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Background: Sarcopenia is a prevalent condition associated with aging.
Inflammation and pyroptosis significantly contribute to sarcopenia.

Methods: Two sarcopenia-related datasets (GSE111016 and GSE167186) were
obtained from the Gene Expression Omnibus (GEO), followed by batch effect
removal post-merger. The “limma” R package was utilized to identify differentially
expressed genes (DEGs). Subsequently, LASSO analysis was conducted on
inflammation and pyroptosis-related genes (IPRGs), resulting in the
identification of six hub IPRGs. A novel skeletal muscle aging model was
developed and validated using an independent dataset. Additionally, Gene
Ontology (GO) enrichment analysis was performed on DEGs, along with Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set
enrichment analysis (GSEA). ssGSEA was employed to assess differences in
immune cell proportions between healthy muscle groups in older versus
younger adults. The expression levels of the six core IPRGs were quantified via
qRT-PCR.

Results: A total of 44 elderly samples and 68 young healthy samples were
analyzed for DEGs. Compared to young healthy muscle tissue, T cell
infiltration levels in aged muscle tissue were significantly reduced, while mast
cell and monocyte infiltration levels were relatively elevated. A new diagnostic
screening model for sarcopenia based on the six IPRGs demonstrated high
predictive efficiency (AUC = 0.871). qRT-PCR results indicated that the
expression trends of these six IPRGs aligned with those observed in the database.

Conclusion: Six biomarkers—BTG2, FOXO3, AQP9, GPC3, CYCS, and
SCN1B—were identified alongside a diagnostic model that offers a novel
approach for early diagnosis of sarcopenia.
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Introduction

Sarcopenia is a disease characterized by the gradual loss of skeletal muscle mass,
strength, and function, typically associated with aging (Cruz-Jentoft et al., 2019). This
common age-related condition significantly impacts an individual’s physical health and
overall quality of life (Cruz-Jentoft and Sayer, 2019). Sarcopenia becomes more prevalent
with advancing age, with its incidence rising significantly among the elderly population. It
affects both men and women, but its prevalence is particularly high among older adults and
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individuals with certain underlying health conditions (Pascual-
Fernández et al., 2020). Therefore, identifying new biomarkers
and uncovering immune mechanisms are crucial for prevention
and treatment.

Inflammation is defined as a series of tissue responses triggered
by injury, which is closely associated with various diseases
(Franceschi and Campisi, 2014). Numerous studies have
demonstrated that inflammation ultimately influences the mass,
strength, and function of skeletal muscle by regulating protein
synthesis and degradation within these muscles (Franceschi and
Campisi, 2014; Zembron-Lacny et al., 2019). Tumor necrosis factor
α (TNF-α) plays a pivotal role in the degradation of muscle proteins
via the nuclear factor-κB (NF-κB) signaling pathway (Hirata et al.,
2022). Interleukin 6 (IL-6)(IL-6), a pro-inflammatory cytokine,
mediates processes that lead to either reduction or stabilization
of muscle atrophy (Hirata et al., 2022). Additionally, interleukin 1
(IL-1) and IL-18 are also implicated in inflammation-mediated
muscle atrophy (McBride et al., 2017; Dalle et al., 2017). While
inflammation is a well-known contributor to muscle degradation,
recent studies have begun to explore more specific inflammatory
mechanisms such as pyroptosis, which may provide new insights
into the molecular underpinnings of sarcopenia.

Pyroptosis involves apoptotic cells characterized by
programmed cell death and is linked to inflammatory processes
(Picca and Calvani, 2021). This phenomenon is typically initiated
through two molecular pathways: one classical pathway mediated by
Caspase-1 and another non-classical pathway involving Caspases 4/
5/11, culminating in pyroptosis executed by members of the
gasdermin protein family (Rosenberg, 1997; Ibebunjo et al., 2013;
Rudolf et al., 2014). Both in vivo and in vitro investigations have
indicated that activation of the NLRP3 inflammasome induces
pyroptosis while promoting activation of the ubiquitin-
proteasome system (UPS), resulting in muscle proteolysis and
subsequent muscle atrophy (You et al., 2023). Factors related to
inflammation and pyroptosis may serve as molecular markers for
early diagnosis of muscular atrophy since their levels increase with
age-related changes in muscle.

Currently, there are no predictive models based on the
characteristics of IPRGs in musculoskeletal aging. Combining
inflammation, pyroptosis, and immune infiltration analysis can
more accurately identify diagnostic biomarkers. In this study, we
systematically analyzed the expression of IPRGs, which play pivotal
roles in inflammation-mediated muscle atrophy, along with their
relationship to immune infiltration. We identified six key
characteristic genes and constructed a diagnostic model, validated
through RT-qPCR in a sarcopenia cell model, to support the early
diagnosis of sarcopenia.

Results

DEGs between sarcopenia patients and
healthy controls

Using the “limma” package in R, DEGs were identified in a
combined dataset of 44 elderly patients with sarcopenia and
68 normal controls. The analysis revealed 1,194 low-expressed
genes and 2,196 highly expressed genes. The results of the DEGs

were visualized using a volcano plot and heatmap (Figure 1). The top
five most significantly upregulated genes were FLG2, FLG, KRT2,
DSC1, and DSG1, while the top five most significantly
downregulated genes were MTATP8P2, DCD, CHI3L1, PVALB,
and MTRNR2L8. DEGs have been provided in the supplementary
material (Supplementary Table 1).

Functional enrichment analysis and GSEA

According to the screening criteria of an adjusted p-value <0.05,
GO enrichment analysis of DEGs identified significant annotations
across biological processes (BPs), cellular components (CCs), and
molecular functions (MFs) (Figure 2A). BP analysis revealed that
DEGs were primarily enriched in the ribose phosphate metabolic
process, purine ribonucleotide metabolic process, energy derivation
by oxidation of organic compounds, purine nucleoside triphosphate
metabolic process, and ribonucleoside triphosphate metabolic
process. CC analysis showed that DEGs were associated with the
mitochondrial inner membrane, mitochondrial protein-containing
complex, mitochondrial matrix, contractile fiber, and myofibril. MF
analysis indicated that DEGs were enriched in actin binding,
primary active transmembrane transporter activity, extracellular
matrix structural constituent, oxidoreduction-driven active
transmembrane transporter activity, and electron transfer activity.
KEGG pathway enrichment analysis revealed that DEGs were
mainly involved in pathways related to neurodegeneration-
multiple diseases, amyotrophic lateral sclerosis, Alzheimer’s
disease, prion disease, the PI3K-Akt signaling pathway, the
AMPK signaling pathway, and the Foxo signaling pathway
(Figure 2B). Furthermore, GSEA identified the top five gene sets
most significantly enriched in both the sarcopenia and normal
groups, suggesting that the development of musculoskeletal aging
may be mediated by specific molecular mechanisms involving
DEGs (Figure 3A).

Identification of IPRGs and diagnostic
biomarkers

A collection of 251 IPRGs was acquired from the MSigDB
database and PubMed. These genes intersected with the DEGs,
resulting in 37 overlapping IPRGs, which were further examined.
Figure 3B shows the 37 IPRGs in a Venn diagram. The expression
profiles of 37 IPRGs were used to build the LASSOmodel. As shown
in Figure 4A, the optimal λ value, which minimized classification
errors, was determined. Based on this λ value, the LASSO coefficient
spectrum of DEGs was analyzed (Figure 4B). Subsequently, 6 hub
genes with nonzero coefficients were identified: GPC3, CYCS,
FOXO3, SCN1B, AQP9, and BTG2.

Development and validation of the model
for sarcopenia

Based on six diagnostic biomarkers, we developed a nomogram
model to predict the onset of sarcopenia (Figure 5A). The model
demonstrated promising performance, with an AUC of 0.871 on the
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training dataset (Figure 5B) and an AUC of 0.825 on the test dataset
(Figure 5C). The high AUC values suggest that the model may serve
as a valuable tool for early diagnosis of sarcopenia, potentially aiding
clinicians in identifying at-risk patients before significant muscle
loss occurs. These results indicate that our nomogram model
exhibits high classification accuracy. Our study successfully
constructed a diagnostic model for sarcopenia using the
differential gene expression of these six biomarkers. The
reliability of the nomogram model’s predictions is supported by
the calibration curves (Figures 6A, B). Additionally, the Decision
Curve Analysis (DCA) curve (Figures 6C, D) suggests that the
model’s decisions may offer additional benefits for sarcopenia
patients. We also plotted ROC curves for each of the six target
genes individually (Figure 7). The results revealed that all six key
genes had predicted AUCs >0.6, indicating their ability to
successfully distinguish between sarcopenia and normal samples.

Infiltration analysis of immune cells

To further investigate immune cell infiltration between
sarcopenia patients and healthy controls, we used ssGSEA to
evaluate the enrichment scores of different immune cell subsets.
The results were visualized using a heatmap (Figure 8A) and violin
plots (Figure 8B). Elevated levels of eosinophils, mast cells,
monocytes, and natural killer cells were observed in sarcopenia
patients, whereas levels of γδT cells, macrophages, natural killer
T cells, and effector memory CD4 T cells were decreased.
Additionally, we analyzed the association of six characteristic
genes with immune cells (Figure 8C). Notably, FOXO3 showed a
strong positive correlation with several immune cells, including
monocytes, mast cells, and activated dendritic cells, and a strong
negative correlation with other immune cells, including type 2 T

helper cells, macrophages, γδT cells, and effector
memory CD4 T cells.

Validation of feature genes using RT-
qPCR analysis

To verify the expression of the six characteristic genes in
sarcopenia, we constructed a muscle atrophy cell model. RT-
qPCR results indicated that, compared to the control group, the
muscle atrophy markers Atrogin-1 and Murf-1 were significantly
upregulated, confirming the successful establishment of the muscle
atrophy cell model (Figure 9A). In this model, RT-qPCR analysis
revealed that three characteristic genes (BTG2, FOXO3, and AQP9)
were highly expressed compared to the control (Figure 9B).
Conversely, three other characteristic genes (GPC3, CYCS, and
SCN1B) were significantly downregulated in the muscle atrophy
cells relative to the control (Figure 9C).

Discussion

Sarcopenia has emerged as a significant health concern due to an
aging population; thus, early diagnosis of muscular atrophy has
become imperative. In recent years, accurately predicting sarcopenia
through screening relevant genes as diagnostic biomarkers has
gained critical importance.

Although the pathogenesis of musculoskeletal aging is not fully
understood, inflammation, pyroptosis, and immune infiltration in
skeletal muscle cells are believed to play significant roles in its
molecular mechanisms. Recent studies have indicated that the
NLRP3 inflammasome and pyroptosis contribute to muscle
dysfunction by reducing glycolytic potential and decreasing

FIGURE 1
Differentially expressed genes (DEGs) between sarcopenia tissues and normal samples from theGSE111016 andGSE167186 datasets. (A)Heatmap of
the top 50 DEGs. Colors range from red to blue, representing high to low expression levels of DEGs. (B) Volcano plot of DEGs. Red dots in the upper right
denote upregulatedDEGs, yellow dots in the upper left denote downregulated DEGs, and black dots in themiddle represent geneswith stable expression.

Frontiers in Genetics frontiersin.org03

Li et al. 10.3389/fgene.2024.1491577

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1491577


muscle fiber size (McBride et al., 2017). Additionally, chronic
inflammation is linked to key characteristics of sarcopenia, such
as increased skeletal muscle wasting, loss of strength, and functional
impairment (Dalle et al., 2017; Picca and Calvani, 2021). Therefore,
we hypothesize that inflammation and pyroptosis may be central
mechanisms in musculoskeletal aging. To date, no studies have
specifically explored the relationship between inflammation and
pyroptosis in sarcopenia.

In this study, we developed and validated a predictive model for
sarcopenia through bioinformatics analysis, which led to the
identification of potential biomarkers. These findings are further
supported by the confirmation of these biomarkers in follow-up
experiments. Our study identified potential biomarkers for
sarcopenia using LASSO analysis and experimental validation.

Firstly, we identified DEGs in the combined dataset through
differential expression analysis. Next, we applied a LASSO
regression model to 37 common genes related to inflammation
and pyroptosis to screen for potential hub genes closely associated
with the development of sarcopenia. GO enrichment analysis
revealed that these DEGs are primarily involved in oxidative and

metabolic processes within mitochondria. KEGG pathway
enrichment analysis also indicated that these DEGs are strongly
linked to pathways associated with various neurodegenerative
diseases. Previous studies have shown that aging leads to gradual
disorders in the neuromuscular system (Rosenberg, 1997). The
neuromuscular junction (NMJ), a central component of this
system, is a crucial synapse connecting motor nervous system
excitability with skeletal muscle contraction (Ibebunjo et al.,
2013; Rudolf et al., 2014; Punga and Ruegg, 2012). Recent
research has increasingly highlighted the NMJ’s role in
sarcopenia development (Gonzalez-Freire et al., 2014; Pannérec
et al., 2016; Monti et al., 2021). On one hand, the NMJ is rich in
mitochondria that supply the energy needed for neuromuscular
transmission in the form of ATP (Anagnostou and Hepple, 2020;
Zhou, 2021; Spendiff et al., 2016). On the other hand, mitochondria
depend on PGC-1α as a cofactor for their transcriptional activities
and normal metabolic functions (Austin and St-Pierre, 2012; St-
Pierre et al., 2006). Furthermore, correlation analyses of the six hub
genes with immune cells revealed strong associations with
monocytes, macrophages, and mast cells, consistent with

FIGURE 2
Functional and pathway enrichment analyses of DEGs. (A) Gene Ontology (GO) enrichment analysis of DEGs. (B) Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis of DEGs.
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observations from DEGs and immune cell correlation analyses. In
2021, Afandy et al. found significantly higher MCP-1 levels in the
sarcopenia group compared to the non-sarcopenia group (Afandy
et al., 2021). MCP-1 promotes the migration and infiltration of
monocytes to inflammation sites, contributing to muscle atrophy
(Franceschi and Campisi, 2014; Bettcher et al., 2019; Curtis et al.,
2015; Sell et al., 2006). Several studies have demonstrated that

macrophages play a role in the regeneration and repair of aging-
associated skeletal muscle (Sell et al., 2006; Sousa-Victor et al., 2015;
Tidball, 2017; Fuchs and Blau, 2020; Zhang et al., 2020), exerting
anti-inflammatory effects, clearing dead cells, and facilitating tissue
repair through altered polarization states (Tidball, 2017; Fuchs and
Blau, 2020). Additionally, a study revealed a significant increase in
mast cells in the skeletal muscle of mice with malignant disease

FIGURE 3
Gene Set Enrichment Analysis (GSEA) results and identification of IPRGs. (A) Enrichment results of the top five positively and negatively correlated
pathways in sarcopenia. (B) Intersection of 3,390 DEGs with 251 IPRGs.

FIGURE 4
Identification of potential hub genes for sarcopenia using the LASSO regression model. (A) Selection of the optimal parameter for nonzero
coefficients in the LASSO model. (B) Coefficient selection for the 6 hub genes based on LASSO analysis.
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(Widner et al., 2021). These findings are consistent with our
correlation analysis results.

The highlight of our study is the identification of six potential
diagnostic markers for sarcopenia: BTG2, FOXO3, AQP9, SCN1B,
CYCS, and GPC3.

Protein BTG2, also known as B-cell translocation gene 2, BTG
family member 2, NGF-inducible anti-proliferative protein PC3, or
NGF-inducible protein TIS21, plays a crucial role in regulating cell
senescence, differentiation, and various other biological processes
(Mauxion et al., 2009; Wheaton et al., 2010; Passeri et al., 2006). It
can be induced by p53 to inhibit the cell cycle (Zhang et al., 2011),
and its expression can be upregulated by stimuli such as IL-6 and
growth factors (Yuniati et al., 2019). Previous studies have shown
that miR-103-3p and miR-222-3p may influence the proliferation
and differentiation of C2C12myoblasts by targeting BTG2 (He et al.,

2023; Yang et al., 2019). Peng et al. demonstrated that BTG2 could
be a target for muscle aging by regulating MuSCs senescence (Peng
et al., 2023). Our findings that BTG2 expression is significantly
increased in the muscle atrophy group align with these studies,
although the precise mechanism by which BTG2 regulates muscle
atrophy requires further investigation.

FOXO family proteins, which are known for their highly
conserved structural domains, are involved in crucial intracellular
processes, including cell cycle regulation, oxidative stress response,
inflammation, apoptosis, and energy metabolism (Dijkers et al.,
2000a; Medema et al., 2000; Furukawa-Hibi et al., 2002; Kops et al.,
2002; Ogg et al., 1997; Brunet et al., 1999; Dijkers et al., 2000b; Li
et al., 2010). In mammals, the primary FOXO family members are
FOXO1, FOXO3, FOXO4, and FOXO6 (Cao et al., 2023). Notably,
FOXO3 is predominantly expressed in skeletal muscle (Curtis et al.,

FIGURE 5
Nomogram model for sarcopenia. (A) Construction of the nomogram model based on six inflammation and pyroptosis-related genes (IPRGs). (B)
Receiver operating characteristic (ROC) curve for the nomogram diagnostic model of sarcopenia. (C) ROC curve of the nomogram diagnostic model in
the validation cohort.
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2015). Numerous studies have demonstrated that FOXO3 enhances
the expression of atrogin-1 and MuRF1 through the IGF1-PI3K-
AKT signaling pathway, leading to muscle atrophy (Sandri et al.,
2004; Kamei et al., 2004; Southgate et al., 2009; Liu et al., 2007;
Schiaffino et al., 2013). Additionally, activation of AMPK has been
shown to promote muscle atrophy by increasing FOXO3 expression
(Romanello et al., 2010; Nakashima and Yakabe, 2007; Sanchez et al.,
2012). Interestingly, oxidative stress induction contributes to the
activation of FOXO3 in models of disuse-mediated muscle atrophy
(Suzuki et al., 2007; Piétri-Rouxel et al., 2010; Levine et al., 2008). It
has also been reported that PGC-1α can work in conjunction with
FOXO3 to mitigate muscle atrophy (Puigserver et al., 2003; Wu
et al., 1999; Geng et al., 2011; Wenz et al., 2009). Aquaporins (AQPs)
are a class of membrane channel proteins classified into water-
selective channel proteins and aquaglyceroporins (Agre, 2004;
Ishibashi et al., 1997; Ishibashi et al., 1998; Kishida et al., 2000).
As a member of the latter group, AQP9 is primarily expressed in
hepatocytes and plays a crucial role in gluconeogenesis and lipid
metabolism by transporting glycerol (Trinchese et al., 2023; Inoue
et al., 2009). Yang et al. first identified AQP9 expression in rat
skeletal muscle in 2000 (Leek et al., 2012), with subsequent studies
by Wang et al. and Inoue et al. confirming its presence in human
skeletal muscle as well (Inoue et al., 2009; Yang et al., 2000; Wang
et al., 2003). Although no reports have yet linked AQP9 directly to
muscle atrophy, the skeletal muscle, as the largest endocrine organ in
the body, also exhibits glycerol kinase activity (Inoue et al., 2009).

Ren et al. suggested that the PI3K-AKT signaling pathway inhibits
AQP9 (Ren and Wang, 2018), hinting at a potentially unexplored
relationship between AQP9 and muscle atrophy that merits further
investigation.

SCN1B, encoding the β1 and β1B subunits of voltage-gated
sodium channels, is implicated in epilepsy and arrhythmia
syndromes (O’Malley and Isom, 2015; Cervantes et al., 2022). It
is widely recognized that muscle strength is influenced by both
skeletal muscle and neurological factors (Arnold and Clark, 2023).
The neuromuscular junction plays a critical role by converting
electrical signals from presynaptic neurons into chemical signals
that trigger muscle fiber contraction. Thus, SCN1B may impact
muscle force production by regulating sodium influx and action
potential generation. There is a clear positive relationship between
SCN1B and muscle strength, consistent with our findings.

CYCS encodes cytochrome c, a mitochondrial membrane
protein crucial for oxidative phosphorylation and apoptosis
(Earnshaw, 1999; Liu et al., 1996; Kluck et al., 1997; Zou et al.,
1997). Huang et al. demonstrated that overexpression of Mdfi
(Myod family inhibitor) increased CYCS expression, promoting
differentiation in C2C12 cells (Huang et al., 2021). Conversely,
Kan et al. observed a significant decrease in CYCS expression
with skeletal muscle aging (Kan et al., 2021). Baechler et al.
identified that mitochondrial autophagy can activate CYCS to
support myogenic differentiation (Baechler et al., 2019). These
studies collectively highlight a strong association between CYCS

FIGURE 6
Calibration and decision curves for the nomogram model of sarcopenia. (A, B) Calibration curves showing the predictive ability of the nomogram
model using the training and validation datasets. (C, D) Decision curve analysis (DCA) of the nomogrammodel using the training and validation datasets.
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and sarcopenia, although the underlying mechanisms warrant
further investigation.

GPC3, a member of the glypican family, is typically expressed in
embryonic tissues and various organs, and is notably overexpressed
in hepatocellular carcinoma (Zhou et al., 2018; Wang et al., 2014; Xu
et al., 2021; Qin et al., 2020). A study published in 2014 showed that
GPC3 expression decreases with age in mouse skeletal muscle (Jones
et al., 2014). However, our study did not find a significant difference
in GPC3 expression between sarcopenia and control groups. This
discrepancy may be due to the limited sample size; we plan to
expand our sample and validate these results in future experiments
and additional models.

In summary, our study developed and validated a risk-
prediction model for sarcopenia, offering a precise biological tool
for diagnosing sarcopenia in primary healthcare settings. By
accurately identifying these potential biomarkers, the model aims
to reduce instances of missed and misdiagnosed sarcopenia, thereby
allowing for timely early intervention.

Conclusion

In this study, we identified correlations between inflammation
and pyroptosis-related genes, finding that 37 genes were
differentially expressed in the sarcopenia group compared to
controls. This indicates a significant interaction between

inflammation and pyroptosis in the development of sarcopenia.
Through bioinformatics analysis, we screened six IPRGs as potential
diagnostic biomarkers for sarcopenia. We then developed a novel
nomogram model based on these IPRGs, which demonstrated high
diagnostic performance. The ROC curve analysis confirmed the
significant predictive value of these biomarkers. Additionally,
validation in a sarcopenia cell model supported the reliability of
these six characteristic genes, reinforcing their potential as
diagnostic biomarkers for sarcopenia.

Materials and methods

Data source and preprocessing

The gene expression profiles in the GSE111016 and
GSE167186 datasets derived from bulk RNA sequencing were
extracted from the public database GEO (http://www.ncbi.nlm.
nih.gov/geo). The two raw datasets were transformed into an
expression value matrix using the ‘limma’ package (Ritchie et al.,
2015). Batch effects were removed using the “sva” package after
merging the two datasets (Leek et al., 2012). The GSE111016 and
GSE167186 datasets comprise 44 samples from patients with
sarcopenia and 68 from healthy controls. All data were randomly
divided into a 70% training dataset and a 30% validation dataset
using R analysis software. The training dataset was used to create the

FIGURE 7
Validation of diagnostic validity for six diagnostic markers. ROC curves for GPC3, CYCS, FOXO3, SCN1B, AQP9, and BTG2 in the combined dataset.
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screening model, while the validation dataset was used to verify the
model’s performance.

Identification of DEGs and IPRGs

DEGs were identified using the ‘limma’ R package with
thresholds of |log2FC| > 0.1 and p-value <0.05. The results were
visualized using volcano plots and heatmaps created with the
“ggplot2” and “pheatmap” R packages. Inflammation-related
genes (IRGs) were obtained from the HALLMARK_
INFLAMMATORY_RESPONSE gene set in the Molecular
Signature Database (MSigDB) (https://www.broadinstitute.org/
msigdb) (Liberzon et al., 2015). Pyroptosis-related genes (PRGs)
were collected from a previous study (Ye et al., 2021). After merging
IRGs and PRGs, their intersection with DEGs was defined as IPRGs.

Screening biomarkers and construction of
the diagnostic nomogram model

Based on IPRGs, LASSO regression analysis was performed
using R software package “glmnet” (Friedman et al., 2010) to
identify key genes related to sarcopenia.

Based on the selected musculoskeletal aging candidate
biomarkers, we used the R package ‘rms’ to predict the

prevalence of sarcopenia and construct a new diagnostic
nomogram model. This model is based on a logistic
regression framework, where gene score assessments predict
the probability of sarcopenia. Calibration curves were plotted
to evaluate the consistency between predicted and actual values.
Additionally, Decision Curve Analysis (DCA) was performed to
assess the clinical benefit of the nomogram model’s decisions
for patients.

Evaluation and verification of
nomogram model

The ROC curve was generated using the R package “pROC”, and
the AUC was calculated to evaluate the diagnostic performance of
the novel model. Additionally, the AUC and confidence interval (CI)
were used to validate the model’s efficiency.

Functional enrichment analysis and GSEA

To further elucidate the characteristic biological properties
of DEGs, we conducted functional enrichment analysis using the
“clusterProfiler” package in R (Yu et al., 2012) This analysis
included Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses. GO terms were

FIGURE 8
Immune cell infiltration differences between sarcopenia patients and healthy controls. (A) Heatmap showing the correlation between all DEGs and
immune cells. (B) Violin plots comparing immune cell expression between normal and sarcopenia groups. (C) Correlation analysis between the six hub
genes and immune cells.
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categorized into three categories: molecular function (MF),
biological process (BP), and cellular component (CC). Items
with a corrected p-value <0.05 were considered significantly
enriched among the candidate genes (CGs). Bubble plots and bar
charts were created using the “ggplot2” and “enrichplot”
packages in R to visualize the KEGG enrichment analysis of
CGs. GSEA is a computational method used to determine
whether predefined gene sets exhibit statistical differences
between two biological states. It is commonly employed to
assess changes in expression, biological processes, pathways,
and activities within dataset samples (Subramanian et al.,
2005). To investigate differences in biological processes
between the two sample groups, enrichment analysis and
visualization were performed using the GSEA method in the
“clusterProfiler” package in R, based on the gene expression
profile dataset. Adjusted p-values <0.05 were considered
statistically significant.

Infiltration analysis of immune cells

The infiltration scores of immune cells and the activity of
immune functions in the healthy and sarcopenia groups were
calculated using single-sample Gene Set Enrichment Analysis
(ssGSEA) with the “gsva” R package (Park et al., 2019). These
results were visualized using heatmaps generated with the
“pheatmap” package (Dailey, 2017). To compare and visualize

the proportion of infiltrating immune cells between healthy and
sarcopenia samples, violin plots were created using the ‘ggpubr’ R
package (Hu, 2020).

Construction of muscular atrophy
cell model

Murine C2C12 myoblasts, obtained from ATCC, were cultured
at 37°C with 5% CO2 in DMEM supplemented with 80 U/mL
penicillin, 0.08 mg/mL streptomycin, and 10% fetal bovine serum
(Gibco, United States). To induce differentiation into myotubes,
sub-confluent myoblasts were transferred to DMEM containing
2% horse serum (Biological Industries, Israel) and cultured for
4–6 days (Wang et al., 2021). To construct a cellular model of
sarcopenia, mature myotubes were treated with varying
concentrations of D-gal (20 g/L, Sigma, United States) for 24 h
(Yang et al., 2021).

Real-time fluorescence quantitative PCR

Total RNA was extracted from C2C12 myotube samples using
the Total RNA Extraction Kit (TIANGEN, China). Complementary
DNA (cDNA) synthesis was carried out with the PrimeScript™ RT
reagent Kit (Perfect Real Time) (Takara, Japan). Quantitative real-
time PCR was conducted with Maxima SYBR Green/ROX qPCR

FIGURE 9
Evaluation of characteristic gene expression in muscle atrophy cells by RT-qPCR. (A)Marker genes for muscle atrophy. (B, C) Expression of elevated
and decreased genes in sarcopenia cell models. Significant differences between groups were assessed using Student’s t-test. Data are presented as
mean ± SD (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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Master Mix (2X) (Thermo Scientific, United States) on the
LightCycler480 system (LightCycler, United States). Relative gene
expression levels were determined by the 2−ΔΔCT method, using beta-
actin (β-actin) as the internal control. Primer sequences are listed in
Supplementary Table S1.

Statistical analysis

The statistical analysis was performed using R software
(version4.2.0) and GraphPad Prism (Version 9.0). Continuous
variables were expressed as mean ± SD or median (quartile). The
Student’s t-test and Mann–Whitney test were used to compare
continuous variables with and without normal distribution,
respectively. Categorical variables were presented as counts
(percentages) and analyzed using the chi-square test. All
statistical p-values were two-sided, with p < 0.05 considered
statistically significant.
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