligner specifically designed for
NGS data. Minimap2 offers high accuracy while efficiently handling
mismatches and insertions/deletions (indels) commonly found in
viral sequences. During the mapping process, the following
parameters were specified in Minimap2:

-ax map-ont: This aligns reads in splice-aware mode, which is
suitable for RNA viruses with potential splicing events.

-m < reference_genome.fasta>: Specifies the reference genome
FASTA file for alignment.

The mapping results were evaluated using several
metrics, including:

Mapping rate: The percentage of reads that were successfully
mapped to the reference genome.

Uniquely mapped reads: The percentage of reads with a single
unique mapping location.

Coverage depth: The mean of reads mapped to each position in
the reference genome.

The metrics provided insights into the efficiency and accuracy of
the mapping process.

Following the successful mapping of the viral population within
the sequenced sample, consensus sequences were generated to
represent the viral population. In this instance, a consensus
sequence caller such as SAMtools was employed. The SAMtools
program identifies the most frequent nucleotide at each position
across all aligned reads, thereby constructing a consensus sequence
that reflects the dominant variant present in the viral population.
During the consensus calling process, the following parameters were
specified in SAMtools:
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-q < minimum_base_quality>: This parameter sets the minimum
base quality score for inclusion in the consensus sequence. For example,
-q 30 would include bases with a Phred score ≥ 30).

-d <minimum_mapping_quality>: Sets the minimum mapping
quality score for inclusion in the consensus sequence (e.g., -d 20 for
reads with mapping quality ≥ 20).

2.10 SNPs discovery

SNPs were identified from aligned sequencing reads using a
custom Python script. The algorithm is comprised of the following
general steps:

Alignment Loading: The script begins by loading the alignment
data generated from the sequencing reads and a reference genome. The
alignment file format is typically SAM/BAM, which stores information
about the mapping of each read to the reference genome.

Reference Genome Access: The reference genome sequence is
loaded into memory. This reference serves as the basis for the
identification of SNPs.

Iterating Through Aligned Reads: The script performs a
sequential examination of each read within the alignment file.
Readings with low-quality mapping scores or those that are
unmapped are typically excluded from the analysis in order to
minimize the occurrence of errors.

Extracting Reference Sequence: For each read, the
corresponding reference sequence segment is extracted from the
reference genome based on the read’s mapping coordinates.

Read vs. Reference Comparison: The script performs a base-by-
base comparison between the reference sequence and the aligned
read sequence. Positions, where the aligned base differs from the
reference base, are flagged as potential SNP loci.

SNP Information Gathering: For each identified SNP position, the
script collects additional information, including the reference base and
the nucleotide variant observed in the read (alternate allele).

Allelic Counts and Frequency Calculation: The number of reads
supporting each variant (including the reference base) at an SNP
position is counted. This data is employed to calculate the SNP allele
frequency, which is defined as the proportion of reads containing the
variant allele relative to the total number of reads covering that position.

Coverage Calculation: The script also calculates the coverage
depth at each SNP position. The term “coverage” is used to describe
the average number of reads sequenced across a specific position in
the genome. Higher coverage levels afford greater confidence in the
accuracy of SNP calls.

Our custom Python-based SNP discovery script uses a robust
approach to identify SNPs and call dominant variants in viral
populations. The script compares the entire population of
sequenced viral reads to a reference genome, providing a
comprehensive overview of genetic diversity.

SNP identification: The script defines a SNP as a position in the
genome where the nucleotide differs from the reference sequence in a
significant proportion of reads. In detail, we use the following criteria:

1. Minimum coverage: A position must be covered by at least
20 reads to be considered for SNP calling.

2. Allele frequency threshold: A variant allele must be present in
at least 5% of the reads covering that position.

Dominant Variant Calling: To identify dominant variants, the
script calculates the frequency of each alternative allele at each
position. A variant is considered dominant if its frequency exceeds
50% of the reads at that position.

False Positive Handling: To minimize false positives, we
implement several filtering steps:

1. Quality score filtering:We only consider base calls with a Phred
quality score of 30 or higher, corresponding to a base call
accuracy of 99.9%.

2. Strand bias filter: We require that the variant be observed on both
forward and reverse strands, with amaximum strand bias of 80/20.

3. Clustering filter: We exclude variants that occur in clusters of
three or more within a 10 bp window, as these may represent
sequencing artifacts.

The script outputs a list of identified SNPs along with their
positions, reference and alternative alleles, and frequencies. For
dominant variants, it also provides additional metrics such as the
depth of coverage and the number of reads supporting each allele.
This approach allows us to capture a spectrum of genetic variation
within the virus population, from rare variants to those that have
become established in the population. By applying these stringent
criteria and filters, we aim to provide a set of SNPs and dominant
variants with high confidence that accurately reflects the genetic
diversity of the virus population under study.

2.11 Pipeline validation

To validate and examine the pipeline in diverse samples, we
employed a selection of RNA-Seq and whole genome sequence
samples that were accessible and had previously been analyzed
with other bioinformatics tools (Table 2).

3 Results and discussion

3.1 Pipeline for detection and validation

Our pipeline for virus detection and validation successfully
processed the raw NGS data obtained from biological samples,
including clinical specimens and environmental samples. The pipeline
implemented a series of steps, including quality control, adapter
trimming, paired-end read merging, and alignment to reference
genomes, to identify viral sequences present in the samples. The
advent of high-throughput sequencing methods has ushered in a new
era in disease management, particularly in the realm of virology. The
development of tools like the Plant Virus Detection Pipeline (PVDP)
(Gutiérrez et al., 2021) and VirFind underscores (Ho and Tzanetakis,
2014) the potential of high-throughput sequencing to revolutionize our
approach to plant disease surveillance and virus discovery.

PVDP’s ability to operate without the need for high-
performance computing centers makes it an invaluable asset for
developing countries, where such resources are scarce (Gutiérrez
et al., 2021). Similarly, VirFind’s comprehensive pipeline, from
sample preparation to data analysis, offers a universal solution
for virus detection (Guerra et al., 2021). On the structural
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biology front, pyKVFinder’s integration (Guerra et al., 2021) with
Python’s scientific ecosystem facilitates the detection and
characterization of biomolecular cavities, which is crucial for
understanding biomolecular interactions and advancing drug
design (Ho and Tzanetakis, 2014). These tools not only enhance
our capacity to manage plant diseases but also exemplify the power
of open-source software and the Python programming language in
accelerating scientific discovery and innovation in the field of
molecular biology and genetics.

3.2 Quality control and adapter trimming

Before analysis, the raw sequencing reads underwent quality control
checks to assess their overall quality and remove low-quality reads.
Adapter sequences were trimmed from the reads using the Cutadapt
tool, ensuring that only high-quality and adapter-free reads were
retained for downstream analysis (Table 3). Table 3 details the total
read pairs processed, the proportion of reads with adapters, and the final
count of quality-filtered base pairs, providing a comprehensive snapshot
of the sequencing data refinement, aligning with the common practice
aimed at enhancing the accuracy of variant calling. However, recent
studies suggest that the benefits of such preprocessing may be more
nuanced. For example, an analysis of the impact of read trimming on
SNP-calling accuracy across thousands of bacterial genomes revealed
that while trimming does not significantly alter the set of variant bases
called, it does contribute to a reduction inmixed calls, thereby potentially
increasing the confidence in variant identification (Bush, 2020). These
findings resonatewith our approach, where themeticulous refinement of

sequencing data may serve to bolster the reliability of subsequent
analyses rather than substantially changing the outcome of variant calls.

3.3 Read merging and mapping to
host genome

Paired-end reads were merged to reconstruct the original DNA
fragments, thereby improving the accuracy of subsequent alignment
and mapping steps. The merged reads were then aligned to reference
genomes using the minimap2 algorithm, which permitted the
identification of viral sequences present in the samples.

Based on the mapping statistics report (Figure 2), a total of
48,503,625 reads were analyzed, out of which 47,963,510 (98.89%)
reads were successfully mapped to the Citrus sinensis reference genome
(GCF_000317415). This indicates a highmapping efficiency, suggesting
that most of the sequencing reads originated from the host organism
and could be aligned to its reference genome.

Primary alignments: 42,111,398 (98.72% of mapped reads) mapped
to the reference genome at a single location. This is the ideal scenario
where a read aligns uniquely with the reference genome with high
confidence. Secondary alignments: 0 reads mapped to multiple locations
on the reference genome. This could occur due to repetitive regions in
the genome or sequencing errors. Supplementary alignments: 6,392,227
(13.35% of mapped reads) mapped to the reference genome with lower
quality compared to primary alignments. These reads may contain
mismatches or indels (insertions or deletions) but can still be
informative for downstream analysis. Duplicate reads: 0 reads were
identified as duplicates. Duplicate reads arise from PCR amplification

TABLE 2 RNA-Seq and whole-genome sequences were analyzed before and used for validation in this study.

Sample host Platform Number of
reads

Type of discovered pathogen References

Mus musculus RNA-Seq (Illumina HiSeq 2,500) 12,000,000 Influenza virus Morovati et al. (2024)

Human RNA-Seq (llumina MiniSeq) 17,121,629 Severe acute respiratory syndrome
coronavirus 2

Ghorbani et al. (2020)

Enterococcus
faecalis

Whole genome sequencing (Illumina HiSeq
2000)

10,000,000 Enterococcus faecalis phage Abed et al. (2024)

Zea mays RNA-Seq (Illumina HiSeq 2,500) 60,000,000 Maize Iranian mosaic virus Ghorbani et al.
(2018b)

TABLE 3 Quality control and adapter trimming results.

Metric Read 1 (bpa) Read 2 (bp) Total (bp)

Total read pairs processed NAb NA 21,066,868

Read with adapter 1,986,643 (9.4%) 1,996,373 (9.5%) NA

Pairs that were too short NA NA 11,169 (0.1%)

Pairs written (passing filters) NA NA 21,055,699 (99.9%)

Total base pairs processed 3,160,030,200 3,160,030,200 6,320,060,400

Quality-trimmed 3,304,806 3,490,032 6,794,838 (0.1%)

Total written (filtered) 3,109,982,046 3,109,401,003 6,219,383,049 (98.4%)

aBase pair.
bNot applicable, *Utilizing Cutadapt 4.5 integrated with Python 3.11.5.
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bias during library preparation and are often removed to reduce
redundancy in the data. Properly paired reads: 36,491,622 (76.29% of
all reads) were identified as properly paired reads. This means that both
reads from a paired-end sequencing experimentmapped to the reference
genomewith the expected orientation and insert size. Singletons: 147,307
(0.35% of all reads) were singletons. These are read where only one read
from a pair is mapped to the reference genome. This can happen due to
sequencing errors or adapter contamination.Matemapped to a different
chromosome: 1,507,272 (3.11% of all reads) had one mate mapped to a
different chromosome compared to the other mate. This could indicate
structural variations in the genome or mapping errors. The high
mapping efficiency (98.89%) obtained in this study suggests that the
sequencing data was of good quality and suitable for downstream
analysis. Many of the reads mapped to the reference genome,
allowing for variant calling and other genetic analyses specific to the
host organism (Citrus sinensis). This study’s high mapping efficiency to
the Citrus sinensis reference genome (GCF_000317415) with a
significant proportion of primary alignments (Figure 2) aligns with
the advancements in read alignment methodologies discussed by Alser
et al. (2021), emphasizing the importance of algorithmic precision in
genomic analyses. Moreover, the presence of unmapped reads in our
dataset resonates with the findings of Rahman et al. (2018), where an
alignment-free GWAS method based on k-mer counting could
potentially reveal associations with structural variations and novel
genetic elements not present in the reference genome. This suggests
that our approach, while robust in identifying known genomic features,
could be complemented by k-mer-based analyses to explore the full
spectrum of genetic diversity within the host organism.

A small percentage of reads (1.11%) did not map to the reference
genome. These unmapped reads could be due to several reasons,
including Sequencing errors: Errors introduced during the

sequencing process can lead to reads that do not match the
reference genome. Adapter contamination: Adapter sequences used
for library preparation can sometimes be sequenced and contaminated
the data. These adapter sequences would not map to the reference
genome. Novel genetic elements: Reads that originate from genetic
elements do not present in the reference genome, such as viral
sequences or novel insertions, would not map to the reference.
These unmapped reads were likely saved for further analysis, such
as de novo assembly, to explore the possibility of discovering novel
viruses or other genetic elements do not present in the reference
genome. While a small fraction of reads in our study did not map
to theCitrus sinensis reference genome, similar to the approach taken by
Neumann et al. (2023), these reads hold significant potential for
uncovering novel genetic elements or infectious pathogens. They
demonstrated that by assembling and analyzing unmapped reads
from whole-genome sequencing of German Black Pied cattle, they
could identify sequences indicative of bacterial and viral infections. Our
study’s unmapped reads, which may include viral sequences or novel
insertions, could similarly be subjected to de novo assembly and
database comparisons to explore the presence of pathogens or other
genetic elements not accounted for in the reference genome. Figure 2
provides a quick overview of the key statistics reported in the RNA-Seq
data mapping analysis, which are essential for assessing the quality and
success of the sequencing experiment.

3.4 De novo assembly of unmapped reads

The de novo assembly process successfully utilized MegaHit to
assemble contigs from the unmapped reads stored in “/Path/
pathogenereads/outputs/unmapped.fasta.” The script ensured

FIGURE 2
In-Depth Analysis of Read Mapping: Detailed Statistics from the Bioinformatics Pipeline. Total Reads: Number of reads generated from the RNA
sequencing. QC-Passed Reads: Reads that passed quality control checks. Mapped Reads (% Mapped): Percentage of reads aligned to the reference
genome. Properly Paired (% Properly Paired): Percentage of read pairs correctly aligned with expected orientation and distance.
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reproducibility by generating a unique output directory name for
each assembly run. After generating fasta sequences from contigs we
also generated a de novo assembly report. Table 4 presents the key
statistics from a de novo assembly, highlighting the total number of
contigs, their combined length, and the range of contig lengths,
culminating in the N50 value (Jauhal and Newcomb, 2021).
Moreover, the results indicate that the de novo assembly process
was effective in generating contigs of varying lengths. Although the
minimum contig length is relatively short, the presence of longer
contigs (up to 4,394 bp) offers a greater probability of capturing
complete viral sequences. The N50 value of 429 bp provides further
evidence of a moderate level of contiguity within the assembly. These
findings highlight the importance of understanding the factors that
may influence the quality and completeness of assembled contigs.

Impact of unmapped reads: The quality of the assembled contigs
can be influenced by the origin and nature of the unmapped reads.
Sequencing errors, adapter contamination, and highly divergent
sequences can all contribute to fragmented assemblies. Optimization
of assembly parameters: different parameters within MegaHit can be
adjusted to potentially improve the assembly outcome. Factors like
k-mer size and minimum contig length can be optimized based on the
specific characteristics of the sequencing data. Downstream analysis: the
assembled contigs will be subjected to BLAST analysis to identify
potential viral sequences. The presence of significant matches to
known viral sequences within these contigs would provide strong
evidence for the existence of novel viruses in the original sample.

Overall, the de novo assembly process successfully generated contigs
from the unmapped reads, providing a valuable resource for further
investigation into the presence of novel viruses. Analyzing these contigs
through BLAST analysis will be the next crucial step in this research.

The de novo assembly of unmapped reads has proven to be a
valuable approach in uncovering novel viral sequences, as
demonstrated by our pipeline’s ability to generate contigs from
unmapped reads with a moderate N50 value of 429 bp. This method
aligns with the findings of Usman et al. (2017), who utilized
unmapped RNA-Seq reads to explore the presence of pathogens
and assess the completeness of bovine genome assemblies. Similarly,
our study emphasizes the potential of unmapped reads in revealing
novel viruses and genetic variations that may otherwise be
overlooked. Moreover, the challenges associated with virus
detection in the absence of a host reference genome resonate
with our pipeline’s capability to identify viral sequences without
relying on such references. The implementation of a decoy module
could further enhance the accuracy of our pipeline by providing a

means to assess false classification rates (Kruppa et al., 2018).
Furthermore, the comprehensive overview provided by Kutnjak
et al. (2021) on the analysis of high-throughput sequencing data
for plant virus detection underscores the importance of robust
bioinformatic tools. Our pipeline’s integration of AI algorithms
and bioinformatics tools mirrors this sentiment, showcasing the
necessity of efficient data analysis in the era of High-Throughput
Sequencing technologies.

The incorporation of advanced bioinformatics tools and AI
algorithms, as demonstrated in our pipeline, is imperative for the
accurate detection and characterization of viral sequences. The
insights gained from the referenced articles not only validate our
approach but also highlight the broader applications and
significance of such pipelines in various fields of research.

3.5 Optimized viral sequence detection:
leveraging AI-enhanced BLAST in
contig analysis

BLAST analysis was conducted on the assembled contigs to
screen for potential viral sequences. Although BLAST is not
inherently an AI tool, the process employed the Biopython
library, harnessing Python’s strengths in automation and intricate
data handling. This integration can be viewed as an AI-enhanced
method that optimizes the BLAST protocol, enabling efficient and
extensive sequence similarity assessments. In this study, BLAST
searches were performed using three specialized databases to ensure
comprehensive viral sequence identification. The Virus Nucleotide
Database provided a vast reference of viral nucleotide sequences. To
encompass a wider range of pathogens, the Viroid’s Database was
included, containing sequences of small infectious RNA molecules
known as viroids. Lastly, the Viral Protein Database was utilized for
its extensive collection of protein sequences derived from viral
genomes, which facilitated the identification of viral proteins.
These curated databases were pivotal in our analysis, allowing for
the detection and identification of a wide array of viral sequences
and proteins pertinent to our research objectives.

3.6 BLAST parameter optimization with
algorithmic efficiency

The code implemented optimization strategies to achieve a
balance between sensitivity and specificity in detecting sequence
similarities. These strategies highlight the strengths of AI-
assisted analysis:

E-value Threshold: This value represents the expected number
of chance alignments. Lower E-values indicate more significant
matches, with a trade-off of potentially missing true positives.
The code likely tested different E-value thresholds using
algorithmic approaches within Biopython to evaluate their impact
on results. This iterative process can be significantly faster than
manual exploration of parameters.

The RVDB’s (Reference Viral Database) approach to creating a
refined database for virus detection aligns with the concept of
optimizing E-value thresholds in BLAST searches. By reducing
non-viral sequences, RVDB enhances the specificity of virus

TABLE 4 Unmapped reads De novo assembly metrics.

Parameter Value

Final contigs number 3,919

Total contigs 1773988 bpa

Minimum contigs lengths 269 bp

Maximum contigs lengths 4,394 bp

Avrage contigs lenghts 452 bp

N50 b 429 bp

aBase pair.
bThe shortest contig length that needs to be included for covering 50% of the genome.
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detection, similar to how adjusting E-value thresholds can improve
the significance of BLAST matches (Goodacre et al., 2018).

Word Size: The word size defines the minimum length of
exact matches used to initiate local alignments. Larger word sizes
enhance sensitivity but can lead to slower processing times.
Finding the optimal word size depends on the specific dataset
and the desired balance between speed and accuracy. Biopython’s
functionalities allow the code to explore different word size
options and select the most efficient value for the data at
hand. The study on marine DNA virus communities discusses
the impact of k-mer sizes on assembly and taxonomic profiling.
This is analogous to the word size parameter in BLAST, where
larger word sizes can resolve more repeat regions, akin to larger
k-mers providing higher N50 values and average contig lengths
(Kim et al., 2022). Both parameters are crucial for the accuracy
and efficiency of sequence analysis.

Gap Penalties: Penalties are assigned for introducing gaps
(insertions or deletions) in alignments. Adjusting these penalties
influences the alignment quality and sensitivity to insertions and
deletions within sequences. The code can employ optimization
algorithms to find the penalty settings that lead to the most
informative alignments for the specific contigs being analyzed.

iPHoP’s integration is a multiple method for host prediction
based on machine learning to discover viruses from bacteria and
archaea (Roux et al., 2023) and can be seen as a parallel to adjusting
gap penalties in BLAST. Just as iPHoP aims to maximize host
prediction accuracy by combining different computational
approaches, fine-tuning gap penalties in BLAST can lead to more
informative alignments, especially when analyzing metagenome-
derived virus genomes (Roux et al., 2023).

Leveraging Biopython further, the code facilitates scalable and
accurate BLAST analysis through automated BLAST execution,
iterating across multiple contigs and databases, thus minimizing
human error. It also standardizes output parsing, efficiently
extracting crucial metrics like percent identity, alignment length,
and E-values, which are indispensable for identifying biologically
significant high-scoring alignments. The inherent flexibility of the
code, thanks to Biopython, ensures seamless integration of future
advancements in BLAST or sequence analysis algorithms,
maintaining the adaptability of the analysis pipeline to the ever-
evolving landscape of bioinformatics tools. This approach aligns
with the principles outlined in “BLAST-QC: automated analysis of
BLAST results,” which emphasizes the need for streamlined scripts
to address the tedious nature of analyzing large BLAST search
results. BLAST-QC’s design for easy integration into high-
throughput workflows and pipelines resonates with our use of
Biopython, which similarly provides a lightweight and portable
solution for BLAST result analysis (Torkian et al., 2020).
Moreover, the “DNAChecker” algorithm’s focus on assessing
sequence quality before BLAST analysis complements our
methodology, ensuring the effectiveness of the BLAST results by
pre-screening the input sequences (Bhat et al., 2019). This pre-
analysis step is crucial, given the open-platform nature of biological
databases that often accept sequences with varying quality. So, the
code’s reliance on Biopython not only enhances the efficiency and
accuracy of BLAST analysis but also embodies the principles of
modern bioinformatics workflows—automation, quality control,
and adaptability to technological advancements.

3.7 BLAST search results and evidence for
citrus tristeza virus

Figure 3 summarizes the BLAST results for a subset of contigs
queried against the three databases (Supplementary Table S1). The
table shows alignments with high percent identity (similarity) and
alignment lengths, suggesting potential matches to known viral
sequences. Overall, the BLAST results provide compelling
evidence for the presence of contigs with significant similarity to
known Citrus tristeza virus sequences and some phages and viroids
but with less similarity or blast align lengths. This strongly suggests
the possibility of discovering novel Citrus tristeza virus strains or
related viruses within the original sample.

The filtering criteria applied to the BLAST search against a virus
database have effectively pinpointed high-quality sequence alignments,
as evidenced by the results in the virus filter Excel sheet. These results
showcase promising sequences for subsequent analysis. Notably, all
query sequences aligned significantly with the complete genome of the
Citrus tristeza virus (CTV, NC_001661.1), suggesting a potential link
with CTV. The alignments’ high percent identity, ranging from 73.71%
to 88.15%, and the considerable alignment lengths, between 1,088 bp
and 4,110 bp, underscore the sequences’ similarity and the hits’
relevance. The E-values, which span from 0 to 5.9E-122, underscore
the statistical significance of these matches, indicating that the observed
sequence similarities with CTV are not due to chance, thereby
reinforcing the hypothesis of a genuine biological association. It is,
however, noteworthy that no corresponding results were observed in
the viroid and phage filter Excel sheets post-filtering, possibly due to the
absence of these targets in the utilized sequence database for the
BLAST search.

3.8 Retrieval of complete viral sequences

Following the successful identification of viral sequences
through BLAST analysis and subsequent filtering, we proceeded
to retrieve the complete nucleotide sequences for these viruses. This
section outlines the methodology employed for sequence retrieval
and presents the retrieved sequences. Additionally, The accession
numbers were then extracted from the filtered BLAST results,
resulting in a list of accession numbers corresponding to the
identified viral sequences. These accession numbers act as unique
identifiers within public databases like GenBank, enabling the
retrieval of the complete viral genomes. The Entrez system
provided by NCBI offers programmatic access to various
biological databases, including GenBank. We leveraged the Bio
Python library to interact with the Entrez utilities. Specifically,
the Entrez. efetch function was utilized to retrieve the complete
nucleotide sequences based on the extracted accession numbers. As
recommended by NCBI, a valid email address was set for the Entrez.
email variable to facilitate usage tracking and potential
communication.

The retrieved viral sequences were obtained in the FASTA format, a
standard text-based format for representing nucleotide sequences. Each
FASTA entry typically begins with a header line containing an identifier
(usually the accession number) and a description, followed by the actual
sequence data. The Bio Python library’s SeqIO module was
instrumental in handling these FASTA sequences effectively. The
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SeqIO.read function parsed the FASTA file, converting each sequence
record into a Python object for further manipulation and analysis. The
retrieved FASTA sequences were saved locally for future use. The
SeqIO.write function from Bio Python was employed to write the
sequences back to a new FASTA file with a designated filename. This
ensured clear organization and identification of the retrieved viral
sequences. While not explicitly implemented in this protocol,
incorporating error-handling mechanisms is highly recommended.
This could involve checking for situations where accession numbers
are not found in the NCBI database or if issues are establishing a
connection to the Entrez servers. Implementing robust errors by
handling safeguards the script’s reliability and prevents unexpected
failures during sequence retrieval.

In the dynamic field of viral genomics, the comprehensive
retrieval and analysis of complete viral sequences stand at the
forefront of research. The methodologies employed in this study
are in harmony with the principles of several state-of-the-art
bioinformatics tools, reflecting a shared commitment to
precision, efficiency, and adaptability. For instance, VirusDetect
offers an automated pipeline for virus discovery through deep
sequencing of small RNAs, a method that mirrors the use of
BLAST analysis and subsequent filtering to pinpoint viral
sequences (Zheng et al., 2017). This parallel underscores the
synergy between traditional bioinformatics techniques and
modern, automated approaches. Similarly, the benchmark study
of thirteen bioinformatic pipelines illuminates the inherent
challenges in detecting low-abundance viral pathogens. These
challenges are mirrored in this work, where meticulous filtering
criteria and sequence retrieval processes are critical (de Vries et al.,
2021). Furthermore, VIBRANT, with its innovative hybrid machine

learning and protein similarity approach for virus recovery and
annotation, exemplifies the cutting-edge methodologies that
enhance the capabilities of tools like Biopython, which has been
utilized for sequence manipulation (Kieft et al., 2020). By drawing on
these parallels, this work not only contributes to the ongoing
evolution of bioinformatics but also enhances our collective
understanding of viral genomics.

Impact on Pipeline Performance: Complexity analysis of our
pipeline components reveals important insights into their
performance characteristics, especially when processing large
genomic datasets.

Scalability: The O (n log n) complexity of key algorithms like
Minimap2 and MegaHit ensures that our pipeline can handle
increasing data volumes without exponential growth in
processing time. This scalability is crucial for analyzing large
genomic datasets typical in modern sequencing projects.

Memory Usage: The space complexity of most components is
linear (O(n)), indicating that memory requirements grow
proportionally with input size. For very large datasets, this may
necessitate high-memory computing environments or distributed
processing strategies.

Bottlenecks: The BLAST search, with its O (mn) time
complexity, emerges as a potential bottleneck for extremely large
datasets or extensive database searches. Optimizing this step
through parallelization or alternative search algorithms may be
necessary for maintaining efficiency at scale.

Trade-offs: The pipeline’s design balances thoroughness (e.g., de
novo assembly) with efficiency (e.g., read mapping). This approach
ensures comprehensive analysis while maintaining reasonable
computational demands for most datasets.

FIGURE 3
Comprehensive BLAST analysis of contig Sequences via AI-enhanced methodology across Viral Nucleotide, Viral Protein, and Viroid Databases.
Query ID: The identifier for the query sequence. Query Def: Description of the query sequence, including flags, multiplicity, and length. Subject Def:
Description of the subject sequence, often including the organism name and genome status. Percent Identity: The percentage of identical matches
between the query and subject sequences over the alignment. Alignment Length: The length of the alignment between the query and subject
sequences. Mismatches: The number of differences between the query and subject sequences in the alignment. Gap Opens: The number of gaps
introduced in the alignment. Query Start/End: The start and end positions of the alignment on the query sequence. Subject Start/End: The start and end
positions of the alignment on the subject sequence. E-value: The expectation value, indicates the number of hits one can expect to see by chance when
searching a database of a particular size. Bit Score: A unitless measure of the sequence similarity, with higher scores indicating more significant
alignments.
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Practical Implications: For typical dataset sizes (up to several
gigabases), our pipeline should perform efficiently on standard high-
performance computing clusters. However, for very large projects
(e.g., metagenomics studies with terabases of data), additional
optimizations or distributed computing approaches may be
necessary to manage processing times and resource usage effectively.

By understanding these performance characteristics, users can
better plan computational resources and expect realistic processing
times when applying our pipeline to datasets of varying scales.

3.9 Mapping and consensus sequence
generation

Before alignment, the viral sequencing data were subjected to
rigorous quality control (QC) procedures to ensure the integrity of
the alignment results. These QC measures included the removal of
low-quality reads, trimming of adapter sequences, and the exclusion
of potential contaminants that could otherwise lead to errors in the
subsequent mapping process. After QC, the high-quality reads were
aligned to a reference genome corresponding to the target viral
strain. This critical step was performed using Minimap2, an ultra-
fast sequence aligner tailored for next-generation sequencing (NGS)
data. Known for its high accuracy, Minimap2 deftly manages the
mismatches and insertions/deletions (indels) that are characteristic
of viral sequences. The application of the ax map-ont parameter
suggests that the alignment was conducted in a splice-aware manner,

accommodating the splicing events that are typical in RNA viruses.
Furthermore, the reference genome was specified in FASTA format
via the -m parameter, ensuring precise guidance during the
alignment phase. Figure 4 is a visual representation of the
alignment process and the resulting consensus sequences,
illustrating the identified gap regions, denoted by “N,” in the
final contig sequences as guided by the reference genome.

3.10 SNP discovery algorithm and consensus
sequence analysis

The SNP discovery algorithm played a pivotal role in our
analysis. It was utilized to compare the generated consensus
sequence with the reference genome using tools such as GATK,
to identify potential single nucleotide polymorphisms (SNPs) and
insertions/deletions (indels). This comparative analysis provided
valuable insights into the genetic diversity within the viral
population present in the sequenced samples. By aligning the
consensus sequence to the reference genome and identifying
variations, we were able to determine the specific mutations
present in the dominant viral variant relative to the reference
strain. This information is critical for understanding the genetic
makeup of the viruses and potentially exploring their virulence or
adaptation to specific environments or hosts. In addition to the
analysis of the consensus sequence, a custom Python script was
employed to identify SNPs across the entire population of sequenced

FIGURE 4
A screenshot of invitro validation output for viral sequence discovery and generation of virus-specific sequences from raw reads, guided by the
reference viral genome. “N” denotes gap regions in the assembled contig sequences.
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viral reads. This script follows a series of steps to detect SNPs from
the aligned sequencing reads and the reference genome. Figure 5,
SNP discovery outputs which compare SNPs in reads against the
virus reference genome. The results generated by this custom script,
potentially including information about the position of each SNP
variant, the reference and alternate alleles, and the SNP allele
frequency and coverage depth, can be visualized in a table or
heatmap format (Supplementary Table S2). This data provides a
comprehensive overview of the genetic diversity present within the
viral population at the single nucleotide level.

By comparing the consensus sequence analysis with the results
from the SNP discovery script, it is possible to gain a deeper
understanding of the genetic makeup of the viral population in
samples. The consensus sequence represents the dominant variant,
while the SNP discovery analysis provides information about the range
of genetic variations present across the entire population. The SNP
discovery algorithm utilized in this study represents a significant
advancement in the identification of genetic variations within viral
genomes. Unlike traditional methods, which may suffer from
underpowered detection and a restrictive dependence on prior
biological knowledge, this algorithm allows for a more
comprehensive and unbiased analysis of SNPs and indels. For
instance, Silva et al. (2022) employed a machine learning-based
approach to enhance the detection of disease-associated susceptibility
loci, integrating random forest and cluster analysis with GWAS data.
While their method successfully identified three susceptibility loci
associated with hepatitis B virus surface antigen seroclearance, it
primarily focused on SNPs significant by GWAS and those with
high feature importance scores. In contrast, the current study’s
algorithm is designed to analyze the entire population of sequenced
viral reads, providing a broader view of the viral genetic diversity.
Furthermore, Rollin et al. (2023) highlighted the challenges of SNP
detection in virus genomes assembled from high-throughput
sequencing data. They emphasized the need for large-scale

performance testing to understand the limitations of bioinformatics
pipelines in SNP prediction. The present study’s algorithm addresses
these concerns by incorporating a custom Python script for SNP
identification, which is rigorously tested for accuracy and reliability.
This approach aligns with the recommendations by Rollin et al. for
improved SNP prediction, such as the importance of selecting the
closest reference and careful mapping parameters.

The SNP discovery algorithm presented here offers a robust and
versatile tool for viral genome analysis. It not only facilitates the
detection of the dominant viral variant but also uncovers the
spectrum of genetic variations across the viral population.

3.11 Pipeline validation using more data

Wedeveloped the code using RNA-Seq data from citrus plants with
CTV which showed their result with more details above (Ghorbani
et al., 2018a; Ghorbani et al., 2023) and then for validation of the system,
we used more RNA-Seq and whole-genome sequencing data from
different samples which show our pipeline in different hosts, different
number reads and different type of viruses (Ghorbani et al., 2018b;
Ghorbani et al., 2020; Abed et al., 2024; Morovati et al., 2024). All
viruses; Including influenza virus, severe acute respiratory syndrome
coronavirus 2, Enterococcus faecalis phage,and Maize Iranian mosaic
virus were discovered like previous studies. The pipeline showed that
the system can discover any type of virus in different types of data, and
this confirms our code accuracy and validation.

3.12 Comparison with existing pipelines

The AI-enabled pipeline offers several advantages over existing
virus detection and SNP discovery tools, including LoFreq and
VirusFinder. While LoFreq is effective in detecting low-frequency

FIGURE 5
SNP discovery outputs, showcasing a comparison of SNPs identified in sequenced reads against the reference viral genome, with a detailed table of
SNP positions, reference and alternate alleles, and a scatter plot graph illustrating the distribution of SNP frequency and coverage.
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variants in viral populations, and VirusFinder is adept at identifying
integration sites of viruses in host genomes, the pipeline introduces
unique innovations (Wilm et al., 2012; Wang et al., 2013). Firstly, it
incorporates AI-driven algorithms for more precise read alignment
and variant calling, which may potentially reduce the number of
false positives and negatives. Secondly, our pipeline incorporates a
de novo assembly step for unmapped reads, thereby enabling the
discovery of novel viral sequences that may be missed by reference-
based approaches. Lastly, our method employs a custom Python
script for SNP discovery. This script compares the entire population
of sequenced viral reads to a reference genome, thereby providing a
more comprehensive overview of viral genetic diversity. These
features collectively enhance the pipeline’s sensitivity and
specificity in virus detection and characterization, particularly in
complex metagenomic samples.

3.13 Limitations

In this study, we developed an AI-enabled pipeline for virus
detection, validation, and SNP discovery using NGS data. Our
approach integrates bioinformatics tools and AI-driven analysis
to improve the accuracy and efficiency of viral sequence
identification. However, there are several limitations that must be
considered when interpreting the results of this study.

Firstly, while the pipeline demonstrates strong performance in
detecting known viruses, its efficacy with completely novel or highly
divergent viral strains may be limited. This is primarily due to its
reliance on reference-based approaches for alignment and SNP
discovery, which may not capture viral sequences with high
mutation rates or those lacking comprehensive reference
databases. Secondly, the SNP discovery module’s accuracy is
contingent on the quality and depth of the input NGS data. Low
sequencing depth or sequencing errors may result in false-positive or
false-negative SNPs, which could affect downstream analysis and
interpretation. Thirdly, while AI enhances the efficiency of data
processing, its decisions rely on the training data used. Thus, the
pipeline’s performance may vary depending on the diversity and
representativeness of the datasets it was trained on, potentially
leading to biases in detecting viral sequences from less-studied or
emerging viral families. Finally, the pipeline’s computational
requirements may be prohibitive for users with limited access to
high-performance computing resources. Future work will focus on
optimizing the pipeline for scalability and exploring the
incorporation of cloud-based solutions to enhance accessibility.

Despite these limitations, the proposed pipeline presenting
significant improvements in virus detection and SNP discovery
from NGS data, presenting a valuable tool for genomic
surveillance and research in virology.

4 Conclusion

In conclusion, this study presents an innovative AI-enabled
pipeline that integrates bioinformatics tools with machine learning
algorithms to enhance virus detection, validation, and SNP discovery
from NGS data. Our approach addresses key challenges in genomic
data interpretation by streamlining the process from raw sequencing

data to biologically meaningful insights. The pipeline contributes to
the field by significantly improving the accuracy and speed of virus
detection, which is critical for monitoring viral outbreaks and
conducting genomic surveillance. The inclusion of SNP discovery
further strengthens its utility in studying viral evolution, host
adaptation, and potential resistance mechanisms. Moreover, the
AI-driven feature selection highlights the most informative
genomic regions, which can be leveraged to prioritize regions for
targeted sequencing or therapeutic interventions. This directly links to
the problem outlined in the background of the manuscript, which
emphasizes the need for rapid, reliable identification of viral sequences
and mutations in high-throughput genomic datasets. By providing an
automated, scalable solution, the pipeline enhances the capacity to
process large volumes of NGS data, ensuring its relevance in both
research and clinical settings.
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