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Background: Cancer rates are rising rapidly, causing global mortality. According
to the World Health Organization (WHO), 9.9 million people died from cancer in
2020. Machine learning (ML) helps identify cancer early, reducing deaths. An ML-
based cancer diagnostic model can use the patient’s genetic information, such as
microarray data. Microarray data are high dimensional, which can degrade the
performance of the ML-based models. For this, feature selection
becomes essential.

Methods: Swarm Optimization Algorithm (SSA), Improved Maximum Relevance
and Minimum Redundancy (IMRMR), and Boruta form the basis of this work’s ML-
based model BIMSSA. The BIMSSA model implements a pipelined feature
selection method to effectively handle high-dimensional microarray data.
Initially, Boruta and IMRMR were applied to extract relevant gene expression
aspects. Then, SSA was implemented to optimize feature size. To optimize
feature space, five separate machine learning classifiers, Support Vector
Machine (SVM), Random Forest (RF), Extreme Learning Machine (ELM),
AdaBoost, and XGBoost, were applied as the base learners. Then, majority
voting was used to build an ensemble of the top three algorithms. The
ensemble ML-based model BIMSSA was evaluated using microarray data from
four different cancer types: Adult acute lymphoblastic leukemia and Acute
myelogenous leukemia (ALL-AML), Lymphoma, Mixed-lineage leukemia (MLL),
and Small round blue cell tumors (SRBCT).

Results: In terms of accuracy, the proposed BIMSSA (Boruta + IMRMR + SSA)
achieved 96.7% for ALL-AML, 96.2% for Lymphoma, 95.1% for MLL, and 97.1% for
the SRBCT cancer datasets, according to the empirical evaluations.

Conclusion: The results show that the proposed approach can accurately predict
different forms of cancer, which is useful for both physicians and researchers.

KEYWORDS

cancer prediction, microarray data, feature selection, swarm intelligence,
ensemble learning

OPEN ACCESS

EDITED BY

Lei Chen,
Shanghai Maritime University, China

REVIEWED BY

Puspanjali Mohapatra,
International Institute of Information
Technology, India
Abdelkader Benyettou,
Centre Universitaire de Relizane, Algeria

*CORRESPONDENCE

Zheshan Guo,
guozheshan@hainanu.edu.cn

Prince Jain,
princeece48@gmail.com

RECEIVED 06 October 2024
ACCEPTED 11 December 2024
PUBLISHED 06 January 2025

CITATION

Panda P, Bisoy SK, Panigrahi A, Pati A, Sahu B,
Guo Z, Liu H and Jain P (2025) BIMSSA:
enhancing cancer prediction with salp swarm
optimization and ensemble machine
learning approaches.
Front. Genet. 15:1491602.
doi: 10.3389/fgene.2024.1491602

COPYRIGHT

© 2025 Panda, Bisoy, Panigrahi, Pati, Sahu, Guo,
Liu and Jain. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 06 January 2025
DOI 10.3389/fgene.2024.1491602

https://www.frontiersin.org/articles/10.3389/fgene.2024.1491602/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1491602/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1491602/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1491602/full
https://orcid.org/0000-0002-4212-2503
https://orcid.org/0000-0002-7950-7263
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1491602&domain=pdf&date_stamp=2025-01-06
mailto:guozheshan@hainanu.edu.cn
mailto:guozheshan@hainanu.edu.cn
mailto:princeece48@gmail.com
mailto:princeece48@gmail.com
https://doi.org/10.3389/fgene.2024.1491602
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1491602


1 Introduction

Cancer has been one of the main causes of mortality across the
globe for many decades, making it a significant public health issue
on a global scale. Cancer is an umbrella term for illnesses caused by
the unchecked proliferation and metastasis of aberrant cells. It
significantly affects public health and affects individuals of all
ages and walks of life. Cancer mortality rates change both
annually and geographically. WHO and the International Agency
for Research on Cancer (IARC) frequently release statistics on
cancer fatalities. It was predicted that there were around
9.9 million deaths from cancer globally in 2020 (Panigrahi et al.,
2023). Deaths from cancer are not distributed in the same way all
across the world. Developed nations often have higher incidence and
survival rates because of better healthcare, earlier diagnosis, and
more effective treatments. However, cancer may be a significant
problem in locations with inadequate healthcare infrastructure
(Venkatesan et al., 2022). Screening for cancer at an early stage is
another way to boost treatment success. Many forms of cancer now
have better survival rates because of advances in cancer research and
therapy (Khalsan et al., 2022).

Infants with ALL rearranged toMLL have even worse prognoses,
with survival rates of 40%–50%; the overall death rate for ALL is
20%–25% in children and up to 50% in adults. The death rate for
lymphomas varies greatly depending on subtype. For example,
aggressive non-Hodgkin lymphomas, such as diffuse large B-cell
lymphoma, have a mortality rate of 30%–40%, whereas Hodgkin
lymphomas have a rate below 10%. In children, the survival rate for
leukemias with MLL rearrangements is around 50%, but in adults, it
is lower, especially in cases of acute myeloid leukemia (AML) (Lewis
et al., 2020). The 5-year survival rate for SRBCTs drops to 15%–30%
in metastatic instances from over 70% in localized illness (de Leval
and Jaffe, 2020).

Through enhancing early detection and diagnosis, treatment,
and patient outcomes, machine learning has the potential to
contribute significantly to reducing cancer mortality rates (Bolón-
Canedo et al., 2014). Medical imaging like mammograms and CT
scans may be analyzed using machine learning algorithms for the
early detection of cancer. Earlier diagnosis is associated with better
treatment results (Ma et al., 2020). It may ensure that patients get the
best possible treatment promptly by lowering the percentage of
erroneous diagnostic results. Machine learning may predict
treatment outcomes by analyzing a patient’s medical record,
genetic data, and tumor features (Alghunaim and Al-Baity,
2019). By aiding in medication research and development,
machine learning may help produce more effective and tailored
medicines for cancer.

Several forms of medical data have been analyzed and
interpreted using machine learning (ML) for cancer detection.
Medical imaging data and genomic data account for the vast
majority of ML-based cancer research. Mammograms, X-rays, CT
scans, and MRI scans are all examples of medical imaging data
(Almugren and Alshamlan, 2019). DNA sequencing data and gene
expression profiling or microarray data are further examples of
“genomic data.” Microarray data, or genetic information, is crucial
for cancer diagnosis because it reveals important information about
the disease itself and its genetic disorders. This knowledge facilitates
personalized therapy, boosts treatment efficacy, and facilitates

educated decision-making in cancer care and prevention (López-
García et al., 2020). When processing microarray data, ML
encounters several challenges. The most difficult aspects of the
microarray data for ML to handle are the high dimensionality,
small sample size, and class imbalance. The high dimensionality of
microarray data results from the fact that thousands of
characteristics (genes or probes) are often assessed for each
sample or patient. Owing to the “curse of dimensionality,”
conventional ML methods may become ineffective in required
resources (both computational and cognitive) (Shukla et al.,
2020a). There are often fewer samples available than there are
characteristics to analyze. Creating reliable and generalizable
models might be difficult when working with a small sample size.

The best possible solution is to overcome the above-stated
challenges, employing strategies such as dimensionality reduction,
feature selection, and optimization algorithms to effectively select
genes for cancer diagnosis (Shukla et al., 2019). Deploying a single
feature selection algorithm may reduce the number of features to
some extent. However, if the feature space is larger, employing a
single method to select the appropriate number of features may not
be sufficient. Hence, the current work aims to deal with the high
dimensionality issues of microarray data with the help of the
pipelined featured selection algorithms followed by a nature-
inspired optimization algorithm to reduce the feature space to
the extent upon which the machine learning models can be used
to develop a more effective ML model. The reported research
includes the Boruta and IMRMR feature selection algorithm in a
pipelined manner. The motivation behind using the Boruta Feature
selection algorithm is its ability to identify all relevant genes while
considering the complex feature interaction with the target feature
using Random Forest (RF). In addition, it also deals with the
challenges, including the overfitting and interaction of the
features with the target variable. Improved Maximum Relevance
and Minimum Redundancy (IMRMR) IMRMR improves
traditional mRMR by selecting feature subsets highly related to
the target class and mainly uncorrelated. This makes features more
informative and efficient. This balance is a significant benefit of the
approach in complicated datasets where inter-feature relationships
may not be evident and impair each feature’s prediction ability. The
Salp Swarm Optimization Algorithm (SSA) effectively lowers the
dimensionality of datasets and enhances model performance by
identifying the most influential features that contribute to the
model’s predictive capability. Its innate simplicity and resilience
make it highly suitable for managing intricate, high-dimensional
data where conventional feature selection approaches may
encounter difficulties. It utilizes the swarming characteristics of
the salp in an ocean, which balances the exploration and
exploitation with efficacy, which helps the SSA to converge on a
globally optimal solution while avoiding the local optima. In the
current work, BIMSSA, the Boruta is initially applied to eliminate
the irrelevant features from the dataset, thus reducing the feature
space. It creates the shadow features by shuffling the original features
randomly. Using the base classifier RF, the importance score is
calculated for original and shadowed features. The highest score of
the shadowed feature set is termed the threshold value. The original
features with a score greater than the threshold value are considered
relevant. Then, the IMRMR is used to select the most relevant
features from the feature selection by calculating the IMRMR score.
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Finally, to the selected features, the SSA is applied to select an
optimal number through multiple iterations of features by having a
stopping criterion, such as maximum iteration for current work. The
algorithms mentioned above are dedicated to selecting the features
from the entire feature space. Thus, these algorithms work in a
vertical approach.

1.1 Objective

This study aims to create an ensemble ML-based model using
the Boruta IMRMR technique to select features and the SSA
algorithm to optimize those features. The research’s key
contribution is summed up as follows.

• To develop an ensemble ML model for efficient
Cancer diagnosis.

• To compare the performance of various feature selection
approaches, specifically Boruta and IMRMR, in reducing
the dimensionality of the microarray data.

• To access the impact of SSA in optimizing the selected features
in the context of the Cancer gene expression data.

• To analyze the performance of hybrid models with feature
selection methods along with four conventional ML classifiers.

• To analyze the efficacy of the ensemble learning model over
the hybrid model.

• Finally, four different cancer microarray data are considered
to evaluate the proposed model.

1.2 Literature survey

For the current work, 130 reports are initially identified. Several
records are excluded from the study with different steps. Twenty
duplicate records are removed before the screening process. The
remaining 110 numbers of records are considered for the screening
phase. In this phase, ten irrelevant records are excluded. From the
screening phase, 100 records are processed for the retrieval phase, out
of which 7 records are excluded as those records could not be retrieved.
Hence, the remaining 93 full-text records are considered. From the
considered full texts, 17 records are excluded as sufficient data for
analysis are unavailable. In addition, 20 records are excluded as those
dealing with diseases other than cancer, and 7 records are found to be
irrelevant to the study. Finally, the remaining 49 numbers of articles are
considered for the current work. From the considered records,
20 articles are used in the literature survey part, and the remaining
29 numbers of records are considered in the rest of themanuscript. The
Figure in Appendix I shows the current work’s Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA).

Ibrahim et al. (2017) introduced a novel hybrid approach, the
Salp Swarm Algorithm in feature selection (SSA-FS), on the real
datasets obtained from Iraqi hospitals for breast, bladder, and colon
cancers. Hegazy et al. (2018a) introduced a novel method, the
chaotic salp swarm algorithm (CSSA), to enhance the SSA on
28 datasets. Hegazy et al. (2018b) introduced a novel method, the
improved salp swarm algorithm (ISSA), which is consolidated with
the KNN classifier for feature selection on 23 UCI-ML datasets and
claimed to achieve enhanced accuracies on Breast Cancer, Lung

Cancer, and BeastEW disease datasets respectively. Using a
neighborhood entropy-based uncertainty measures model, Sun
et al. (Sun et al., 2019) successfully applied machine learning
(ML) methods, including k-nearest neighbor (KNN), C4.5, and
Support Vector Machine (SVM), to the classification of the
colon, diffuse large B-cell lymphoma (DLBCL), leukemia, lung,
and small round blue cell tumor (SRBCT). Ghoniem (2020)
introduced a novel bio-inspired liver cancer diagnosis model
considering a deep learning (DL) approach, i.e., Convolutional
Neural Network (CNN) along with SegNet and UNet, and the
optimization technique, i.e., Artificial Bee Colony optimization
(ABC) on Radiopaedia and LiTS datasets. Shukla et al. (2020b)
introduced an adaptive inertia weight teaching-learning model
considering machine learning approaches, i.e., Support Vector
Machine (SVM), Extreme Learning Machine (ELM), and Naïve
Bayes (NB) on Breast Cancer, Colon Cancer, DLBCL, Leukaemia,
SRBCT, Lung Cancer.

Meenachi and Ramakrishnan (2020) introduced differential
evolution and global optimal feature selection for cancer data
classification model considering the machine learning (ML)
approach, i.e., Decision Tree (DT) and optimization technique,
i.e., Ant colony optimization (ACO) on five datasets, i.e., DLBCL,
Breast Cancer, Leukemia, SRBCT, Gisette datasets. Nouri-
Moghaddam et al. (2021) introduced a new hybrid solution
based on a multi-filter and adaptive chaotic multi-objective forest
optimization algorithm (AC-MOFOA) considering Forest
optimization algorithm (FOA), Extreme learning machine (ELM),
multi-objective optimization (MOO), and five filter methods,
i.e., IG, mRMR, RelifF, CFS, and Fisher-score, on nine datasets,
i.e., SRBCT, Tumors_9, Leukaemia3, colon_prostate, Lung, GCM,
Breast, Rsctc_5, Rsctc_6.

Yan et al. (2021) introduced a novel feature selection model
considering a machine learning (ML) approach, i.e., K-nearest
neighbor (KNN) and a wrapper feature selection algorithm FS_
SSA based on Salp swarm, on five datasets, i.e., ALL-AML-4, Colon
Cancer, Lymphoma, MLL, SRBCT datasets. Sarala et al. (Arun
Prabha et al., 2021) introduced a decision-based Salp Swarm
Optimization (DT-SWO) algorithm considering machine learning
(ML) approaches, i.e., Decision Tree (DT), Support Vector Machine
(SVM), Naïve Bayes (NB), Kernel Support Vector Machine
(KSVM), and optimization technique, i.e., Salp Swarm
Optimization (SWO) on four datasets, i.e., DLBCL, Leukemia,
Lung Cancer and colon datasets. Alomari et al. (2021) introduced
a hybrid filter-wrapper approach considering robust Minimum
Redundancy Maximum Relevancy (rMRMR) as a filter approach,
Modified Gray Wolf Optimization (MGWO) as a wrapper
approach, and ML approaches including Random Forest (RF),
Elastic Networks (EN) and Decision Tree (DT) on nine datasets.
Balakrishnan et al. (2021) introduced an improved salp swarm
algorithm (iSSA) based on the levy flight for feature selection
model and Support Vector Machine (SVM) classifier on six
datasets, i.e., Oral Squamous Cell Carcinoma (OSCC), Ovarian
cancer, Breast Cancer, CNS, Colon Cancer, Leukemia datasets.
Hameed et al. (2021) included the binary particle swarm
optimization (BPSO), the genetic algorithm (GA), and the
cuckoo search algorithm (CS) for selecting the features. ML
approaches, including SVM, NB, KNN, and RF, are applied to
twelve datasets.
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TABLE 1 Analytical Study of existing literature.

Ref Techniques employed Datasets
employed

Findings (%)

Ibrahim et al. (2017) SSA, SVM Breast Cancer Accuracy: 98.75

Bladder Accuracy: 100

Colon Cancer Accuracy: 99.75

Hegazy et al. (2018a) SSA, KNN Breast Cancer Accuracy: 97.08

Lung Cancer Accuracy: 60

Breast EW Accuracy: 97.08

Hegazy et al. (2018b) ISSA, KNN Breast Cancer Accuracy: 95.70

Lung Cancer Accuracy: 59.78

Breast EW Accuracy: 96.10

DLBCL Accuracy: 92.7

Leukemia Accuracy: 92.9

Lung Accuracy: 98.8

SRBCT Accuracy: 93.6

Sun et al. (2019) KNN, C4.5, SVM SRBCT Accuracy: 93.6

Ghoniem (2020) CNN along with SegNet and
UNet, ABC

Radiopaedia datasets Accuracy: 99.3, F1-Score: 99.0, Specificity: 99.0

Shukla et al. (2020b) SVM, ELM, and NB Breast Cancer Accuracy: 89.59

Colon Cancer Accuracy: 98.03

DLBCL Accuracy: 99.89

Leukaemia Accuracy: 98.99

Lung Cancer Accuracy: 98.83

Meenachi and Ramakrishnan
(2020)

DT and ACO DLBCL Accuracy: 92.65, Specificity: 98.4, Precision: 95.8, Recall: 95.4,
F-Measure: 95.1

Breast Cancer Accuracy: 71.88, Specificity: 91.1, Precision: 59.3, Recall: 72.1,
F-measure: 64.3

Leukemia Accuracy: 85.29, Specificity: 92.8, Precision: 89.6, Recall: 85.8,
F-measure: 85.6

SRBCT Accuracy: 81.58, Specificity: 93.1, Precision: 82.5, Recall: 82.1,
F-measure: 81.7

Nouri-Moghaddam et al.
(2021)

FOA, ELM, MOO SRBCT Accuracy: 90.72

Tumors_9 Accuracy: 84.41

Leukaemia3 Accuracy: 97.66

Colon Accuracy: 97.89

Lung Accuracy: 93.97

Breast Accuracy: 86.53

Yan et al. (2021) KNN, FS_SSA, PSO, and GA ALL-AML-4 Accuracy: 94.23

Colon Tumor Accuracy: 82.09

Lymphoma Accuracy: 88.57

MLL Accuracy: 86.19

SRBCT Accuracy: 76.74

(Continued on following page)
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TABLE 1 (Continued) Analytical Study of existing literature.

Ref Techniques employed Datasets
employed

Findings (%)

Arun Prabha et al. (2021) DT, SVM, NB, KSVM, and SWO DLBCL Accuracy: 95

Leukemia Accuracy: 97

Lung Cancer Accuracy: 94

Colon Accuracy: 98

Alomari et al. (2021) rMRMR-MGWO, LASSO, RF, EN,
and DT

Colon Tumor Accuracy: 94.14, Precision: 95.33, Recall: 91.97, F1-Score: 95.46,
Mathew’s Co-relation Coefficient (MCC).: 86.39

CNS Accuracy: 100, Precision: 100, Recall: 100, F1- Score: 100, MCC: 100

AII-AML Accuracy: 100, Precision: 100, Recall: 100, F1- Score: 100, MCC: 100

Ovarian Cancer Accuracy: 100, Precision: 100, Recall: 100, F1- Score: 100, MCC: 100

Lung Cancer Accuracy: 97.52, Precision: 94.45, Recall: 98.82, F1-score: 95.79,
MCC: 92.0

ALL-AML-3C Accuracy: 99.86, Precision: 99.82, Recall: 99.94, F1-Score: 99.77, MCC: 97

AII-AML-4C Accuracy: 98.84, Precision: 99.11, Recall: 99.62, F1-Score: 98.63, MCC: 93

MLL Accuracy: 99.90, Precision: 99.89, Recall: 99.95, F1-Score: 99.9,
MCC: 98.0

Balakrishnan et al. (2021) SSA, Levy Flight, SVM OSCC Accuracy: 85.7, F1-score: 85.7, Recall: 90, Precision: 90.0

Ovarian Cancer Accuracy: 83.33, F1-score: 84.3, Recall: 89.5, Precision: 88.0

Breast Cancer Accuracy: 50, F1-Score: 66.6, Recall: 100, Precision: 50

CNS Accuracy: 66.6, F1-Score: 58.8, Recall: 45.4, Precision: 83.3

Colon Cancer Accuracy: 86.9, F1-Score: 88.0, Recall: 100, Precision: 78.5

Leukemia Accuracy: 85.7, F1-score: 87.5, Recall: 100, Precision: 100

Hameed et al. (2021) BPSO, GA, CS, KNN, SVM, NB, RF Brain Accuracy: 97.62

Breast Accuracy: 86.60

CNS Accuracy: 80.00

Colon Accuracy: 93.55

Leukemia Accuracy: 100

Lung Accuracy: 97.54

Ovarian Accuracy: 100

Prostate Accuracy: 96.08

TCGA Accuracy: 100

Rostami et al. (2022) CDNC Colon Accuracy: 88.73

Leukemia Accuracy: 90.18

SRBCT Accuracy: 82.82

Prostate Tumor Accuracy: 82.91

Lung Cancer Accuracy: 91.76

Aziz (2022) SVM, NB, and ANN, along with CS,
GA, and ABC

Colon Cancer Accuracy: 93.01

Acute Leukemia Accuracy: 93.35

Prostate Tumor Accuracy: 89.14

High-grade Glioma Accuracy: 90.32

(Continued on following page)
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Gene selection for microarray data categorization was developed
by Rostami et al. (2022) using a multi-objective graph theoretic-
based approach model that considers the idea of community
detection with node centrality (CDNC). On six datasets, Aziz
(2022) presented a metaheuristics model that was inspired by
nature. The model utilized ML approaches such as Support
Vector Machine (SVM), Naïve Bayes (NB), Artificial Neural
Network (ANN), cuckoo search (CS), genetic algorithm (GA),
and artificial bee colony (ABC). Alromema et al. (2023) used
logistic regression, Support Vector Machine, K-Nearest
Neighbours, Neural Networks, Naive Bayes, Decision Tree, and
eXtreme Gradient Boosting to gene expression datasets. On
17 microarray expression datasets, including CNS, Colon,
Leukemia_3C, Leukemia_4C, Leukaemia, Hungtington Disease,
DLBCL, Lymphoma66 ö4026_3c, Lymphoma, Prostate, SRBCT,
Lung Cancer, Breast Cancer, Sarcoma, Mycloma, and Ovarian,
Ke et al. (2022) suggested a population initialization method
based on ranking criteria (PIRC) using NB, C4.5, genetic
algorithm (GA), and ant colony optimization (ACO). In their
study on the Wisconsin Breast Cancer Dataset (WBCD), Rustagi
et al. (2024) presented a method for breast cancer detection that

relies on Salp Swarm and Grey Wolf Optimisation. They took SVM
and KNN classifiers into account. Ünalan et al. (2024) highlighted
ensemble learning methodologies’ efficacy in classifying breast
cancer. It was revealed that performance improved over
standalone classifiers. Classifiers AdaBoost, GBM, and RGF gave
an impressive accuracy of 99.5%. However, ensembles of this kind
surpassed the respective individual algorithms LGBM for accuracy
and gave an F1 score of 99.2% alongside an accuracy of 98.9%.
Incorporating stratified shuffle split and k-fold cross-validation
raises the question of the strict evaluation technique in obtaining
credible and clinically relevant classification outputs. Table 1 shows
the analytical study of the literature mentioned above. Batool and
Byun (2024) showed that ensemble learning applied to the task of
breast cancer classification was doing well by enhancing the general
predictive accuracy through a set of multiple models. Several studies
on the WBCD dataset showed that the ensemble method, for
example, voting classifier involving ETC, LightGBM, RC, and
LDA models, performed better than individual models. The
proposed model succeeded in surpassing all known state-of-the-
art classifiers utilized in the detection and diagnosis cases of breast
cancer with an average accuracy of 97.6% and an F1 value of 98.1%.

TABLE 1 (Continued) Analytical Study of existing literature.

Ref Techniques employed Datasets
employed

Findings (%)

Lung Cancer II Accuracy: 87.71

Leukemia-2 Accuracy: 93.67

Alromema et al. (2023) SVM, KNN, NN, NB, DT,
XGBoost, LR

Gene Expression
Dataset

Accuracy: 97.6, F1-Score: 97.4, AUC:0.961

Ke et al. (2022) NB, C4.5, GA, and ACO CNS Accuracy: 85.00

Colon Accuracy: 91.90

Leukemia_3C Accuracy: 100

Leukemia_4C Accuracy: 97.50

Leukemia Accuracy: 100

DLBCL Accuracy: 100

Lymphoma66 ×
4,026_3c

Accuracy: 100

Lymphoma Accuracy: 93.21

Prostate Accuracy: 95.00

Lung Cancer Accuracy: 100

Breast Cancer Accuracy: 97.18

Sarcoma Accuracy: 75.36

Mycloma Accuracy: 90.20

Ovarian Accuracy: 98.80

Rustagi et al. (2024) SSA, SVM, KNN WBCD Accuracy: 99.42

Ünalan et al. (2024) AdaBoost, GBM, and RGF, LGBM WBCD Accuracy: 99.5

Batool and Byun (2024) Extra Tree Classifier, Ridge, LGBM WBCD Accuracy: 97.6, F-1 Score: 98.1

Mahesh et al. (2022) SVM, KNN, DT, RF, and LR Breast Cancer Accuracy:98.14, Precision: 96.18, Recall, 97.23, and F-1 Score: 96.43
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Mahesh et al. (2022) proposes an early prediction of breast cancer
through a blended ensemble learning approach with SVM, KNN,
DT, RF, and LR as base classifiers. The model’s performance is
checked using a breast cancer dataset, which has yielded
considerable improvements in accuracy at 98.14%. Accurate,
recall, precision, and F1-score metrics validate the ensemble
model’s effectiveness over individual classifiers.

Table 1 shows the analytical study of the considered literature in
which it has been observed that the reported literature follows a two-
stage feature selection process. In addition, the adopted approaches
follow a hybrid approach for cancer classification. Applying the two-
stage feature selection does not impact the undertaken dataset more,
i.e., ALL-AML, Lymphoma, MLL, and SRBCT cancer dataset. Thus,
the current research aims to apply a pipelined feature selection
method consisting of three different feature selection approaches,
starting from Boruta and followed by IMRMR and SSA. However, to
make it more effective, Table 2 has been taken from Table 1, which is
dedicated to the literature that deals with the dataset considered for
the current study, such as ALL-AML, Lymphoma, MLL,
and SRBCT.

1.3 Paper structure

The remaining parts of the paper are organized as follows.
Section 2 depicts the approach used in developing the suggested
model and describes the utilized dataset. The core ideas behind the
proposed paradigm are discussed in Section 3. The empirical

evaluation of the suggested model is presented in Section 4. In
Section 5, we do a critical analysis of the proposed model. The
conclusion is presented in Section 6.

2 Methodology of BIMSSA

This section details the methods used to create the reported
model and the dataset it was built from. The BIMSSA model utilizes
a pipelined feature selection technique to efficiently address the
dimensionality problem in the microarray data. Initially, Boruta and
IMRMR are used with the objective of extracting pertinent gene
expression features. In the next step, the SSA method is used to
optimize the size of the feature set acquired by Boruta and IMRMR.
The Support Vector Machine (SVM), Extreme Learning Machine
(ELM), Random Forest (RF), AdaBoost, and XGBoost are the
foundation learners that are used in the construction of an
ensemble model.

2.1 Dataset description

Four publicly available cancer gene expression data, including
ALL-AML (D1), Lymphoma (D2), MLL (D3), and SRBCT (D4), are
considered for developing the current work (Zhu et al., 2007).
Among the above datasets, D1, D2, and D3 have three classes,
and D4 has four classes. ALL-AML dataset contains three classes
labeled B-Cell, T-Cell, and AML. The Lymphoma cancer dataset

TABLE 2 Literature survey summary for the ALL-AML, Lymphoma, MLL, and SRBCT datasets.

Ref Techniques employed Datasets employed Findings (%)

Sun et al. (2019) KNN, C4.5, SVM SRBCT Accuracy: 93.6

Meenachi and Ramakrishnan (2020) DT and ACO SRBCT Accuracy: 81.58

Nouri-Moghaddam et al. (2021) FOA, ELM, MOO SRBCT Accuracy: 90.72

Yan et al. (2021) KNN, FS_SSA, PSO, and GA Lymphoma Accuracy: 88.57

MLL Accuracy: 86.19

SRBCT Accuracy: 76.74

Alomari et al. (2021) rMRMR-MGWO, LASSO, RF, EN, and DT ALL-AML-3C Accuracy: 99.86

Rostami et al. (2022) CDNC SRBCT Accuracy: 82.82

Ke et al. (2022) NB, C4.5, GA, and ACO Lymphoma Accuracy: 93.21

TABLE 3 Dataset description.

Dataset Number of samples Number of features Number of classes Class distribution

ALL-AML 72 7,129 3 B-Cell- 38; T-cell- 9; AML- 25

Lymphoma 62 4,026 3 DLBCL- 46; FL- 9; CLL-11

MLL 72 12,582 3 ALL- 24; AML- 28; MLL- 20

SRBCT 83 2,308 4 BL- 29; EWS- 11; NB- 18; RMS- 25
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includes DLBCL, FL, and CLL classes. Considering the MLL cancer
dataset, it contains three classes, including ALL, AML, and MLL.
Similarly, the class names for the SRBCT cancer dataset are BL,
EWS, NB, and RMS. Table 3 shows the proposed model’s dataset
description and the class-wise distribution in each dataset.

2.2 Boruta feature selection

Boruta is a wrapper-based feature selection that aims to improve
the efficiency and interpretability of machine learning models.
Boruta finds and chooses important features from a dataset by
combining a random forest classifier with a significance testing
method. Shadow features, essentially randomized replicas of the
original features, are first generated by the algorithm. After that, the
original and shadow feature sets are pooled and used to train a
random forest model. Based on how each feature affects the model’s
performance, Boruta ranks them and compares them to their
corresponding shadow characteristics to determine their relative
relevance. Initially, dataset (D) contains the total number of features.
(F ← f1, f2, . . .fN{ }), where N is the total samples present in that
dataset, then the shadow of the actual features is calculated using
Equation 1 to form a shadow feature set (Fshadow):

fi,shadow � Shuffle fi( ) � fiΡ1, fiΡ2, fiΡ3, .., fiΡN[ ] (1)

FIGURE 1
Working of SSA.

TABLE 4 Parameter initialization of SSA.

SSA parameter Value

Max_It 100

num_salps 30

Lb −10

Ub 10

Γ1 1

Γ2 0.8
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Where Shuffle is a function that shuffles the values of
the feature fi with a random permutation P with indices
{1,2,‥,N}. After getting the shadow features, the D is extended

to include the shadow features. Hence, a new feature set
(Fintegrated) is derived by integrating F with Fshadow, as
represented in Equation 2.

FIGURE 2
Workflow of the Proposed BIMSSA for feature selection and classification.

FIGURE 3
Out-of-sample performance measure of the different classifiers with MRMR and SSA for the ALL-AML dataset.
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Fintegrated ← F, Fshadow{ } ← f1, f2, . . .fN, f1,shadow, f2,shadow, . . .fN,shadow{ }
(2)

To the integrated feature set, Fintegrated the random forest
importance technique is applied to calculate each feature’s
importance score(I) using Equation 3.

I fi( ) � ∑T
t�1

Δt
fi

Κt
(3)

After obtaining the I for each feature, the threshold
value (Ith) is calculated as the maximum score among the
shadow features. This can be represented by Equation 4.
Equation 5 shows the criteria based on which the Boruta
feature selection algorithms identify the important features
present in the dataset, thus discarding the others to modify the
feature set (F)

Ith � Max Ifshadow( ),∀fshadow ∈ Fshadow (4)

FIGURE 5
Out-of-sample performance measure of different classifiers with MRMR and SSA for the MLL dataset.

FIGURE 4
Out-of-sample performance measure of the different classifiers with MRMR and SSA for the Lymphoma dataset.
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F ← I fi ∈ F( )> Ith, Keep the feature
I fi ∈ F( )≤ Ith, Discard the features

{ (5)

Once Boruta determines if a feature is relevant, the algorithm
iteratively confirms or rejects it until all features have been
categorized. A refined collection of characteristics expected to
improve model generalization and prediction accuracy is the
final output, a subset of the relevant features. Boruta provides a
strong method for feature selection in the ML process, making it
ideal for dealing with high-dimensional datasets (Maurya
et al., 2023).

2.3 Improved maximum relevance and
minimum redundancy (IMRMR)

Maximum relevance and minimum redundancy (MRMR) is a
filter-based feature selection technique used to select a subset of
features from a more extensive set of features. The objective is to
select the most useful features while minimizing redundancy.
This method is often used in machine learning and data analysis
for better model performance, reduced overfitting, and more
interpretable models. The IMRMR is the modified version of the
MRMR feature section algorithm. Like MRMR, it also selects
relevant features with low redundancy scores. MRMR adopts the
Mutual Information (MI) to select those features that depend on
the target feature. In addition to MI, IMRMR aids Pearson
correlation to focus on the linear relation between the
features. The following shows the workings of MRMR and
IMRMR to determine the difference between these two for
selecting features (Ding and Peng, 2005; Yan and Jia, 2019;
Zhao et al., 2019).

2.3.1 Relevance calculation
• Calculating each feature’s relevance score requires assessing its
correlation with the target variable.

• It is generally accepted that characteristics with high relevance
scores should be weighed more for classification.

• The Relevance score (Mre) of a feature is calculated based on
Mutual Information (MI) as Equations 6 and 7.

MI fi, fc( ) � ∑
fi∈F

P fi, fc( )*∑ log2
P fi, fc( )

p fi( )*p fc( )( ) (6)

maxMre fi, fc( ) � 1
F| | ∑

fi∈F

MI fi, fc( )( ) (7)

F is the total feature set, |F| is the total number of features, fi is
known as the selected feature, fc is the target variable of the feature
set. P(fi, fc) is the joint probability of the feature fi andfc.
p(fi)*p(fc) are the marginal probabilities of the features
fi, andfc respectively (Ke et al., 2022).

2.3.2 Redundancy calculation
• Perform a pairwise redundancy analysis between the
characteristics. The word “redundancy” refers to the degree
to which two characteristics are comparable regarding the
information they contain.

• Metrics such as mutual information, correlation, and distance-
based metrics are common redundancy measurements.

• It is best to avoid using features in the final decision that are
extremely repetitive with one another since they give
comparable information. The redundancy score (Mrd) can
be calculated using Equations 8 and 9.

FIGURE 6
Out-of-sample performance measure of the different classifiers with MRMR and SSA for the SRBCT dataset.
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MI fi, fj( ) � ∑
fi∈F

P fi, fj( )*∑ log2
P fi, fj( )

p fi( )*p fj( )⎛⎝ ⎞⎠ (8)

minMrd fi, fj( ) � 1
F| | ∑

fi,fj∈F

MI fi, fj( )( ) (9)

The MRMR score of the considered feature fi is calculated as
Equation 10. The feature with the highestMRMR score is considered
for classification (Rustagi et al., 2024).

MRMR i( ) � Max Mre −Mrd( ) (10)
By determining the significance and duplication of each feature,

the mRMR technique quantifies the contribution of features. It does
not take into account the combined effect of several characteristics.
Mutual information measures are the only basis for relevance and
redundancy. To choose the best feature subset, IMRMR employs two
metrics—the Pearson correlation coefficient and mutual

information—to assess the subsets’ relevance and redundancy
with weight factors ranging [0.1,1] with step size 0.1.

Calculate the relevance (Mre) and redundancy (Mrd) of each
feature (fi) in the feature space F using Equations 11, 13,
introducing the Pearson Correlation (Equation 12) and weight
factor α ranging from [0.1, 1] with step size 0.1.

Mre fi, fc( ) � ∝ * MI fi, fc( )( ) + 1 − ∝( )Pearc fi, fc( ) (11)

Pearc fi, fc( ) � ∑ fi − fi( ) fc − fc( )( )������������������∑ fi − fi( )∑ fc − fc( )√ (12)

Mrd fi, fj( ) � 1
F − 1

∑
fi∈F−1

∝ * MI fi, fj( )( ) + 1 − ∝( )Pearc fi, fj( )( )
(13)

The modified IMRMR(i) can be calculated using Equation 14.

IMRMR i( ) � Max Mre −Mrd( ) (14)

TABLE 5 Performance Analysis of Proposed BIMSSA Model with Clopper–Pearson confidence interval (CI).

Dataset Metric Predicted value Clopper–Pearson CI (95%)

D1 ACC 0.967 (0.887, 0.99)

PRE 0.974 (0.912, 0.996)

REC 0.974 (0.912, 0.996)

F1-S 0.974 (0.912, 0.996)

F-2 0.974 (0.912, 0.996)

SPE 0.955 (0.863, 0.99)

D2 ACC 0.962 (0.868, 0.995)

PRE 0.972 (0.897, 0.995)

REC 0.972 (0.897, 0.995)

F1-S 0.972 (0.897, 0.995)

F-2 0.972 (0.897, 0.995)

SPE 0.938 (0.841, 0.979)

D3 ACC 0.951 (0.887, 0.99)

PRE 0.949 (0.863, 0.982)

REC 0.974 (0.912, 0.996)

F1-S 0.961 (0.887, 0.99)

F-2 0.969 (0.912, 0.996)

SPE 0.913 (0.819, 0.963)

D4 ACC 0.971 (0.901, 0.991)

PRE 0.978 (0.923, 0.997)

REC 0.978 (0.923, 0.997)

F1-S 0.978 (0.923, 0.997)

F-2 0.978 (0.923, 0.997)

SPE 0.958 (0.88, 0.991)
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2.4 Salp swarm optimization algorithm (SSA)

After applying the IMRMR feature selection, the relevant
features remain in the dataset. However, applying the IMRMR
does not ensure that the number of selected features has a role in
the diagnosis process. Some features will be relevant, but removing
them does not impact the diagnosis model. The Salp Swarm
Optimization Algorithm (SSA), a wrapper-based feature selection
algorithm, is implemented to ensure that the optimal set of relevant
features is in the selected feature set, through which the processing
time of the developed model can be decreased.

The SSA has been implemented to solve optimization challenges. It
mimics the group dynamics of salps, sea animals similar to jellyfish.
When applied to an optimization issue, SSA seeks to identify the best
possible outcome (Mirjalili et al., 2017; Castelli et al., 2022). There are
more than 1.2 million known marine creature species. Most of these
species have similar habits and traits, includingways of communication,
speed of movement, and foraging strategies. The salp’s habitats are
notoriously tough to reach, yet scientists think this behavior aids the
animals in movement and feeding. Inspired by the coordinated
movement of salps (gelatinous sea organisms), the SSA uses natural
selection to find optimal solutions. Collective behavior in these species
serves as a paradigm for the optimization difficulties SSA seeks to solve
(Ibrahim et al., 2018; Thawkar, 2021; Sayed et al., 2018).

2.4.1 Mathematical model
A member of the family Salpidae, salps are found in the ocean. Its

cylindrical form and end apertures evoke images of jellyfish, which pump
water through their gelatinous bodies using internal feeding filters to
propel themselves and eat. Some of the aquatic creatures exhibit similar
behaviors, such as swarming. In the case of fish, this group is known as a
school, whereas in the case of salps, it is referred to as a salp chain.

The SSA starts with the swarmX of n numbers of salps. Equation
15 shows the two-dimensional matrix of the scalp position.

X11 . . . X1n

..

.
1 ..

.

Xm1 . . . Xmn

(15)

The working of the SSA is started by determining the fitness
function (F ()) population size, maximum iteration, initial step size

FIGURE 7
Comparative ROC evaluation for ALL-AML, Lymphoma, MLL, and SRBCT using BIMSSA.

FIGURE 8
Comparative analysis of Training and Testing Time of BIMSSA
over different dataset.
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(Γ1)and damping factor (Γ2). For each salp Xi the social influence is
calculated as Equation 16 (Thawkar, 2021).

S Xi( ) � ∑
i,j

F Xi( )
Xj −Xi

∣∣∣∣ ∣∣∣∣ (16)

F(Xi) is the fitness function of the salp Xi. |Xj −Xi| is the Euclidian
distance between two salpsXj andXi. With the personal best solution
(Xb), the personal component P is calculated as Equation 17. The
exploration component (E) can be calculated as Equation 18.

P Xi( ) � F Xi( )
Xb −Xi| | (17)

E Xi( ) � κ*R( )* |Xb −Xi| (18)

Where κ is a random vector between [0,1], and R () is the
method to generate the random number between 0 and 1. Xb is the
personal best of the selected salp. The position of the salp can be
updated by using Equation 19.

Xi new( ) � Xi + Γ1*S Xi( ) + Γ2*P Xi( ) + E Xi( ) (19)

The fitness of the salp is updated by comparing the fitness of the
new position with the previous position. This can be determined by
using Equation 20. Personal best is based on the fitness function
obtained. The position of salp can be obtained by using Equation 21.

F Xi new( )( ) � F Xi( ), if F Xi new( )( )<F Xi( )
F Xi new( )( ), else{ (20)

Xb � Xi new( ), if F Xi new( )( )<F Xi( )
Xi, else

{ (21)

The exploitation components of salp aim to improve the current
obtained solution to an optimized one. This process ensures that the
obtained solution is the best. Exploitation is the process of leader-
follower dynamics where the entire salp group is divided into two

groups. The first salp is the leader salp, and the others are called the
follower salp. The position of the leader salp and follower salp is
updated using Equations 22 and 23, respectively. Let x, y be the
leader and follower salp belonging to the salp community X.

x t + 1( ) � x t( ) + c1 ub − lb( )c2 + lb( ) (22)

Where lb and ub are the lower and upper bounds of the exploring
dimension, x(t) is the current position of the leader salp at current time
t, and c1 and c2 are the random numbers between the interval [0,1].

yi t + 1( ) � 1
2

yi t( ) + yi−1 t( )( ) (23)

yi(t) is the current position of a follower salp yi ∈ X, yi−1(t) is the
current position of the proceeding follower salp.

2.4.2 Working of SSA
The selected features fromMRMR are taken as input for the SSA

algorithm. The workings of the SSA are described below. Figure 1
shows how the SSA algorithm works.

Step 1: The parameter initialization is the primary of the algorithm.
Various parameters have been initiated, including
maximum iteration (Max_It), number of salps (num_
salps), etc. The parameter initialization is shown in Table 4.

Step 2: To get the best solution, the proper fitness function needs
to be calculated. For the current work, average accuracy
(Equation 24) determines the fitness function of SSA. For
determining the across-validation, the fitness function F()
can be calculated by using Equation 25.

ACCavg � 1
k
*∑

i

ACCi (24)

F() � ACCavg (25)

FIGURE 9
Out-of-sample performance evaluation of BIMSSA with Existing literature.

Frontiers in Genetics frontiersin.org14

Panda et al. 10.3389/fgene.2024.1491602

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1491602


Step 3: The best solution is identified based on the
objective function.

Step 4: Update the salp position as per Equation 15.
Step 5: Local and global exploration is performed to find the local

and global solution. This algorithm aims to strike a
balance between global exploration, which searches the
whole solution space, and local exploration, which exploits
the neighborhood of specific solutions.

Step 6: Update the best solution.
Step 7: Repeat Step-3 to Step-6 for each feature until the number

of iterations is less than Max_It.

2.5 Voting ensemble classifier

The current work employs ML classifiers such as SVM (Alfian
et al., 2022), RF (Alfian et al., 2022), ELM (Ding et al., 2013), AdaBoost
(Asselman et al., 2021), and XGBoost (Asselman et al., 2021) to make
the initial prediction. Then, the majority voting classifier is used as an
ensemble learning approach tomake the final prediction. It is a simple
and powerful strategy for integrating the results of numerous models
into a single prediction. When many models provide varying results
and a group choice must be made based on those results, majority
voting is an effective tool (Naji et al., 2021; Pati et al., 2023).

3 Workflow of BIMSSA

Initially, the dataset is considered for normalization to remove
the noisy data. The MRMR is then applied to the normalized data to
choose the best feature. As a last step, the SSA is used as an
optimizer. Algorithm 1 shows the working description of
BIMSSA. The functionality of the suggested model is shown in
Figure 2. Initially, the dataset is considered for normalization to
remove the noisy data. TheMRMR is then applied to the normalized
data to choose the best feature. As a last step, the SSA is used as an
optimizer. Figure 2 and Algorithm 1 show the suggested model’s
functionality. The suggested method’s operation is described below.

3.1 Step-1: dataset considered for
preprocessing

The dataset is first subjected to a preprocessing stage to ensure
data quality and consistency. This involves several key steps.

• Data Cleaning: Remove or correct any noisy data, missing
values, or inconsistencies within the dataset.

• Normalization: Apply normalization techniques to scale the
features to a standard range, typically [0, 1] or [-1, 1]. This
helps in improving the performance and convergence of
machine learning algorithms.

• Encoding: If applicable, convert categorical variables into
numerical values using label encoding.

• Balancing the Dataset: If the dataset is imbalanced, techniques
like oversampling, undersampling, or synthetic data

generation (e.g., SMOTE) are applied to ensure that the
model does not become biased towards the majority class.

3.2 Step 2: dataset splitting

The preprocessed dataset is then split into training and testing
sets. Two different splitting ratios are considered: 80–20. This helps
in evaluating the robustness of the model.

3.3 Step 3: Feature selection

To enhance model performance, feature selection algorithms
are applied.

• Boruta Algorithm: An all-relevant feature selection method
that identifies relevant features by comparing original
attributes with shadow attributes.

• ImprovedMinimumRedundancyMaximumRelevance (MRMR):
Select the best features with maximum relevance with the target
variable and minimal redundancy among themselves.

3.4 Step 4: optimization using salp swarm
algorithm (SSA)

The SSA is used to optimize the feature set selected in the
previous step.

i. Initiate Population
ii. Parameter Initialization
iii. Fitness Function Calculation
iv. Optimization Process Starts: Iteratively update the positions

of salps to find the optimal feature set.
v. Check the Maximum Iteration
vi. If Not Exceeding, Return to iii
vii. If Exceeds, Obtain the Best Feature Set

3.5 Step 5: model training

Based on the training data and the optimized feature set, train
the following five models.

• Support Vector Machine (SVM)
• Random Forest (RF)
• Extreme Learning Machine (ELM)
• AdaBoost
• XGBoost

3.6 Step 6: Classifier Selection

Select the top three classifiers from the trained models based on
their highest accuracy during training.
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3.7 Step 7: Model Evaluation

Test the ensemble classifier using the testing dataset to obtain
evaluative parameters such as accuracy, precision, recall, F1-score,
and ROC-AUC.

Input: Dataset D← {D1, D2, D3, D4}, Feature set F← {f1, f2,

. . .. . .fn}, Max Iteration, num_salps, Lb, Ub, Γ1, Γ2, BL: {SVM

(BL1), RF (BL2), ELM (BL3), AdaBoost (BL4), XGBoost (BL5), D′
is the feature set selected by Boruta, D″ is the feature

selected by IMRMR, D‴ is the feature selected by SSA}

Output: Performance Measures

For k = 1 → 4

Normalize Dk

End for

Split the dataset with an aspect ratio of 85:15 for

Train: Test

Invoke Boruta () to D and return the resulting feature

subset is D′
Invoke IMRMR () to D′ and return the resulting subset D″
for k = 1 → 4

for i = 1 → n

Find MI(fi,fc) using Equation 1

Mre � ∝*(MI(fi ,fc)) + (1 − ∝ )Pearc(fi ,fc)
for j = i+1 → n

Find MI(fi,fj) using Equation 3

Mrd(fi ,fj)� 1
F−1 ∑

fi∈F−1
(∝*(MI(fi ,fj))

+(1−∝)Pearc(fi ,fj))
End for

Find IMRMR(i) using Equation 9

D′
k ← fi

End for

End For

Invoke SSA () to D″ and return resulting feature subset D‴
for k = 1 → 4

for i = 1 → n

Find Fitness function F (Xi)

Calculate S(Xi) using Equation 7

Calculate P(Xi) using Equation 8

Calculate E(Xi) using Equation 9

Find Xi(new) � Xi +Γ1*S(Xi) +Γ2*P(Xi) + E(Xi)
Find F(Xi(new))
Update position salp Xi

End for

Update D‴
k ← fi

End for

Apply Majority Voting ensemble technique with the

three best BL

Measure the performance of the proposed model

for k = 1 → 4

for i = 1 → 5

Apply BLi to D‴
k

Calculate the performance measures

Find best three BLi

End for

End for

Algorithm 1. Working of Proposed BIMSSA model.

4 Empirical analysis

The suggestedmodel uses Python 3.11 onUbuntu 20.04with 32GB
of RAM, an Intel Core i7 CPU, and a 1 TB SSD. The Boruta and
IMRMR feature selection techniques extract the important and relevant
features from the dataset. After identifying the relevant features, the SSA
optimization technique selects a set of relevant features. The
implemented Boruta feature selection algorithm selects 2067, 1,043,
3,767, and 643 features for ALL-AML, Lymphoma, MLL, and SRBCT
datasets, respectively. While applying the Boruta + IMRMR hybrid
feature selection model, it selects 413, 197, 656, and 118 numbers of
features for ALL-AML, Lymphoma, MLL, and SRBCT datasets,
respectively. Finally, SSA is applied to the feature subset selected by
IMRMR, resulting in 57, 29, 194, and 23 numbers of features selected by
the hybrid model Boruta + IMRMR + SSA for the final features
classification purpose. The empirical analysis has been done in
3 different approaches. Approach 1 shows the performance of all
considered classifiers with the IMRMR feature selection algorithm.
Approach 2 shows the performance of all considered classifiers with
IMRMR and SSA optimizer. Approach 3 shows the performance of the
proposed ensemble classifier with the three best classifiers from
Approach 2 based on accuracy. The performance in all of the
above-mentioned approaches is based on ten different parameters,
including Accuracy (ACC), Precision (PRE), Fβ-score (F1-Score (F1-
S) and F2 Score (F 2)), Specificity (SPE), Misclassification Rate (MCR),
False Negative Rate (FNR), False Positive Rate (FPR), and MCC.
Additionally, we employed confidence interval (CI) statistical
analysis of the obtained results (Asselman et al., 2021; Naji et al.,
2021). The relative importance of precision and recall can be adjusted
using the beta parameter of the F-beta score. Precision and recall are of
equal value when β = 1 (F1 score). When β is higher than 1 (F 2 score),
the model is more sensitive to positive cases since recall is given more
weight. As beta decreases (to values of F0.5), the model becomes more
concernedwith delivering accurate positive predictions. In the proposed
model, two values of β have been considered, such as F-1 and F2. The
above-said parameters can be calculated by using Equations 26–35. The
training set contains 61 features, and the test set contains 11 samples for
the ALL-AML dataset. The training and testing set contains 52 and
10 samples for the Lymphoma dataset. The training set contains
61 features, and the test set contains 11 samples for the MLL
dataset. Considering the SRBCT dataset, the train set includes
70 and 13 samples in the test set. Equations 26–35 show the
calculation of all evaluative parameters.

ACC � T̂ + F̂

T̂ + T
═ + F̂ + F

═( ) (26)

Mcr � 1 − ACC( ) (27)

PRE � T̂

T̂ + F̂
(28)

REC � T̂

T̂ + F
═ (29)

SPE � T
═

T
═ + F

(30)

F − 1S � T

T + F+F═
2( ) (31)
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F 2 �
5* T̂

T̂+F̂*
T̂

T̂+F═

4* T̂
T̂+F̂ + T̂

T̂+F═
(32)

FNR � F̂

T̂ + F̂
(33)

FPR � F
═

T
═ + F

═ (34)

MCC �
T*T

═( ) − F*F
═( ){ }���������������������������

T̂ + F̂( ) T̂ + F
═( ) T

═ + F̂( ) T
═ + F

═( )√ (35)

T̂, and F̂ are the true and false positives of the confusion matrix.
T
═
, and F

═
are the true and false negatives of the confusion matrix.

4.1 Analysis of hybrid models with Boruta,
IMRMR and SSA

The performance analysis of the mentioned hybrid model, such
as Boruta + IMRMR + SSA + SVM, Boruta + IMRMR + SSA + RF,
Boruta + IMRMR + SSA + ELM, Boruta + IMRMR + SSA +
AdaBoost, Boruta + IMRMR + SSA + XGBoost for different
cancer gene expression datasets is summarized as follows. Figures
3–6 show the performance of the hybrid mentioned above models in
contrast to different datasets.

• For the ALL-AML dataset, the Boruta (B)+ IMRMR (IM)
+XGBoost with SSA shows the highest accuracy at 0.917. The
other parameters, such as PRE, REC, F1-S, F 2, and SPE, are
0.929, 0.929, 0.929, and 0.929, respectively. The other
parameters, such as FNR, FPR, MCC, and MCR, are 0.071,
0.100, 0.829, and 0.083, respectively.

• For the Lymphoma dataset, B + IM + SSA + AdaBoost shows
the best performance with an accuracy of 0.919. The other
parameters, such as PRE, REC, F1-S, F 2, and SPE, are 0.938,
0.957, 0.947, 0.953, and 0.800, respectively. The other
parameters, such as FNR, FPR, MCC, and MCR, are 0.043,
0.200, 0.776, and 0.081, respectively.

• Similarly, for the MLL dataset, B + IM + AdaBoost with SSA
shows the highest performance with an accuracy of
0.917 compared to other hybrid models, as resented. The
other parameters, such as PRE, REC, F1-S, F 2, and SPE, are
0.939, 0.939, 0.939, 0.939, and 0.870, respectively. The other
parameters, such as FNR, FPR, MCC, and MCR, are 0.061,
0.130, 0.808, and 0.083, respectively.

• With the SRBCT gene expression dataset, the B + IM + SSA +
XGBoost performs best with an accuracy of 0.916. The other
parameters, such as PRE, REC, F1-S, F 2, and SPE, are 0.941,
0.923, 0.932, 0.927, and 0.903, respectively. The other
parameters, such as FNR, FPR, MCC, and MCR, are 0.077,
0.097, 0.821, and 0.084, respectively.

The analysis demonstrates that the B + IM + SSA + AdaBoost
model, resulting in an accuracy of 0.919, uses the highest obtained
Lymphoma dataset. In order to enhance the accuracy even further, it
is possible to include an ensemble machine learning approach. The

present study uses the majority voting approach to combine
predictions from various models and make a final choice based
on the majority of votes. This strategy may improve the accuracy by
using the advantages of many models while reducing the limitations
of each model. By using majority voting, the ultimate model may
amalgamate these advantages, resulting in enhanced overall
accuracy and more resilient categorization outcomes. The hybrid
models mentioned demonstrate remarkable accuracy across several
cancer gene expression datasets, reaching a maximum accuracy of
0.919. A majority voting ensemble classifier may help overcome the
problems with the provided hybrid models, namely, their high
computational cost and the possibility of overfitting caused by
combining several algorithms. By integrating several models’
strengths, this method streamlines decision-making, leads to
more accurate forecasts with less hyperparameter tweaking, and
reduces the danger of overfitting. To further enhance accuracy, the
current work integrates the prediction of the best three classifiers
using the majority voting technique. This improves overall
precision, minimizes mistakes, and results in more dependable
and transferable results in cancer categorization assignments.

4.2 Analysis of the proposed model

The performance analysis of the proposed BIMSSA model is
shown in Table 5. Table 5 quantifies the ACC, PRE, REC, F-1S, F-2,
and SPE measures with Clopper–Pearson confidence interval (CI)
(Puza and O’neill, 2006).

• For the ALL-AML dataset, the proposed BIMSSA model
shows the accuracy as 0.967 with a CI of 0.887–0.99. The
other parameters, such as PRE, REC, F1-S, F 2, and SPE, are
0.967, 0.974, 0.974, 0.974, 0.974, and 0.955, respectively. The
other parameters, such as FNR, FPR, MCC, and MCR, are
0.026, 0.046, 0.929, and 0.033, respectively.

• For the Lymphoma dataset, the proposed BIMSSA shows an
accuracy level of 0.962% with a CI of 0.862–0.995. The other
parameters, such as PRE, REC, F1-S, F 2, and SPE, are 0.972,
0.972, 0.972, 0.972, and 0.938respectively. The other
parameters, such as FNR, FPR, MCC, and MCR, are 0.028,
0.063, 0.910, and 0.039, respectively.

• Similarly, for the MLL dataset, the proposed BIMSSA shows
the accuracy level as 0.951 with a CI of 0.887–0.99. The other
parameters, such as PRE, REC, F1-S, F 2, and SPE, are 0.949,
0.974, 0.961, 0.969, and 0.913, respectively. The other
parameters, such as FNR, FPR, MCC, and MCR, are 0.026,
0.087, 0.895, and 0.049, respectively.

• With SRBCT, the BIMSSA shows a 0.971 accuracy level with a
CI of 0.901–0.991. The other parameters, such as PRE, REC,
F1-S, and F 2, are 0.978. Specificity (SPE) is 0.958. The other
parameters, such as FNR, FPR, MCC, and MCR, are 0.022,
0.042, 0.937, and 029, respectively.

• The model maintains a good level of performance throughout
all four datasets (D1, D2, D3, and D4) in regards to accuracy,
recall, precision, F1-Score, F2-Score, and specificity. The
Clopper-Pearson method’s confidence intervals support the
measures’ dependability; narrow intervals show little
fluctuation and strong faith in the model’s forecasts. As
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shown by its low false positive rate (FPR) of 0.042, high
Matthews correlation coefficient (MCC) of 0.937, and low
Misclassification Rate (MCR) of 0.029, dataset D4 has the best
overall performance, especially in accuracy and specificity.
These numbers show how well D4 can detect real positives and
genuine negatives, which allows it to make strong and
trustworthy predictions. D1 additionally demonstrates
excellent outcomes; it is a balanced model with a little
advantage in predictive accuracy, with a FNR of 0.026, FPR
of 0.046, MCC of 0.929, and MCR of 0.033. The great
predictive power for D2 is shown in its FNR of 0.028, FPR
of 0.063, MCC of 0.910, and MCR of 0.039, which are
somewhat lower than D1 and D4, but it still maintains a
high level of efficiency. Having a greater FPR of 0.087 affects
D3’s MCC of 0.895 and MCR of 0.049, which in turn causes a
little drop in specificity. Regardless, the model’s great
predictive power and balance between recall and accuracy
make it quite useful across all datasets.

• The developed BIMSSA model’s ROC curve is shown in
Figure 7 for ALL-AML, Lymphoma, MLL, and SRBCT
datasets. The suggested model’s AUC for the ALL-AML
dataset is 0.971. The suggested model’s AUC for the
Lymphoma dataset is 0.961. The suggested model has AUC
values of 0.950 and 0.985 for the MLL and SRBCT datasets.

• Figure 8 shows the training and test time of the developed
BIMSSA compared to cancer datasets.

The proposed BIMSSA does include the Boruta, IMRMR, and
SSA as the feature selection algorithm. In addition, the BIMSSA
includes SVM, RF, ELM, AdaBoost, and XGBoost as the base
classifiers, including majority voting as the ensemble classifier.
The model is evaluated over 4 different high dimensional
datasets for evaluation. The computational complexity of the
proposed BIMSSA model becomes O (T·F·log(F)) + O(P·F·I) +
O(N2·F), with N << F. Where, N is the number of sample
present in the dataset, F is the number of features, T is the
number of trees in the RF classifier, I is the number of iterations,
and P is the number of population for SSA.

Although the proposed model is efficient, it still retains several
limitations that must be mitigated. First is the increased
computational complexity based on the iterative structure of the
Boruta algorithm, the added overhead of SSA, and the computation-
intensive nature of classifiers used, such as SVM and methods based
on trees. Then, hybrid approaches for models increase the
complexity of their implementation and call for careful
coordination between feature selection and classification phases
for optimal performance. The pipeline’s repetitive nature might
make it seem to extend training time, making it clumsy for situations
requiring deployment and results in a very fast manner.

5 Critical analysis

In this section the proposed BIMSSA is compared with some
existing literature based on four cancer datasets including ALL-
AML, Lymphoma, MLL, and SRBCT. The detailed comparison of
BIMSSA with the existing works (Sun et al., 2019; Meenachi and
Ramakrishnan, 2020; Nouri-Moghaddam et al., 2021; Yan et al.,

2021; Alomari et al., 2021; Rostami et al., 2022; Ke et al., 2022),
emphasizing the performance differences across these datasets is
given below.

5.1 Lymphoma dataset

• For Lymphoma dataset the proposed BIMSSA shows an
accuracy of 96.2%, BIMSSA again shows strong
performance in classifying Lymphoma, indicating the
model’s versatility.

• The work in Yan et al. (2021) reports an accuracy of 88.57%
for Lymphoma, which is significantly lower than that of
BIMSSA. The proposed model outperforms Yan et al.
(2021) by ~8.61%. This difference may highlight the
superiority of the BIMSSA model in handling Lymphoma
data, possibly due to better feature selection, model training,
and data preprocessing techniques.

• The work in Ke et al. (2022) reports an accuracy of 93.21% for
Lymphoma, which is still lower than that of BIMSSA by
~3.21%. This further confirms BIMSSA’s effectiveness in
this context.

5.2 MLL dataset

• BIMSSA achieves an accuracy of 95.1%, showcasing its strong
performance in this dataset as well.

• The work in Yan et al. (2021) obtains an accuracy of 86.19%,
which is lower than that of BIMSSA by a significant margin of
~10.33%. This difference further emphasizes BIMSSA’s
advantage in handling complex datasets.

5.3 SRBCT dataset

• BIMSSA with an accuracy of 97.1%, performs exceptionally
well on the SRBCT dataset, indicating its robustness and
effectiveness across different cancer types.

• The work in Sun et al. (2019) reports a high accuracy of 93.6%
for SRBCT, which is noteworthy but still lower than BIMSSA’s
accuracy by ~3.73%.

• In Meenachi and Ramakrishnan (2020) the accuracy is 81.58%
which is lower than that of the BIMSSA with a significant
margin of ~19.02%, suggesting that the feature selection,
classification and preprocessing techniques used in
Meenachi and Ramakrishnan (2020) struggles with
this dataset.

• The work in Nouri-Moghaddam et al. (2021) reports an
accuracy of 90.72% for SRBCT, which, while remarkable, is
still outperformed by BIMSSA by ~6.92%.

• The work in Yan et al. (2021) reported accuracy here is
76.74%, the lowest among the all compared literature, and
BIMSSA outperforms it by ~26.53%. It is indicating that the
model in Yan et al. (2021) may not be as effective for SRBCT.

• In Rostami et al. (2022) the accuracy of 82.82% is reported,
which is again significantly low by ~17.24% when compared
to BIMSSA.
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5.4 ALL-AML dataset

• BIMSSA achieves an accuracy of 96.7%, which demonstrates
strong performance and reliability in classifying this
cancer type.

• The work in Alomari et al. (2021) reports an exceptionally
high accuracy of 99.86%, which outperforms the proposed
BIMSSA model by ~3.27%.

BIMSSA proves to be a very efficient and dependable model for
categorizing cancer, surpassing the accuracy of other models from
the existing literature in all tested datasets except ALL-AML.
Though the accuracy is low as compared to Alomari et al. (2021)
in case of ALL-AML dataset, still it shows an accuracy of 96.7% that
can be considered as a noteworthy performance. The model’s
constant and superior performance in classifying many forms of
cancer, together with its excellent generalization, sets it out as an
exceptional model in the field of cancer classification. Therefore,
BIMSSA showcases the flexibility and applicability needed for
various cancer datasets. Figure 9 shows the comparison of
BIMSSA with other existing models in contrast to diverse datasets.

6 Conclusion

The primary focus of this study is developing an ensemble
machine learning-based model for cancer detection. Gene
expression data, also known as microarray data, leaves its unique
imprint when used in a cancer detection model. However, there are
challenges unique to dealing with microarray data, such as a limited
sample size, which diminishes the model’s performance. To deal
with this issue, the proposed BIMSSA considers a pipeline feature
selection approach with Boruta, IMRMR, and SSA feature selection
algorithm to select relevant features. The selected features, such as
SVM, RF, ELM, AdaBoost, and XGBoost, are applied to the
optimized feature set as the base classifiers. Based on the
performance, three classifiers, ELM, AdaBoost, and XGBoost with
Boruta, IMRMR, and SSA feature selection, are considered for
developing the ensemble model with a majority voting classifier.
After selecting three classifiers, we use majority voting to create an
ensemble ML-based cancer diagnostic model called BIMSSA.
Empirical results from this study using the developed BIMSSA
reveal an accuracy of 0.967, 0.962, 0.951, and 0.971 for ALL-
AML, Lymphoma, MLL, and SRBCT datasets. The suggested
model’s AUC for the ALL-AML dataset is 0.973. The proposed
model’s AUC for the Lymphoma dataset is 0.969. The suggested
model achieves an AUC of 0.951 for the MLL dataset and 0.979 for
the SRBCT dataset. The proposed model does not perform well
despite the existing literature regarding the ALL-MLL dataset.
However, there are some limitations to the current work. In
addition, the current research does not aim to consider the
concept of class imbalance.

As a future scope of this manuscript, the feature selection
process will be reversed, starting with SSA to explore different
combinations of features and identify the promising subset,
followed by IMRMR to refine the feature subset further and
prioritize the most informative features. Finally, Boruta feature
selection is applied to validate the selected feature subset and

provide additional insights into the importance of the feature.
Testing the model’s performance on more kinds of cancer gene
expression datasets is planned for the future of this study. In
addition, future plans for this study include using deep learning
approaches to increase the model’s capability for working with
picture datasets.
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Appendix-I

FIGURE A1
Flow diagram for search strategies and selection of studies for BIMSSA.
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