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Sparse canonical correlation analysis (sCCA) has been a useful approach for
integrating different high-dimensional datasets by finding a subset of correlated
features that explain themost correlation in the data. In the context of microbiome
studies, investigators are always interested in knowing how the microbiome
interacts with the host at different molecular levels such as genome, methylol,
transcriptome, metabolome and proteome. sCCA provides a simple approach for
exploiting the correlation structure amongmultiple omics data and finding a set of
correlated omics features, which could contribute to understanding the host-
microbiome interaction. However, existing sCCA methods do not address
compositionality, and its application to microbiome data is thus not optimal.
This paper proposes a new sCCA framework for integrating microbiome data
with other high-dimensional omics data, accounting for the compositional nature
of microbiome sequencing data. It also allows integrating prior structure
information such as the grouping structure among bacterial taxa by imposing a
“soft” constraint on the coefficients through varying penalization strength. As a
result, the method provides significant improvement when the structure is
informative while maintaining robustness against a misspecified structure.
Through extensive simulation studies and real data analysis, we demonstrate the
superiority of the proposed framework over the state-of-the-art approaches.
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1 Introduction

The human microbiome is the collection of microorganisms and their genetic makeup
associated with the human body. It plays a critical role in human health and disease ranging
from gastrointestinal diseases to various cancers (Sepich-Poore et al., 2021). To gain more
mechanistic insights, multi-omics approaches have been increasingly employed in
microbiome studies to elucidate the intricate interplay between the environment, the
human microbiome and the host at different molecular levels (Hasin et al., 2017; Lloyd-
Price et al., 2019). Although many multi-omics datasets have been generated in the past few
years, it is unclear how to integrate them efficiently. One useful tool for multi-omics data
integration is to perform canonical correlation analysis (CCA). CCA, due to Hotelling
(1936), connects two sets of variables by finding a linear combination of variables that
maximally correlate. However, the standard CCA fails when the sample size is strictly less
than the number of variables as one can find meaningless solutions with correlations equal
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to one. Also, it does not perform variable selection and hence lacks
interpretability. To circumvent these problems, sparse CCA (sCCA)
has been proposed, aiming to find pairs of sparse canonical
directions by imposing sparsity penalty. The first sCCA
algorithm was presented by Parkhomenko et al. (2007), which,
however, lacks exact criterion and biconvexity. Witten et al.
(2009) applied the penalized matrix decomposition to cross-
product matrix and yielded a straightforward formulation for
sCCA. Some closely related methods include Parkhomenko et al.,
2009; Lê Cao et al., 2009. Hardoon and Shawe-Taylor (2011)
expressed the sCCA model as a primal-dual Rayleigh quotient,
which takes the primal representation and kernel representation
as the first view and second view, respectively. Chu et al. (2013)
reformed CCA into a trace maximization problem and computed
the sparse solution by the linearized Bregman method. To exploit
the potential structural information among features, various forms
of structure-adaptive sCCA have been proposed (Lin et al., 2013;
Chen et al., 2012; Mohammadi-Nejad et al., 2017). In particular,
Chen et al. (2013) proposed the structure-constrained sCCA
(ssCCA) to exploit the phylogenetic structure in microbiome data.

Advances in next-generation sequencing technologies have
enabled the direct sequencing of microbial DNA to determine
microbiome composition, using either targeted or shotgun
approaches (Wensel et al., 2022). The resulting microbiome data is
typically in the form of a count table that records the frequencies of
detected taxa in specific samples. However, due to the complexities
inherent in the sequencing process, the total count for a sample
reflects the sequencing effort rather than the actual microbial load at
the sampling site. Consequently, microbiome data are inherently
compositional, meaning that we only have information about the
relative abundances of taxa. This compositionality presents significant
challenges in the statistical analysis of microbiome data. A change in
the (absolute) abundance of one taxon can lead to apparent changes in
the relative abundances of all other taxa, complicating the
identification of the actual causal taxa (Yang and Chen, 2022). The
compositional nature also renders many standard multivariate
statistical models inappropriate or inapplicable (Aitchison, 1982).
Many efforts have been made to address the compositionality in
different contexts of microbiome data analysis. For example,
Friedman and Alm (2012) developed an iterative procedure named
SparCC that allows inference of correlations for compositional data by
assuming that the number of taxa is large and the true correlation
network is sparse. Lin et al. (2014) dealt with the variable selection in
regression with compositional covariates. Jiang et al. (2019) addressed
zero inflation and detected pairs of associated compositional and non-
compositional covariates using a Bayesian zero-inflated negative
binomial regression model. However, existing CCA methods
including ssCCA could not address the compositional effects,
potentially reducing its precision in recovering relevant taxa.

We propose a new sCCA framework for integrating microbiome
data with other high-dimensional omics data. The framework
specifically addresses the compositional nature of the microbiome
data. It also allows integrating prior structure information by
imposing a “soft” constraint on the coefficients through varying
penalization strength. As a result, the method provides significant
improvement when the structure is informative while maintaining
robustness against a misspecified structure. The developed tool aims
to be an important resource for investigators to understand the

interplay between the microbiome and host, decipher the molecular
mechanisms underlying microbiome-disease association, and
identify potential microbial targets for intervention.

This paper is organized as follows. Section 2 introduces the new
sCCA framework for integrating microbiome compositional data
with (non-)compositional high-dimensional data. Section 3 extends
the new framework to incorporate additional prior structural
information. In Section 4, we conduct numerical simulations to
demonstrate the effectiveness of our proposed methods. Section 5
applies the proposed methods in a real microbiome study to
investigate the association between gut bacteria and its metabolic
output. We conclude with a discussion in Section 6.

2 Compositional sCCA

2.1 Formulation

Let us consider two random vectors X � (X1, . . . , Xp)⊤ and
Y � (Y1, . . . , Yq)⊤, where X contains the composition of p taxa and
Y is a q-dimensional vector of non-compositional covariates. The
nature of the composition makes X lie in a (p − 1)-dimensional
positive simplex. To address the compositionality, Aitchison and
Bacon-Shone (1984) proposed applying the log-ratio transformation
to compositional covariates resulting in
Z/p � (log(X1/Xp), . . . , log(Xp−1/Xp)), where Xp is chosen as
the reference component. CCA for compositional data can be
formulated to find canonical coefficients a � (a1, . . . , aq)⊤ and
b−p � (b1, . . . , bp−1)⊤ so that the correlation between a⊤Y and
b⊤−pZ/p is maximized. Note that b⊤−pZ/p � ∑p−1

j�1 bj log(Xj/Xp) �∑p
j�1bj log(Xj) with bp � −∑p−1

j�1 bj. To avoid the choice of a
reference component, we can write the term b⊤−pZ/p in a
symmetric form by noticing that b⊤−pZ/p � b⊤Z, where Z �
(log(X1), . . . , log(Xp)) and b � (b1, . . . , bp) with

b ∈ Bp ≔ c � c1, . . . , cp( )⊤: ∑p
j�1

cj � 0
⎧⎨⎩ ⎫⎬⎭.

Therefore, the compositional CCA aims to find ~a and ~b such that

~a, ~b( ) � argmax
a∈Rq,b∈Bp

Corr a⊤Y, b⊤Z( ) � argmax
a∈Rq,b∈Bp

Cov a⊤Y, b⊤Z( )����������������
Var a⊤Y( )var b⊤Z( )√ .

When the dimensions p and q are high (as compared to the sample
size), regularization is required to encourage sparsity and to obtain a
unique solution to the optimization problem. We let
ΣYZ � Cov(Y,Z), ΣY � Cov(Y,Y) and ΣZ � Cov(Z,Z). Define
the weighted l1 norm based on a vector of non-negative weights
w � (w1, . . . , wp) for a vector b as ‖b‖1,w � ∑p

j�1wj|bj|. The
compositional sCCA problem can then be formulated as

max
a∈Rq,b∈Rp

a⊤ΣYZb s.t. a⊤ΣYa≤ 1, ‖a‖1 ≤Ca, b
⊤ΣZb≤ 1,

‖b‖1,w ≤Cb, b ∈ Bp. (1)

HereCa, Cb > 0 are some positive tuning parameters that control
the global shrinkage level. The weight wj allows different
penalization strengths according to the data or prior structure
information. We will elaborate it in Section 2.3.
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It has been shown that in high dimensions, treating the
covariance matrix as diagonal can yield good results. Following
the same strategy adopted by many of the existing high-dimensional
CCA algorithms (e.g., Witten et al., 2009), we substitute in the
identity matrix for ΣY and ΣZ in the CCA formulation (Equation 1).
Moreover, we write the (weighted) l1 constraints on a and b in the
Lagrangian form. Given a set of n samples {Xi,Yi}ni�1, let Σ̂YZ be the
sample cross-covariance between Y and Z. We formulate the feasible
CCA problem as

min
a∈Rq,b∈Rp

− a⊤Σ̂YZb + λa‖a‖1
+ λb‖b‖1,w s.t. ‖a‖2 ≤ 1, ‖b‖2 ≤ 1, b ∈ Bp,

which can be solved by iteratively optimizing the objective function
with respect to one parameter while fixing the other parameter.
Specifically, we have the following two updating steps.

1. Update b: Fix a(t) and update b through

b t( ) ← argmin
b∈Rp

− a t( )( )⊤Σ̂YZb + λb‖b‖1,w s.t. ‖b‖2 ≤ 1, b ∈ Bp. (2)

2. Update a: Fix b(t) and update a through

a t+1( ) ← argmin
a∈Rq

−a⊤Σ̂YZb
t( ) + λa‖a‖1 s.t. ‖a‖2 ≤ 1. (3)

2.2 Algorithm

In this section, we discuss the updates in Equations 2, 3. Define
the operator

g h, λ,w( ) � argmin
b∈Bp

1
2
‖h − b‖22 + λ‖b‖1,w .

By exploring the Karush-Kuhn-Tuchker conditions, we obtain
the following result.

Proposition 2.1. Set �b � argminb∈Bp − (a(t))⊤Σ̂YZb + λb‖b‖1,w .
The solution to (2) is given by

b t( ) �
�b, if ‖�b‖2 ≤ 1,
g Σ̂

⊤
YZa

t( ), λb,w( )
‖g Σ̂

⊤
YZa

t( ), λb,w( )‖2, if ‖�b‖2 > 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Remark 2.1. We employ the augmented Lagrangian method

(ALM) to solve the optimization problem in g(h, λ,w). Specifically,
the ALM involves the following two steps of iterations

b t+1( ) ← argmin
b

1
2
‖h − b‖22 + λb‖b‖1,w + μ1

2
1⊤b + d t( )( )2,

d t+1( ) ← d t( ) + μ21
⊤b t+1( ),

where μ1, μ2 > 0 are the step sizes in dual gradient ascent, which are
set to be 1 in our numerical studies. The optimization problem in the
first step can be solved using coordinate descent in an inner loop by
iterating across the following p components

b t+1,r+1( )
j � 1

1 + μ1
S hj − μ1 ∑

i<j
b t+1,r+1( )
i + ∑

i>j
b t+1,r( )
i + d t( )⎛⎝ ⎞⎠, λbwj

⎛⎝ ⎞⎠,

where S(a, λ) � sign(a)(|a| − λ)+ denotes the soft-thresholding
operator and hj is the jth component of h.

Using similar arguments, we can show that the solution to (3) is
given by

a t+1( ) �
�a, if ‖�a‖2 ≤ 1,
S Σ̂YZb

t( ), λa( )
S Σ̂YZb

t( ), λa( )����� �����2, if ‖�a‖2 > 1,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
where �a � argmina∈Rq − a⊤Σ̂YZb

(t) + λa‖a‖1 and
S(a, λ) � (S(a1, λ), . . . , S(ap, λ))⊤. Set v � (v1, . . . , vq)⊤ � Σ̂YZb

(t).
The objective function in the definition of �a becomes∑q

j�1(−ajvj + λa|aj|). We see that a(t+1)j � 0 if λa ≥ vj, and |a(t+1)j | �
∞ if λa < vj. Therefore, we have

a t+1( ) �
0, if λa ≥ ‖v‖∞,

S Σ̂YZb
t( ), λa( )

S Σ̂YZb
t( ), λa( )����� �����2, if λa < ‖v‖∞.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
As our goal is to find two directions a and b to maximize

Cov(a⊤Y, b⊤Z), we only consider the updates when the l2
constraints are binding, which leads to Algorithm 1 below.

1. Initialize a(0) as the first left singular vector with

unit l2 norm from the singular value decomposition of

Σ̂YZ.

2. Update b: Fix a(t) and update b through

b t( ) ←
g Σ̂

⊤
YZa

t( ), λb,w( )
g Σ̂

⊤
YZa

t( ), λb,w( )����� �����2, (4)

where g(Σ̂⊤
YZa

(t), λb,w) can be obtained through the
iterations described in Remark 2.1.

3. Update a: Fix b(t) and update a through

a t+1( ) ←
S Σ̂YZb

t( ), λa( )
S Σ̂YZb

t( ), λa( )����� �����2. (5)

4. Iterate Steps 2 and 3 until convergence.

Algorithm 1. Compositional sCCA: compositional data versus non-

compositional data.

2.3 Selecting tuning parameters

To select the regularization parameters λa and λb, we consider a
two-stage K-fold cross-validation (CV) method as motivated by
Chen et al. (2013). We partition all the samples into M folds, and
denote Yk � YIk and Zk � ZIk , where Ik are the indexes of samples in
the kth fold for k � 1, . . . , K. TheK-fold cross-validation criterion is

CV λa, λb( ) � 1
K

∑K
k�1

Corr â−k λa, λb( )⊤Yk, b̂−k λa, λb( )⊤Zk( ) (6)

where â−k(λa, λb) and b̂−k(λa, λb) are the solutions to the
compositional sCCA problem based on the samples
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(∪K
k�1Ik)\Ik with the tuning parameters (λa, λb). The parameter

selection based on the CV criterion can be influenced by
shrinkage problems arising from the sparsity penalty. To
avoid this bias, we adopt the coefficients estimated from a
two-stage approach when evaluating the CV criterion. In the
first stage, we implement Algorithm 1 with the given tuning
parameter pair (λa, λb) and exclude variables with zero
coefficients. In the second stage, we recalculate the coefficients
by applying Algorithm 1 with a tuning parameter pair (0,0). The
optimal tuning parameter pair is chosen as the one that
maximizes the CV value with these recalculated coefficients.
Our approach accounts for the compositional structure in the
second stage by restricting the coefficients of compositional data
to Bp. As will be shown below, the K-fold cross-
validation performs reasonably well with K � 5 in our
numerical studies.

2.4 Compositional data versus
compositional data

We briefly describe an extension to the case, where bothX and Y
are compositional. For example, we want to associate the
composition of the bacterial taxa with that of the fungi taxa. Let
Y � (Y1, . . . , Yq)⊤ be the relative abundances of another set of
compositional features. In this case, we let U �
(log(Y1), . . . , log(Yq))⊤ and define Σ̂UZ as the sample covariance
between U and Z. Following the derivation in Section 2.1, we
formulate the two-sided compositional sCCA problem as

min
a∈Rq,b∈Rp

− a⊤Σ̂UZb + λa‖a‖1,w1

+ λb‖b‖1,w2
s.t. ‖a‖2 ≤ 1, ‖b‖2 ≤ 1, a ∈ Bq, b ∈ Bp,

where wj � (w1j, . . . , wpj) for j � 1, 2 are non-negative weights.
This problem can be solved by Algorithm 2 below. We use the two-
stage CV criterion to select the tuning parameters in the same way as
described in Section 2.3.

1. Initialize a(0) as the first left singular vector with

unit l2 norm from the singular value decomposition of

Σ̂UZ.

2. Update b: Fix a(t) and update b through

b t( ) ←
g Σ̂

⊤
UZa

t( ), λb,w2( )
‖g Σ̂

⊤
UZa

t( ), λb,w2( )‖2. (7)

3. Update a: Fix b(t) and update a through

a t+1( ) ←
g Σ̂UZb

t( ), λa,w1( )
g Σ̂UZb

t( ), λa,w1( )����� �����2. (8)

4. Iterate Steps 2 and 3 until convergence.

Algorithm 2. Compositional sCCA: compositional data versus

compositional data.

3 Structure-adaptive
compositional sCCA

In this section, following the strategy proposed in Pramanik and
Zhang (2020), we aim to incorporate the prior structure information
robustly in the compositional sCCA procedure. The prior structure
information could be the grouping structure or the phylogenetic tree
structure among the taxa. The idea is to define a set of constraints
that encode the prior structure information and use the constraints
together with the data to estimate the weights w in an iterative
fashion. It is worth mentioning that our constraint is “soft” as
compared to the “hard” constraints used by traditional approaches
such as the group Lasso or fused Lasso. As a result, our method
provides significant improvement when an external structure is
informative while maintaining robustness against a
misspecified structure.

3.1 Structure-adaptive weights

Based on the setups described in Section 2.1, our procedure is to
translate the auxiliary information into different penalization
strengths through the weights w. Our framework is general
enough to incorporate different types of external structures. For
instance, co-expressed genes can be classified into the same group to
reflect their biological relationships. In our study, we focus on
leveraging the taxonomic grouping structure among taxa.
Taxonomically related taxa, such as multiple species within the
same genus, tend to share biological traits. Consequently, we
anticipate that these taxa will exhibit similar relationships with
omics features, leading to the expectation of comparable CCA
coefficients. We translate the grouping structure information into
different restrictions on the weights. Specifically, we divide the taxa
into different groups according to their taxonomy such as phylum,
family, and genus. We next consider the set of weights:

MGroup � {w ∈ 0, CU[ ]p: wi � wj if i,

j ∈ Sd for i, j ∈ 1, 2, . . . , p{ } and d ∈ 1, 2, . . . , D{ }},
where D represents the number of groups and CU denotes an upper
bound on the weights.

3.2 Structure-adaptive compositional sCCA

Following Pramanik and Zhang (2020), we impose a penalty
term on the weights and propose an algorithm to jointly estimate
weights and parameters. Specifically, we define

h wj; γ( ) � exp w
1−1

γ

j 1 − 1
γ

( ){ }, if 0< γ< 1,

wj, if γ � 1.

⎧⎪⎪⎨⎪⎪⎩
We estimate (a, b) and w jointly by solving the

following problem
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min
a∈Rq,b∈Rp,w∈M

− a⊤Σ̂YZb + λa‖a‖1 + λb ∑p
j�1

wj|bj| − log h wj, γ( ){ }
s.t. ‖a‖2 ≤ 1, ‖b‖2 ≤ 1, b ∈ Bp.

The design of the function h is to reduce our method to the
classic (iterative) adaptive Lasso when there is no external
information. The readers are referred to Pramanik and Zhang
(2020) for more discussions on the motivation.

Next we introduce the algorithm to solve the above problem.We
focus on the update for w as the updates for a and b remain the same
as in Section 2.2. In particular, we update w through

w t+1( ) ← argmin
w∈M

∑p
j�1

wj|b t( )
j | − log h wj, γ( ){ }.

When M � MGroup, it is straightforward to verify that

w t+1( )
j �

CU if b t( )
j � 0 for all j ∈ Sd,

1

|Sd|−1∑j∈Sd|b t( )
j |

⎛⎝ ⎞⎠γ

otherwise.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
If we do not have any prior structural information on b that we can

take advantage of, we take M to be [0, CU]p. In this case, we have

w t+1( )
j � CU if b t( )

j � 0,

|b t( )
j |−γ otherwise.

⎧⎨⎩
Algorithm 3 summarizes the implementation details of the

structure adaptive Compositional sCCA. The selection of tuning

parameter pair (λa, λb, γ) follows a similar approach as described in
Section 2.3, with the difference of using (λa, λb, γ) in the first stage
and (0, 0, γ) in the second stage.

1. Initialize a(0) as the first left singular vector with

unit l2 norm from the singular value decomposition of

Σ̂YZ.

2. Update b: Fix a(t) and update b through

b t( ) ←
g Σ̂

⊤
YZa

t( ), λb,w t( )( )
‖g Σ̂

⊤
YZa

t( ), λb,w t( )( )‖2, (9)

where g(Σ̂⊤
YZa

(t), λb,w(t)) can be obtained through the
iterations described in Remark 2.1.

3. Update w: Fix b(t) and update w through

w t+1( ) ← argmin
w∈M

∑p
j�1

wj|b t( )
j | − log h wj, γ( ){ }.

4. Update a: Fix b(t) and update a through

a t+1( ) ←
S Σ̂YZb

t( ), λa( )
S Σ̂YZb

t( ), λa( )����� �����2. (10)

5. Iterate Steps 2-4 until convergence.

Algorithm 3. Structure-Adaptive Compositional sCCA: compositional data

versus non-compositional data.

TABLE 1 Performance of sCCA for the association between compositional data and non-compositional data (σν � 4). Numbers in the parentheses represent
the corresponding standard deviations.

Setup p � q Method â b̂

TPR FPR MCC Precision TPR FPR MCC Precision

S1 100 sCCA 0.99 (0.03) 0.13 (0.13) 0.68 (0.16) 0.55 (0.19) 0.97 (0.11) 0.19 (0.14) 0.57 (0.15) 0.43 (0.18)

C-sCCA 0.99 (0.03) 0.12 (0.12) 0.69 (0.16) 0.55 (0.19) 0.99 (0.09) 0.11 (0.06) 0.68 (0.11) 0.54 (0.14)

AC-sCCA 0.98 (0.06) 0.07 (0.12) 0.79 (0.17) 0.70 (0.21) 0.92 (0.18) 0.05 (0.06) 0.78 (0.16) 0.74 (0.19)

SAC-sCCA 0.98 (0.05) 0.07 (0.11) 0.78 (0.16) 0.69 (0.21) 0.98 (0.13) 0.01 (0.03) 0.94 (0.13) 0.93 (0.14)

200 sCCA 0.98 (0.05) 0.06 (0.04) 0.70 (0.12) 0.54 (0.16) 0.74 (0.38) 0.06 (0.05) 0.55 (0.17) 0.61 (0.28)

C-sCCA 0.98 (0.04) 0.05 (0.04) 0.70 (0.12) 0.54 (0.16) 0.99 (0.04) 0.05 (0.04) 0.72 (0.16) 0.57 (0.22)

AC-sCCA 0.96 (0.06) 0.03 (0.03) 0.80 (0.12) 0.70 (0.18) 0.93 (0.13) 0.02 (0.02) 0.83 (0.12) 0.78 (0.16)

SAC-sCCA 0.96 (0.06) 0.03 (0.03) 0.80 (0.11) 0.71 (0.17) 1.00 (0.00) 0.00 (0.00) 0.99 (0.04) 0.97 (0.07)

S2 100 sCCA 0.99 (0.03) 0.13 (0.12) 0.67 (0.16) 0.54 (0.18) 0.99 (0.08) 0.11 (0.09) 0.62 (0.17) 0.46 (0.22)

C-sCCA 0.99 (0.03) 0.13 (0.12) 0.68 (0.16) 0.54 (0.19) 1.00 (0.00) 0.04 (0.05) 0.81 (0.14) 0.70 (0.21)

AC-sCCA 0.98 (0.05) 0.08 (0.12) 0.77 (0.17) 0.67 (0.21) 1.00 (0.02) 0.01 (0.03) 0.93 (0.12) 0.89 (0.18)

SAC-sCCA 0.98 (0.05) 0.08 (0.12) 0.78 (0.16) 0.68 (0.21) 1.00 (0.00) 0.01 (0.01) 0.95 (0.07) 0.91 (0.12)

200 sCCA 0.98 (0.04) 0.06 (0.04) 0.71 (0.14) 0.55 (0.19) 1.00 (0.00) 0.05 (0.04) 0.65 (0.15) 0.46 (0.19)

C-sCCA 0.98 (0.04) 0.05 (0.04) 0.71 (0.13) 0.56 (0.18) 1.00 (0.00) 0.02 (0.02) 0.84 (0.13) 0.72 (0.19)

AC-sCCA 0.97 (0.06) 0.03 (0.03) 0.82 (0.13) 0.72 (0.20) 0.99 (0.08) 0.00 (0.01) 0.95 (0.09) 0.91 (0.13)

SAC-sCCA 0.97 (0.06) 0.03 (0.03) 0.82 (0.13) 0.73 (0.20) 1.00 (0.00) 0.00 (0.00) 0.96 (0.06) 0.93 (0.10)
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4 Simulation studies

In this section, we evaluate the finite sample performance of the
proposed methods through numerical simulations.

4.1 Compositional data versus non-
compositional data

We first consider the CCA problem between compositional data
(i.e., microbiome data) and non-compositional data (e.g.,
metabolomics data) following a similar setting considered in
Chen et al. (2013). To capture the dependence between the two
sets of high-dimensional data, we use a latent variable model to
generate the compositional variables {Xi} (log scale) and non-
compositional variables {Yi} (original scale), where the
dependence between these two sets of variables is governed by a
latent variable ]. Specifically, we assume that

log Xi( ) � ]iωX + εX,i, Yi � ]iωY + εY,i,

where ]i ~ N(0, σ2]) and εX,i, εY,i follow N(0p, σ2ε Ip×p) and
N(0q, σ2ε Iq×q), respectively. The coefficients ωX ∈ Rp and ωY ∈ Rq

control the relative contributions of individual variables to the
overall association. The ratio σ]/σε determines the overall
association strength between log(X) and Y, with a larger value
indicating stronger association. For the dimensions, we set
(p, q) � (100, 100), (200, 200). We consider two setups for ωX .

S1 ωX � 0.85
10 × (1, 1, 1, 1, 1, 1, 1, 1, 1 − 9, 0p−10)⊤;

S2 ωX � 0.85
6 × (1, 1, 1, 0, 0, 1, 1,−5, 0, 0, 0p−10)⊤;

where 1⊤pωX � 0 for both setups. The constraints imply that the
association between X and Y is mediated through the log ratios for
X. We focus on the group structure (i.e., M � Mgroup) and assume
that the p taxa form 20 groups, with the group size equal to 5 for
p � 100 and equal to 10 for p � 200. For example, in Setup S2 with
p � 100, the grouping is defined as

ωX � 0.85
6

× ⎛⎝ 1, 1, 1, 0, 0︸����︷︷����︸
Group 1

, 1, 1,−5, 0, 0︸����︷︷����︸
Group 2

, 0p−10︸��︷︷��︸
Groups 3−20

⎞⎠⊤

FIGURE 1
TPR, FPR, MCC, and Precision of sCCA for the association between compositional data and non-compositional data across association strength.
Here, the range of σ] is {1, 2, . . . ,8}. Line with solid blue squares: sCCA; line with open red squares: C-sCCA; line with green crosses: AC-sCCA; line with
open purple triangles: SAC-sCCA.
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The first two groups contain both zero and nonzero entries
reflecting the fact that the external structure information is
imperfect and noisy. We set ωY � 0.85 × (0.08, 0.084,
0.089, . . . , 0.12, 0⊤q−10)⊤. Next, we fix σε � 1 and vary σ] within
{1, 2, . . . , 8} to control the strength of the canonical correlation.
We report the true positive rate (TPR), false positive rate (FPR),
Matthew’s correlation coefficient (MCC), and Precision to measure
the performance of different methods. Here,

TPR � TP
TP + FN

, FPR � FP
FP + TN

,

MCC � TP × TN − FP × FN�����������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ ,

Precision � TP
FP + TP

,

where TP, FP, TN, and FN represent the true positives, false
positives, true negatives, and false negatives, respectively. The
TPR, FPR, MCC, and Precision are computed by averaging over
100 simulation replicates. Denote the estimated canonical
coefficients by â and b̂. Their estimation targets are ωX/‖ωX‖2
and ωY/‖ωY‖2, respectively, where this normalization is to ensure
comparability. The estimation accuracy is evaluated using the root
mean square error (RMSE).

FIGURE 2
RMSE of sCCA for the association between compositional data and non-compositional data across association strength. Here, the range of σ] is
{1,2, . . . ,8}. Line with solid blue squares: sCCA; line with open red squares: C-sCCA; line with green crosses: AC-sCCA; line with open purple triangles:
SAC-sCCA.

TABLE 2 Performance of sCCA for the association between compositional data and non-compositional data (σν � 4, p � 100, q � 200). Numbers in the
parentheses represent the corresponding standard deviations.

Setup Method â b̂

TPR FPR MCC Precision TPR FPR MCC Precision

S1 sCCA 0.98 (0.04) 0.05 (0.05) 0.74 (0.15) 0.61 (0.22) 0.92 (0.21) 0.16 (0.11) 0.58 (0.15) 0.48 (0.22)

C-sCCA 0.99 (0.04) 0.05 (0.05) 0.75 (0.15) 0.61 (0.22) 0.98 (0.09) 0.10 (0.05) 0.70 (0.10) 0.56 (0.13)

AC-sCCA 0.97 (0.06) 0.02 (0.03) 0.85 (0.12) 0.77 (0.19) 0.93 (0.16) 0.04 (0.04) 0.80 (0.15) 0.75 (0.18)

SAC-sCCA 0.97 (0.06) 0.02 (0.03) 0.85 (0.12) 0.78 (0.19) 0.98 (0.13) 0.01 (0.02) 0.95 (0.12) 0.94 (0.12)

S2 sCCA 0.98 (0.04) 0.05 (0.04) 0.73 (0.13) 0.58 (0.18) 0.99 (0.08) 0.11 (0.08) 0.63 (0.17) 0.47 (0.22)

C-sCCA 0.98 (0.04) 0.05 (0.04) 0.73 (0.13) 0.58 (0.18) 1.00 (0.00) 0.04 (0.04) 0.82 (0.15) 0.71 (0.23)

AC-sCCA 0.97 (0.06) 0.02 (0.02) 0.84 (0.11) 0.75 (0.18) 1.00 (0.00) 0.01 (0.02) 0.95 (0.09) 0.92 (0.14)

SAC-sCCA 0.97 (0.06) 0.02 (0.02) 0.84 (0.12) 0.75 (0.19) 1.00 (0.00) 0.01 (0.01) 0.96 (0.07) 0.93 (0.11)
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We compare the performance of the following four methods.

1. sCCA: sCCA without considering the compositional effect;
2. C-sCCA: compositional sCCA;
3. AC-sCCA: adaptive compositional sCCA, i.e., M � [0, CU]p.
4. SAC-sCCA: structure adaptive compositional sCCA,

i.e., M � MGroup.

For AC-sCCA and SAC-sCCA, we also apply adaptive weights
on a with M � [0, CU]p in implementation. The value of CU is set
to 105.

Table 1 summarizes the results for the above four methods when
fixing σ] � 4. For both Setups S1 and S2, C-sCCA outperforms sCCA
in terms of all four measures, especially in reducing the false positive
rates and increasing the precision in identifying relevant
compositional components, demonstrating the advantage of taking
into account the compositional constraint. Compared to the first two
methods, AC-sCCA and SAC-sCCA further reduce the FPR and thus
lead to higher MCC in estimating a and b. For identifying b in Setup
S1, SAC-sCCA outperforms the other three methods by exhibiting
higher TPR, nearly zero FPR, and thus higher MCC because of
incorporating grouping information. Figure 1 is in general
consistent with these findings. As association strength increases,
the TPR, MCC, and Precision of C-sCCA, AC-sCCA, and SAC-
sCCA increase, whereas their FPRs show a declining trend. When
σ] ≥ 3, the precision and FPR in estimating b of sCCA becomes worse
as association strength increases, which means sCCA identifies more
true variables at the cost of including more false variables. Figure 2

presents the RMSE in estimating the canonical coefficients, which
decreases as the association strength σ] increases. By accounting for
the compositional effect, the C-sCCA, AC-sCCA, and SAC-sCCA
outperform sCCA, with SAC-sCCA providing the most accurate
estimation. This demonstrates that methods accounting for the
compositional nature yield more accurate estimations than those
that do not, and considering structural information can further
enhance performance.

Finally, we examine the scenario where p � 100 and q � 200 to
assess the performance of our method on unbalanced datasets. As
presented in Table 2, the four methods exhibit similar performance
to that observed in the case where p � q. The results indicate that
our method successfully handles unbalanced dimensions.

4.2 Compositional data versus
compositional data

In this section, we study the performance of the proposed
compositional sCCA for the association between two
compositional datasets, for example, bacterial taxa abundance vs
fungi taxa abundance. We modify the setting in Section 4.1 by
considering the following models

log Xi( ) � ]iωX + εX,i, log Yi( ) � ]iωY + εY,i,

where ]i ~ N(0, σ2]) and εX,i, εY,i follow N(0p, σ2ε Ip×p) and
N(0q, σ2ε Iq×q), respectively. We again consider two setups for ωX

and ωY.

TABLE 3 Performance of sCCA for the association between two compositional datasets (σν � 4). Numbers in the parentheses represent the corresponding
standard deviations.

Setup p � q Method â b̂

TPR FPR MCC Precision TPR FPR MCC Precision

S3 100 sCCA 1.00 (0.02) 0.19 (0.12) 0.57 (0.13) 0.41 (0.13) 0.99 (0.09) 0.18 (0.09) 0.57 (0.11) 0.41 (0.13)

C-sCCA 0.99 (0.02) 0.10 (0.06) 0.71 (0.11) 0.56 (0.15) 1.00 (0.01) 0.11 (0.08) 0.70 (0.13) 0.56 (0.17)

AC-sCCA 0.99 (0.03) 0.03 (0.03) 0.87 (0.10) 0.80 (0.15) 1.00 (0.01) 0.03 (0.03) 0.88 (0.10) 0.80 (0.15)

SAC-sCCA 1.00 (0.01) 0.01 (0.02) 0.96 (0.07) 0.94 (0.11) 1.00 (0.00) 0.01 (0.03) 0.97 (0.08) 0.96 (0.12)

200 sCCA 0.97 (0.14) 0.09 (0.05) 0.59 (0.11) 0.41 (0.17) 0.92 (0.25) 0.08 (0.06) 0.58 (0.13) 0.46 (0.21)

C-sCCA 0.99 (0.03) 0.05 (0.02) 0.69 (0.07) 0.52 (0.09) 1.00 (0.00) 0.06 (0.03) 0.69 (0.10) 0.52 (0.13)

AC-sCCA 0.97 (0.05) 0.02 (0.02) 0.86 (0.10) 0.79 (0.15) 0.99 (0.03) 0.02 (0.01) 0.88 (0.09) 0.80 (0.15)

SAC-sCCA 1.00 (0.01) 0.00 (0.00) 0.98 (0.04) 0.97 (0.07) 1.00 (0.00) 0.00 (0.01) 0.98 (0.06) 0.97 (0.09)

S4 100 sCCA 1.00 (0.00) 0.10 (0.07) 0.63 (0.14) 0.45 (0.17) 1.00 (0.00) 0.10 (0.07) 0.64 (0.14) 0.46 (0.17)

C-sCCA 1.00 (0.00) 0.03 (0.03) 0.86 (0.12) 0.77 (0.19) 1.00 (0.00) 0.03 (0.06) 0.85 (0.16) 0.77 (0.23)

AC-sCCA 1.00 (0.00) 0.00 (0.01) 0.97 (0.06) 0.94 (0.10) 1.00 (0.00) 0.01 (0.01) 0.96 (0.08) 0.94 (0.12)

SAC-sCCA 1.00 (0.00) 0.01 (0.01) 0.93 (0.08) 0.89 (0.13) 1.00 (0.00) 0.01 (0.01) 0.95 (0.07) 0.92 (0.11)

200 sCCA 1.00 (0.00) 0.05 (0.04) 0.66 (0.14) 0.47 (0.19) 1.00 (0.00) 0.05 (0.04) 0.66 (0.16) 0.48 (0.21)

C-sCCA 1.00 (0.00) 0.02 (0.03) 0.86 (0.15) 0.76 (0.22) 1.00 (0.00) 0.01 (0.01) 0.87 (0.12) 0.78 (0.20)

AC-sCCA 1.00 (0.00) 0.00 (0.00) 0.98 (0.05) 0.96 (0.09) 1.00 (0.00) 0.00 (0.00) 0.97 (0.05) 0.95 (0.09)

SAC-sCCA 1.00 (0.00) 0.00 (0.01) 0.96 (0.07) 0.94 (0.11) 1.00 (0.00) 0.00 (0.00) 0.97 (0.05) 0.95 (0.10)
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S3 ωX � 0.85
10 × (1⊤9 ,−9, 0p−10)⊤ and

ωY � 0.85 × (0.08, 0.085, 0.09, . . . , 0.12,−0.9, 0⊤q−10)⊤;

S4 ωX � 0.85
6 × (1, 1, 1, 0, 0, 1, 1,−5, 0, 0, 0p−10)⊤ and

ωY � 0.85
6

× (1, 1, 1, 0, 0, 1, 1,−5, 0, 0, 0q−10)⊤;

where 1⊤pωX � 0 and 1⊤qωY � 0 for both setups. We group ωX

and ωY using the same strategy applied to ωX in Section 4.1. The
other setups are the same as those in Section 4.1. Table 3 summarizes
the empirical results. For Setups S3 and S4, C-sCCA often results in
higher TPR, higher Precision, lower FPR and therefore higher MCC
in estimating both a and b compared to sCCA, emphasizing the
necessity of including compositional constraints again. For Setup S3,
SAC-sCCA significantly outperforms the other methods in terms of
higher TPR and MCC. Our structure-adaptive approach is robust
against a misspecified structure (Setup S4) as the performance of
SAC-sCCA is comparable to that of AC-sCCA. Figures 3, 4 show
patterns similar to Figures 1, 2.

5 Real application

We applied sCCA, C-sCCA, AC-sCCA and SAC-sCCA to
examine the association between gut bacterial composition and
gut metabolism in a colorectal adenoma study conducted at the
Mayo Clinic. The study utilized both gut microbiome and gut
metabolomics data from 241 fecal samples selected from a frozen
stool archive. The fecal samples were collected following a standard
protocol and metabolomics profiling was conducted by Metabolon,
Inc. (Durham, NC, United States) using a UPLCMS/MS platform, as
detailed in Kim et al. (2020). Metabolic sub-pathway abundances
were calculated by averaging the scaled abundances of metabolites
within each sub-pathway, which are grouped into super-pathways.
Bacterial DNA extraction and 16S rRNA gene sequencing were
described in Hale et al. (2017). Specifically, the sequencing library
was prepared at the University of Minnesota Genomics Center, and
sequencing was performed using the Illumina MiSeq system at the
Mayo Clinic Medical Genome Facility. These sequences were
processed through the IM-TORNADO bioinformatics pipeline,
clustering them into OTUs based on a 97% identity threshold.

We focused the analysis on the overall association between the
bacterial genera and metabolic sub-pathways. We followed Chen

FIGURE 3
TPR, FPR, MCC, and Precision of sCCA for the association between two compositional datasets across signal strength. Here, the range of σ] is
{1,2, . . . ,8}. Line with solid blue squares: sCCA; line with open red squares: C-sCCA; line with green crosses: AC-sCCA; line with open purple triangles:
SAC-sCCA.
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et al. (2013) to pre-process data. We excluded genera that were
present in less than 1/4 samples and kept 63 relatively common
genera, each belonging to a specific phylum. This approach ensures a
balance between retaining sufficient taxa for meaningful analysis
while filtering out rare genera that could introduce noise. Zeros were
replaced with 0.5 in microbiome data to facilitate working on the log
scale. Our final dataset is summarized as a metabolic sub-pathway
abundance matrix Y241×91 and a bacterial genus abundance matrix
X241×63. The group information, specified as super-pathway and

phylum, respectively, is incorporated into our analysis. We applied
logarithmic transformation to both matrices: for metabolic data, to
normalize the distribution, and for genus abundance, to account for
the compositional structure. Finally, we performed standardization
to ensure that all variables have zero mean and unit variance.

We performed a two-stage five-fold CVdescribed in Section 2.3 to
identify the optimal tuning parameters across a range of models, from
the most dense to the most sparse. To mitigate randomness, we
conducted 100 replications of sample partitions. We selected the
tuning parameter pair for each replication and recorded the
corresponding CV values of four methods. As shown in Figure 5,
sCCA has the lowest CV correlations, followed by C-sCCA and AC-
sCCA, both of which yield comparable CV correlations, while SAC-
sCCA achieves slightly higher CV correlations by incorporating
grouping information. Therefore, by accounting for the
compositional structure, we achieved a stronger association
between the two datasets. The final parameters were determined
by maximizing the CV values averaged across the 100 replications,
with CV values of 0.6076 for sCCA, 0.6578 for C-sCCA, 0.6581 for
AC-sCCA, and 0.6584 for SAC-sCCA.

Figure 6 shows the heatmap of pairwise spearman correlations
between metabolic sub-pathways and genera selected by any of the
four methods. The signs of the estimated coefficients align with the
pairwise correlations. The selected metabolic sub-pathways belong
to four super-pathways: Carbohydrate, Lipid, Cofactors and
Vitamins, and Amino Acid. Hierarchical clustering analysis, using
the complete linkage and Euclidean distance, was applied to cluster
the bacterial genera. The coefficients estimated by C-sCCA, AC-
sCCA, and SAC-sCCA for bacteria within the third cluster were
mostly positive while the other two clusters showed an opposite
trend. Interestingly, Fatty Acid, Diacarboxylate (FA-DC), identified

FIGURE 4
RMSE of sCCA for the association between two compositional datasets across association strength. Here, the range of σ] is {1, 2, . . . ,8}. Line with
solid blue squares: sCCA; line with open red squares: C-sCCA; line with green crosses: AC-sCCA; line with open purple triangles: SAC-sCCA.

FIGURE 5
Boxplot of 5-fold cross-validated correlations for sCCA, C-sCCA,
AC-sCCA, and SAC-sCCA across 100 replications, with tuning
parameters determined by sample partition in each replication.
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by C-sCCA, AC-sCCA, and SAC-sCCA but not by sCCA, was
overall negatively correlated with bacterial genera in the third
cluster, and positively correlated with those in the first/second
clusters. Dicarboxylic acids can be produced by various bacteria
through different metabolic pathways (Yu et al., 2018). For example,

species in the genus Clostridium, which showed a strong correlation
with FA-DC in our data, can produce succinic acid and other
dicarboxylic acids as fermentation products (Koendjbiharie et al.,
2018). As a comparison, other detected metabolic sub-pathways
exhibited both negative and positive correlations with bacterial
genera in the third cluster, and overall negative correlations with
those in the first/second clusters.

Despite achieving higher cross-validated correlations, the three
methods that accounted for compositional structure failed to induce
a sparse structure for the bacterial genera. Although this may be the
biological truth, as gut metabolic capabilities are contributed by a large
number of bacteria collectively (Cox et al., 2022), to gain more insights
into the benefits of using the compositional constraint, we reconsidered
C-sCCA by fixing the final parameter for metabolic sub-pathways and
varying the parameter for bacterial genera to achieve the same cross-
validated correlation as sCCA. Figure 7 shows the average cross-
validated correlation of C-sCCA for each parameter pair. We
selected the tuning parameter of bacterial genera as 0.4 so that the
averaged CV value of C-sCCA is almost the same as that of sCCA.

Figure 8 presents the heatmap of pairwise Spearman correlations
between the metabolic sub-pathways and genera selected by any of
sCCA and C-sCCA with newly determined tuning parameter pair.
C-sCCA identifies 8 metabolism sub-pathways and 17 bacterial genera,
while sCCA selects a broader set of 13 metabolic sub-pathways and
35 bacterial genera. By incorporating the compositional structure,
C-sCCA achieves the comparable averaged CV value with a more
focused selection of metabolic sub-pathways and bacterial genera.

Among the eight metabolic sub-pathways identified by C-sCCA,
five belong to the Lipid super-pathway, two are part of the Amino Acid
super-pathway, and only one, the Advanced Glycation End-product, is
associated with the Carbohydrate super-pathway. For the bacterial

FIGURE 6
Heatmap of Spearman correlations between the bacterial genera andmetabolic sub-pathways selected by either sCCA, C-sCCA, AC-sCCA, or SAC-
sCCA. The color indicates the association direction, with red for positive correlations and blue for negative, varying in shade by strength. The bars at the
top represent the average relative abundances of these genera on a log 10 scale, with orange indicating higher values and green indicating lower values.
Abbreviations: AGE (Advanced Glycation End-product), EC (Endocannabinoid), FA-DC (Fatty Acid, Dicarboxylate), HPM (Hemoglobin and Porphyrin
Metabolism), HM (Histidine Metabolism), MCST (Methionine, Cysteine, SAM and Taurine Metabolism), MM (Mevalonate Metabolism), PLM (Phospholipid
Metabolism), PAM (PolyamineMetabolism), PUFA-n3&n6 (Polyunsaturated Fatty Acid, n3 and n6), PBAM (Primary Bile AcidMetabolism), SBAM (Secondary
Bile Acid Metabolism), Steroid (Steroid), UCAPM (Urea cycle; Arginine and Proline Metabolism).

FIGURE 7
Averaged cross-validated correlations across 100 replications.
The blue horizontal line represents the CV value of sCCA with its
optimal threshold. The red points denotes the CV values of C-sCCA
with varying tuning parameters for gut bacterial genera.
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genera, a comparison between C-sCCA results and the association
analysis of bacterial genera and metabolic sub-pathways by Kim et al.
(2020) reveals interesting patterns. The bacterial genera identified by
C-sCCA are grouped into three clusters. The first two clusters
predominantly show a negative association with the selected sub-
pathways. In the first cluster, Oscillospira, Clostridium,
Ruminococcus, Adlercreutzia, and Dehalobacterium are consistently
selected by C-sCCA and were also reported in the findings of Kim
et al. (2020). In the second cluster, Odoribacter is detected by C-sCCA
but was not identified by Kim et al. (2020). In the third cluster,
Bacteroides, Eggerthella, and Butyrivibrio stand out with the largest
C-sCCA coefficients, showing strong positive correlations with the
selected metabolic sub-pathways. In Kim et al. (2020), the genera
were classified into two clusters, with the second cluster consisting
of Bacteroides, Epulopiscium, and Butyrivibrio. Our hierarchical tree
further reveals that Epulopiscium and Eggerthella exhibit very similar
patterns, as they are grouped together.

6 Discussion

In this study, we developed a compositional sparse canonical
correlation analysis (C-sCCA) framework for association analysis
between microbiome data and other high-dimensional datasets,
accounting for the compositional nature of microbiome sequencing

data. We introduced two variants of the C-sCCA method: one for
compositional vs non-compositional data, and another for
compositional vs compositional data. Our results show that by
incorporating the compositional constraint, we achieved improved
selection of relevant taxa, enhancing both power and precision.
Additionally, we extended our framework to incorporate prior
structural information, such as the grouping of bacterial taxa, among
the compositional components. Application of C-sCCA to real
microbiome data demonstrated that it produced results that were
biologically more interpretable.

There are several potential extensions to our work. While we
primarily focused on the grouping structure of bacterial taxa, we could
also exploit the hierarchical grouping structure (phylum to genus) and
the phylognetic relationship by devising appropriate constraints on
the weights w. For the hierarchical structure, we can derive a set of
covariates each representing a hierarchical level, which can then be
used to impose specific structures on the weights. Suppose for the jth
taxa, we have a corresponding covariate ξj. To incorporate such
covariate information, we define the set of weights as

MCovariate � w ∈ 0, CU[ ]p: wj � f ξj; θ( ) for θ ∈ Θ, j ∈ 1, 2, . . . , p{ }{ },
where f(·; θ) is a prespecified class of functions parameterized by θ.
We can also use the phylogenetic tree information by imposing a
smoothness constraint, which depends on the pairwise patristic

FIGURE 8
Heatmap of Spearman correlations between the bacterial genera and metabolic sub-pathways selected by either sCCA or C-sCCA. The CV values
averaged across 100 replications are approximately 0.61 for both methods with the chosen tuning parameters. Other details are the same as in Figure 6.
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distances among the taxa. Suppose dij is the patristic distance
between the taxa i and j, we can consider the set

MSmooth � w ∈ 0, CU[ ]p: ∑
1≤i<j≤p

κ dij( )|wi − wj|≤ ϵ
⎧⎨⎩ ⎫⎬⎭,

for some decreasing function κ(·) of the distance and tuning
parameter ϵ> 0.

We can also extend our approach to learn sub-spaces from
multiple views, i.e., when we have multiple groups of measurements,
X(i) ∈ Rpi , for i � 1, . . . , m on matching samples. This situation
naturally arises in multi-omics studies, where methylomic,
transcriptomic, metabolomic, and microbiome data are collected
from a single group of individuals. A number of approaches for
generalizing CCA to multiple views have been proposed in the
literature, and some of these extensions are summarized in
Kettenring (1971). We could adapt these multi-view methods to
incorporate the compositional constraint.

There are several limitations to our framework. First, we did not
simultaneously address the zero inflation commonly observed in
microbiome data. We used a simple zero replacement strategy before
running the C-sCCA. Although this strategy has been commonly used in
microbiome data analysis at log scale (Zhou et al., 2022; Lin and
Peddada, 2020), better methods can be developed such as replacing
the log scale transformation by modified centered log-ratio transform
designed for addressing zero inflation (Yoon et al., 2019), imposing
another multinomial layer to account for sampling variability associated
with the sequencing process (Chen and Li, 2013), or using more
informative imputation methods such as mbDenoise (Zeng et al.,
2022) and mbImpute (Jiang et al., 2021). Second, although our
framework can select subsets of features that explain the largest
correlation between the datasets, their detailed relationships can not
be learned simultaneously. Developing methods that combine feature-
level selection with the construction of feature-feature correlation
networks is a promising area for future research. Third, we can
enhance robustness to outliers through several strategies, including
outlier detection and removal during data preprocessing, replacing
empirical covariance estimators with robust estimators (Luo et al.,
2024), and investigating the optimal choice of penalty functions
(Chalise and Fridley, 2012), such as Huber loss, Tukey loss, or L0
penalty (Lindenbaum et al., 2022). Fourth, while our work focuses on
linear associations, future extensions of our composite sCCA framework
could capture nonlinear relationships by integrating with kernel CCA
(Akaho, 2001; Fukumizu et al., 2007), deep CCA (Andrew et al., 2013),
or nonparametric CCA (Lancaster, 1958; Michaeli et al., 2016). Lastly,
our framework assumes that the association is mediated through the
ratios of the compositional components since only ratios are meaningful
for compositional data. However, when the association is at the level of
absolute abundance - where the total microbial load also matters - our
method may not work well. This limitation is more inherent to the
constraints of current sequencing technologies than to the method itself.
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