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Accurate variant classification is critical for genetic diagnosis. Variants without
clear classification, known as “variants of uncertain significance” (VUS), pose a
significant diagnostic challenge. This study examines AlphaMissense
performance in variant classification, specifically for VUS. A systematic
comparison between AlphaMissense predictions and predictions based on
curated evidence according to the ACMG/AMP classification guidelines was
conducted for 5845 missense variants in 59 genes associated with
representative Mendelian disorders. A framework for quantifying and modeling
VUS pathogenicity was used to facilitate comparison. Manual reviewing classified
5845 variants as 4085 VUS, 1576 pathogenic/likely pathogenic, and 184 benign/
likely benign. Pathogenicity predictions based on AlphaMissense and ACMG
guidelines were concordant for 1887 variants (1352 pathogenic, 132 benign,
and 403 VUS/ambiguous). The sensitivity and specificity of AlphaMissense
predictions for pathogenicity were 92% and 78%. Moreover, the quantification
of VUS evidence and heatmaps weakly correlated with the AlphaMissense score.
For VUS without computational evidence, incorporating AlphaMissense changed
the VUS quantification for 878 variants, while 56 were reclassified as likely
pathogenic. When AlphaMissense replaced existing computational evidence
for all VUS, 1709 variants changed quantified criteria while 63 were reclassified
as likely pathogenic. Our research suggests that the augmentation of
AlphaMissense with empirical evidence may improve performance by
incorporating a quantitative framework to aid in VUS classification.
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Background

Advances in genomic technologies, particularly next-generation sequencing, have
revolutionized the detection and analysis of germline variants, offering unprecedented
precision in the exploration of the intricacies of the human genome and its relationship to
disease. Initiatives such as the Human Genome Project, 1000 Genomes Project, UK
Biobank, gnomAD, and All of Us have significantly contributed to cataloging genetic
variations across diverse populations, providing valuable insights into the implications of
germline variants for health (Lander et al., 2001; 1000 Genomes Project Consortium, 2015;
Koenig et al., 2024).
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In the past, the identification of inherited disorders relied on
direct evidence such as phenotype observation, the presence of the
variant alongside the disease, or personal and family medical history.
The emergence of gene sequencing and the rapid increase in variant
data made it imperative to establish guidelines for variant
classification. The American College of Medical Genetics
(ACMG) was among the pioneers in offering recommendations
and by introducing five categories of interpretation based on variant
reporting and its association with Mendelian diseases (Slavin et al.,
2019). The ACMG guidelines categorize variants into five tiers based
on their pathogenicity, ranging from the least to most severe: benign,
likely benign, variants of uncertain significance (VUS), likely
pathogenic, and pathogenic. Clinically actionable variants, with
implications for counseling and clinical care, fall into the
pathogenic and likely pathogenic categories. On the other hand,
variants in the benign, likely benign, and VUS categories are
considered clinically non-actionable. Variants may undergo
reclassification as new information emerges about their
phenotypic effects. Such reclassification can significantly impact
patient care (Slavin et al., 2019).

The accurate and standardized classification of genetic variants
is vital to advancing both clinical practice and scientific research,
contributing to enhanced patient care and a deeper understanding of
the genetic underpinnings of diseases. Although many genetic
variants possess known clinical significance, a substantial number
fall into the VUS category, presenting formidable challenges to
clinicians, geneticists, and patients due to the ambiguity
surrounding their impact on health and disease. VUS encompass
genetic variations identified through sequencing that lack sufficient
evidence for definitive classification as either pathogenic or benign.
Even when present in relevant genes that match the clinical
circumstances of the patient, the presence of a VUS does not
confirm a genetic diagnosis, highlighting the complexities in
interpreting these variants (Joynt et al., 2021). Challenges arise
from insufficient evidence, limited functional data, and divergent
evaluations. The complex nature of VUS, often in non-coding
regions or present as missense variants, hinders functional
assessment and limits predictive power. Divergent approaches
between scientists and clinicians, coupled with inconsistent
reporting, contribute to classification difficulties. Enhancing VUS
classification involves genetic testing on family members, in vitro
tests, and using clinical databases and predictive algorithms
(Federici and Soddu, 2020).

VUS often undergo category reclassification, particularly in
underrepresented minority populations or with the promulgation
of new clinical findings or functional studies, occurring months to
years after the initial classification. Studies indicate frequent
downgrades during reclassification, thus emphasizing the
evolving understanding of these variants. However, VUS may be
upgraded to pathogenic classification after additional functional or
clinical evidence is gathered. A VUS outcome derived from clinical
genetic testing should not be used for immediate management
decisions but should be considered an indication of the absence
of a pathogenic mutation at that moment (Slavin et al., 2019;
Hoffman-Andrews, 2018).

In 2020, the NHGRI predicted the elimination of “variants of
uncertain significance (VUS)” by making genomic variant
predictions more predictable. However, as of 1 August 2023, the

composition of the ClinVar database demonstrates the scale of the
challenge comprising 36% VUS and 5% conflicting classifications
among over 2 million variants. This VUS burden is mirrored in
genetic testing reports, with 32% of inconclusive results lacking clear
explanations for associated diseases. Despite these challenges, there
remains a belief in the potential of largely eliminating VUS,
emphasizing the importance of present decisions for achieving
this goal by 2030. They argue that investing in eliminating VUS
is crucial to advancing precision genomic medicine (Fowler and
Rehm, 2024).

The ongoing challenge in human genetics lies in classifying
variants, especially missense variants, where only a small fraction
have been clinically categorized. Machine learning approaches offer
a potential solution by leveraging biological data patterns, notably
from evolutionary conservation in genetic residues and/or 3D
conformation and structural protein modeling, to predict the
pathogenicity of unannotated variants, thus addressing the gap in
variant interpretation (Cheng et al., 2023). ACMG/AMP guidelines
utilize this in silico evidence, such as pathogenic (PP3) and benign
(BP4) evidence, for variant classification, but they only provide a
small, supporting contribution to overall pathogenicity
determination. However, the impact of these criteria on variant
classification outcomes remains inadequately studied, particularly
for missense, splice site, or non-coding variants, where the choice of
in silico predictors becomes crucial. The challenge intensifies as
concordance among predictors becomes more difficult to achieve
with the inclusion of multiple tools, highlighting the need for
comprehensive and standardized approaches in variant
assessment (Burke et al., 2022; Barboso et al., 1987; Wilcox
et al., 2022).

Recent research indicates that in silico tools, particularly
pathogenicity classifiers, could enhance the accuracy of variant
classification, effectively shortening the time to definitive
diagnosing patients with these VUS variants without
compromising diagnostic accuracy. These tools use artificial
intelligence (AI) algorithms to quickly analyze variant descriptors
and classify them as pathogenic or benign (Porras et al., 2024).
Among these, AlphaMissense has emerged as a cutting-edge tool,
utilizing AI methods trained on predicted protein structures.
AlphaMissense leverages deep learning techniques derived from
AlphaFold2, focusing on predicting the pathogenicity of missense
variants in human and primate populations. Despite not being
explicitly trained on genetic and experimental data, the model
outperforms existing methods, assigning pathogenicity scores to
genes that correlate with their cell essentiality. The comprehensive
database provided by AlphaMissense categorizes 89% of missense
variants as likely benign or likely pathogenic, demonstrating its
robustness in predicting variant effects (Cheng et al., 2023).

Whereas AlphaMissense, with its innovative approach
combining AI, structural information, and evolutionary
conservation, has shown significant promise in predicting the
functional impact of missense variants, the validity of these
predictions has not been adequately assessed. To test
AlphaMissense’s innovative approach in practice, we selected
59 genes that had been comprehensively curated by the
Mastermind genomic evidence platform, providing a large
number of testable missense variants. The primary objective of
this study was to evaluate the predictive accuracy and reliability
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of AlphaMissense in characterizing missense variants in a curated
set of 59 representative genes associated with neurological,
musculoskeletal, and/or neuromuscular disorders through a
comprehensive comparative analysis between AlphaMissense
predictions and the application of clinical-grade, gold-standard
manual interpretations of evidence according to the ACMG
classification as enhanced by Mastermind.

Methods

Genes and variant selection

We undertook a comparative analysis between Google
DeepMind’s AlphaMissense predictions and the ACMG
classification (Richards et al., 2015) adapted by Genomenon
through its genomic intelligence platform—Mastermind (MM).
Our study focused on missense variants from a curated set of
59 genes comprehensively curated in Mastermind to increase the
yield of testable missense variants: AGRN, BPNT2, MUSK, MYO9A,
SCN4A, SNAP25, ABHD16A, ACSL4, ANKLE2, AP3B2, ASAH1,
BEAN1, BRWD3, CABP4, CC2D1A, CDC42BPB, CEP135, CRADD,
DDHD1, FAM126A, FOXP1, GRIN2A, KDM5C, NBEA, NF1,
PLA2G6, PRRT2, SACS, SCN8A, SLC52A3, SNIP1, STAG2, TAF2,
WDR45, COQ8A, GLRB, SLC6A5, ALG14, ASCC1, CAPN3, CHAT,
CHRNB1, CHRND, CHRNE, COL13A1, COL6A3, COLQ, DOK7,
DPM3, DYSF, FKRP, GCH1, GFPT1, LRP4, PREPL, RYR1,
SLC18A3, SLC5A7, and VAMP1. Variants in these genes are
associated with neurological, musculoskeletal, and/or
neuromuscular disorders.

AlphaMissense data extraction

AlphaMissense (AM) predictions of missense variants in
selected genes were extracted from Cheng et al. (2023) including
the AM score and pathogenicity classification (pathogenic, benign,
and ambiguous). AM range was defined as: 0–0.33, benign;
0.34–0.564, ambiguous; 0.565–1, pathogenic (Cheng et al., 2023).
ACMG classification included pathogenic/likely pathogenic, benign/
likely benign, and VUS classifications (Richards et al., 2015). When
comparing AlphaMissense to adapted ACMG classification
conducted by expert review in Mastermind (Genomenon),
AlphaMissense pathogenic prediction was taken as equivalent to
pathogenic/likely pathogenic by ACMG classification, benign by
AlphaMissense was taken as equivalent to benign/likely benign by
ACMG, and AlphaMissense ambiguous prediction was taken as
equivalent to VUS by ACMG.

ACMG classification

The curation process involved a team of expert curators who
manually curated selected genes according to the standards set by
the American College of Medical Genetics and Association of
Molecular Pathologists (ACMG/AMP) into benign, likely benign,
variant of unknown significance (VUS), likely pathogenic, and
pathogenic classifications (Richards et al., 2015). This

interpretation process considered population frequencies derived
from gnomAD v2.1.1, clinical and functional studies from literature,
computational predictions of the effect of missense variants derived
from REVEL, PolyPhen-2, MutationTaster2, and SIFT, and
computational predictions of splicing defects for single nucleotide
variants derived from dbscSNV.

Comparison of AlphaMissense predictions
to ACMG classification

Sensitivity, specificity, positive predictive values (PPVs), and
negative predictive values (NPVs) were calculated for all genes and
individual genes (RYR1, FKRP, DOK7, NF1, GRIN2A, SCN4A)
(Trevethan (2017). Sensitivity was calculated as [a/(a+c)]×100,
specificity was calculated as [d/(b + d)]×100, PPV was calculated
as [a/(a+b)]×100, and NPV was calculated as [d/(c + d)]×100, where
a represents variants predicted as pathogenic in AlphaMissense and
by ACMG guidelines, b represents variants predicted as pathogenic
by AlphaMissense but not by ACMG, c represents variants that are
not pathogenic by AlphaMissense but pathogenic by ACMG, and d
represents those variants that are not pathogenic (benign) by
AlphaMissense and by ACMG guidelines. For most genes,
sensitivity, specificity, PPV, and NPV were not calculated on the
individual level due to the low number of missense variants which
was insufficient to generate representable data. True positive (TP)
values represent variants predicted as pathogenic in AM and
classified as pathogenic/likely pathogenic by ACMG classification.
False positive (FP) values were defined as variants predicted
pathogenic in AlphaMissense but classified as benign by ACMG.
Variants that were predicted as benign in AM but reached
pathogenic/likely pathogenic classification by ACMG were
defined as false negative (FN), while true negative (TN) values
represent variants identified as benign by both AlphaMissense
and ACMG assessments. Additionally, sensitivity, specificity, PPV
and NPV were calculated for all genes by comparing pathogenic and
not pathogenic (VUS) variants (in this case, TP and TN values were
variants classified pathogenic/likely pathogenic or benign/likely
benign by both AlphaMissense and ACMG, respectively;
FN—variants called ambiguous by AlphaMissense but
pathogenic/likely pathogenic by ACMG, and vice versa for FP).
AlphaMissense (AM) and Mastermind (MM) were compared by
creating different comparison groups of Mastermind and
AlphaMissense data as follows: variants designated as pathogenic
or benign both by AM and MM (PATH-path and BEN-ben,
respectively), variants classified as pathogenic by MM but benign
by AM, and vice versa (PATH-ben and BEN-path, respectively),
variants classified as VUS by MM and ambiguous (VUS-amb),
pathogenic (VUS-path) or benign by AM (VUS-ben), and finally
data concerning variants designated as pathogenic or benign byMM
and ambiguous by AM (PATH-amb and BEN-amb, respectively).

Quantification of ACMG classification using
a points-based system

We collected and analyzed individual ACMG evidence and
evidence groups assigned to each variant (n = 5,845). The
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TABLE 1 Diseases, associated genes, and inheritance patterns evaluated in this study (n = 60).

Disease Gene Category Inheritance pattern

Congenital myasthenic syndrome AGRN Musculoskeletal disease AR

Skeletal dysplasia BPNT2 Musculoskeletal disease AR

Myasthenic syndrome MUSK Musculoskeletal disease AR

Congenital myasthenic syndrome MYO9A Musculoskeletal disease AR

Paramyotonia congenita SCN4A Musculoskeletal disease AD; AR

Congenital myasthenic syndrome SNAP25 Musculoskeletal disease AD

Hereditary spastic paraplegia ABHD16A Neurological AR

Intellectual disability ACSL4 Neurological XL

Microcephaly ANKLE2 Neurological AR

AP3B2-related epilepsy and neurodevelopmental disorders AP3B2 Neurological AR

ASAH1-related disorders ASAH1 Neurological AR

Spinocerebellar ataxia BEAN1 Neurological AD

Intellectual developmental disorder BRWD3 Neurological XL

Cone-rod dystrophy; epilepsy CABP4 Neurological AR

Neurodevelopmental disorder; heterotaxy CC2D1A Neurological AR

CDC42BPB-related neurodevelopmental disorder CDC42BPB Neurological AD

Microcephaly CEP135 Neurological AR

Intellectual disability CRADD Neurological AR

Hereditary spastic paraplegia DDHD1 Neurological AR

Hypomyelinating leukodystrophy FAM126A Neurological AR

FOXP1-related syndrome FOXP1 Neurological AD

Landau–Kleffner syndrome GRIN2A Neurological AD

Intellectual developmental disorder, Claes–Jensen type KDM5C Neurological XL

Neurodevelopmental disorder with or without early-onset generalized epilepsy NBEA Neurological AD

Neurofibromatosis type 1 (NF1) NF1 Neurological AD

Spinocerebellar ataxia NOP56 Neurological AD

Infantile neuroaxonal dystrophy PLA2G6 Neurological AR

PRRT2-associated paroxysmal movement disorders PRRT2 Neurological AD

Autosomal recessive spastic ataxia of Charlevoix–Saguenay SACS Neurological AR

SCN8A-related epilepsy and neurodevelopmental disorders SCN8A Neurological AD

Riboflavin transporter deficiency SLC52A3 Neurological AR

Neurodevelopmental disorder with hypotonia, craniofacial abnormalities, and seizures (NEDHCS) SNIP1 Neurological AR

STAG2-related neurodevelopmental disorders STAG2 Neurological XL

Intellectual disability TAF2 Neurological AR

Beta-propeller protein-associated neurodegeneration (BPAN) WDR45 Neurological XL

Coenzyme Q10 deficiency COQ8A Neurological AR

Hereditary hyperekplexia GLRB Neurological AR

Hyperekplexia SLC6A5 Neurological AD; AR

(Continued on following page)
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evidence groups differed by strength—benign standalone (BA),
benign strong (BS), benign supporting (BP), pathogenic very
strong (PVS), pathogenic strong (PS), pathogenic moderate (PM),
and pathogenic supporting (PP) evidence—and type—population,
computational, functional, clinical, and molecular impact.

To quantify changes in variant classification, we used a point
system based on the Bayesian framework described in Tavtigian
et al. (2020). Each evidence category by strength (BA, BS, BP, PVS,
PS, PM, PP) was assigned a point value: −4 points were assigned to
BA and BS, −1 points to BP, 0 points to indeterminate, 1 point to PP,
2 points to PM, 4 points to PS, and 8 points to PVS evidence groups.

We first focused on VUS variants (n = 1,141) classified by
ACMG in Mastermind without any assigned computational
evidence. We utilized AlphaMissense predictions as
computational evidence, supporting either benign or pathogenic
(BP4 or PP3). The aim was to investigate the influence of
incorporating AlphaMissense predictions into the variant
interpretation process on the final classifications of these variants.
To explore how AlphaMissense could impact the change in the final
classification of all VUS, we replaced the existing computational
evidence with AlphaMissense predictions for the remaining
2944 VUS variants classified by ACMG criteria in Mastermind.
Similar analysis was also conducted for all variants, where all

computational evidence was removed and replaced with
AlphaMissense predictions.

Statistical analysis

Statistical analysis (chi square test and confidence intervals), box
plot, density distribution bell curve, stacked graphs, and a scatter
graph were generated using R studio. Heat maps were generated in
Excel and Adobe InDesign.

Results

AlphaMissense variant predictions
compared to ACMG classification

We selected 59 genes associated with musculoskeletal,
neuromuscular, and/or neurological disorders as a representative
dataset spanning a variety of different disease mechanisms and
inheritances patterns (Table 1). Isolating missense variants revealed
a total of 5845 variants, with 1576 classified as pathogenic/likely
pathogenic, 184 as benign/likely benign, and 4,085 as VUS by

TABLE 1 (Continued) Diseases, associated genes, and inheritance patterns evaluated in this study (n = 60).

Disease Gene Category Inheritance pattern

Congenital myasthenic syndrome ALG14 Neuromuscular AR

Spinal muscular atrophy; esophageal cancer ASCC1 Neuromuscular AR

Limb-girdle disease CAPN3 Neuromuscular AD; AR

Congenital myasthenic syndrome CHAT Neuromuscular AD, AR

Congenital myasthenic syndrome CHRNB1 Neuromuscular AD

Congenital myasthenic syndrome CHRND Neuromuscular AD; AR

Congenital myasthenic syndrome CHRNE Neuromuscular AD; AR

Congenital myasthenic syndrome COL13A1 Neuromuscular AR

COL6A3-related myopathy and dystonia disorders COL6A3 Neuromuscular AD: AR

Congenital myasthenic syndrome COLQ Neuromuscular AD, AR

Congenital myasthenic syndrome DOK7 Neuromuscular AD, AR

DPM3-related muscular dystrophy DPM3 Neuromuscular AR

Dysferlinopathy DYSF Neuromuscular AR

Muscular dystrophies FKRP Neuromuscular AR

Dopa-responsive dystonia with or without hyperphenylalaninemia GCH1 Neuromuscular AD: AR

Congenital myasthenic syndrome GFPT1 Neuromuscular AD, AR

Cenani–Lenz syndactyly syndrome; sclerosteosis; congenital myasthenic syndrome LRP4 Neuromuscular AD; AR

Congenital myasthenic syndrome PREPL Neuromuscular AR

RYR1-related myopathy disorders; malignant hyperthermia RYR1 Neuromuscular AD

Congenital myasthenic syndrome SLC18A3 Neuromuscular AR

Congenital myasthenic syndrome; distal hereditary motor neuropathy SLC5A7 Neuromuscular AD; AR

Congenital myasthenic syndrome VAMP1 Neuromuscular AD; AR
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FIGURE 1
Comparison of AlphaMissense (AM) predictions to Mastermind (MM) classifications. (A) Distribution of AM scores among variants classified as
pathogenic (including likely pathogenic n = 1,576), benign (including likely benign n = 184), or VUS (n = 4,085) presented as box-plot. (B) Distribution of
AM scores among AMpredictions for pathogenic (n = 3,848), benign (n = 1,472), and ambiguous variants (n = 524). (C)Density distribution bell curve of AM
score among variants classified as pathogenic (including likely pathogenic n = 1,576), benign (including likely benign n = 184), or VUS (n = 4,085). (D)
Density distribution bell curve of AM score among AM predictions for pathogenic (n = 3,848), benign (n = 1,472), and ambiguous variants (n = 524). (E)
Ratio of MM classified variants, predicted as benign, pathogenic, or ambiguous by AM. (F). Ratio of AM predicted variants classified as benign (including
likely benign), VUS, or pathogenic (including likely pathogenic) by MM.
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TABLE 2 Comparison between AlphaMissense predictions and ACMG classification by Mastermind. (A) Number of pathogenic, VUS, and benign variants classified by ACMG criteria compared to their AlphaMissense
predictions. True positive (TP) values represent variants predicted as pathogenic in AM and classified as pathogenic/likely pathogenic byMastermind. False positive (FP) values defined as variants predicted pathogenic
in AlphaMissense but classified as benign by Mastermind. Variants predicted as benign in AM but reached pathogenic/likely pathogenic classification by MM were defined as FN, while TN values represent variants
identified as benign by both AM andMM assessments. (B) Sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs) were calculated for all genes by comparing pathogenic and not
pathogenic (benign or VUS) variants.

A ACMG Mastermind classification

Pathogenic VUS Benign

AlphaMissense prediction Pathogenic 1,352 2,458 38

Ambiguous 108 403 14

Benign 116 1,224 132

B Sensitivity Specificity PPV NPV

ACMG Path/Ben versus AlphaMissense Path/Ben 92% 78% 97% 53%

ACMG Pathogenic/VUS versus AlphaMissense Path/Amb 93% 14% 36% 79%

ACMG Pathogenic/non-pathogenic (VUS + benign) versus AlphaMissense pathogenic/non-pathogenic (ambiguous + benign) 86% 41% 35% 89%
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TABLE 3 Quantity of all individual ACMG evidence (grouped by type: population, functional and allelic, clinical, computational, and molecular data) assigned to all evaluated missense variants differently classified or
predicted by Mastermind and AlphaMissense, respectively.

Mastermind
classification

Alpha
missense
prediction

Number
of

variants

Population data Functional and allelic
data

Clinical data Computational data Molecular impact Total

Benign
(BA1,
BS1,
and
BS2)

Pathogenic
(PS4, PM2,
and PS4_M)

Benign
(BS3 and
BP2)

Pathogenic
(PS3 and
PM3)

Benign
(BS4 and

BP5)

Pathogenic
(PP1,

PP1_M,
PP4, PS2,
PM6, PPC,
PPC HET,
PPC HOM,
and PPC
COMHET)

Benign
(BP4)

Pathogenic
(PP3)

Benign
(BP7,
BP3,
and
BP1)

Pathogenic
(PVS1, PS1,
PM4, PM1,

PM5,
and PP2)

VUS Benign 1,224 0 1,101 (41%)
1,091 (1)
10 (2)

0 1 (0%)
1 (1)

5 (0%)
5 (1)

343 (13%)
284 (1)
54 (2)
4 (3)
1 (4)

579 (22%)
579 (1)

337 (13%)
337 (1)

11 (0%)
11 (1)

281 (11%)
263 (1) 18 (2)

2,658

Pathogenic 2,458 0 2,435 (42%)
2,368 (1)
67 (2)

0 0 4 (0%)
4 (1)

899 (16%)
755 (1)
138 (2)
6 (3)

120 (2%)
120 (1)

1,643 (28%)
1,643 (1)

9 (0%)
9 (1)

657 (11%)
616 (1) 41 (2)

5,767

Pathogenic (PATH +
LPATH)

Ambiguous 108 0 107 (27%)
76 (1)
31 (2)

0 45 (12%)
45 (1)

0 91 (23%)
36 (1)
43 (2)
6 (3)
6 (4)

6 (2%)
6 (1)

81 (21%)
81 (1)

1 (0%)
1 (1)

59 (15%)
48 (1)
11 (2)

390

Benign 116 0 115 (28%)
88 (1)
27 (2)

0 49 (12%)
49 (1)

0 78 (19%)
40 (1)
22 (2)
13 (3)
3 (4)

30 ((7%)
30 (1)

67 (16%)
67 (1)

1 (0%)
1 (1)

68 (17%)
55 (1) 13 (2)

408

Benign (BEN +
LBEN)

Pathogenic 38 23 (21%)
23 (1)

20 (18%)
20 (1)

13 (12%)
13 (1)

0 1 (1%)
1 (1)

19 (17%)
11 (1)
5 (2)
2 (3)
1 (4)

5 (5%)
5 (1)

22 (20%)
22 (1)

1 (1%)
1 (1)

6 (5%)
5 (1)
1 (2)

110

Ambiguous 14 9 (23%)
9 (1)

6 (15%)
6 (1)

4 (10%)
4 (1)

0 1 (3%)
1 (1)

5 (13%)
3 (1)
2 (2)

1 (3%)
1 (1)

11 (28%)
11 (1)

0 2 (5%)
2 (1)

39

Evidence for all variants 144 (1) 5,545 5,130 (1) 414
(2)
1 (3)

36 (1) 640
639 (1) 1 (2)

16 (1) 2,717 1731 (1)
738 (2)
182 (3)
58 (4)
8 (5)

912 (1) 3,550 (1) 40 (1) 1845
1,652 (1)
193 (2)

In Column 1, the Mastermind classification is presented, wherein variants classified as pathogenic and likely pathogenic fall under the Pathogenic category, and variants classified as benign and likely benign are categorized as Benign. Column 2 shows the AlphaMissense

classification, and Column 3 indicates the total number of variants in each category. Columns 4–13 display ACMG evidence, according to Richards et al. (2015). The number of variants with one, two, three, or four items of evidence is shown in parenthesis.
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FIGURE 2
Heatmaps showcasing the individual ACMG evidence (grouped by type) assigned for each missense variant from the 59 evaluated genes. Each row
represents a missense variant from one of the 59 genes. Columns represent, from left to right: two columns depicting the comparison groups, benign
population, benign functional and allelic, benign clinical, benign computational, and benignmolecular impact evidence, asmarked by the blue horizontal
lines above; and pathogenic population, pathogenic functional and allelic, pathogenic clinical, pathogenic computational, and pathogenic
molecular impact evidence, as marked by the red horizontal lines. The blue and red colors in the columns represent assigned evidence, with darker red
colors depicting multiple evidence assigned from that evidence group. (A) Comparison of benign variants by ACMG classification and AlphaMissense. (B)

(Continued )
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ACMG classification in Mastermind (Supplementary Table S1).
Thus, 70% of variants were VUS variants in our cohort. To
compare the standard ACMG classification to AlphaMissense
predictions (pathogenic, ambiguous, benign), we shortened the
five-level ACMG classification to three levels for easier
comparison (the pathogenic/likely pathogenic were classified as
“pathogenic” and benign/likely benign were classified as
“benign”). When AlphaMissense predictions were extracted for
all missense variants, 3848 variants (66%) were classified as
pathogenic, 1472 (25%) were benign, and 525 (9%) were
ambiguous. The comparison of AlphaMissense predictions to
ACMG classification is shown in Figure 1. The mean
AlphaMissense score for benign variants was 0.3 (CI: 0.26–0.35),
0.85 (CI 0.84–0.86) for pathogenic and 0.64 (CI 0.63–0.65) for VUS
variants. Benign and pathogenic classification by ACMG correlated
well with AlphaMissense scores (p < 0.01); higher AlphaMissense
scores were associated with pathogenic variants by ACMG
classification, and lower scores were associated with benign
variants (p < 0.01; Figures 1A, B). Using a density plot, VUS
variants showed a bimodal (saddle) density distribution of
AlphaMissense scores, with the majority of variants having either
lower or higher scores (Figures 1C, D).

Out of 5845 variants, AlphaMissense prediction and ACMG
classification were concordant in 1887 variants (1352 variants were
pathogenic in both, 132 were benign in both, and 403 were VUS/
ambiguous for both). Regarding discrepancies, when we analyzed
pathogenic ACMG-classified variants, a minority of pathogenic
variants (224 variants out of 1576) showed discrepant
classification (108 were ambiguous and 116 were benign in
AlphaMissense) (Figures 1E, F; Table 2). When we analyzed
benign ACMG-classified variants, most were also benign in
AlphaMissense (132 variants out of 184 benign variants),
38 benign variants were predicted as pathogenic, and 14 were
predicted as ambiguous by AlphaMissense. When we analyzed
VUS ACMG-classified variants (n = 4085), which were the
largest number of variants in our cohort, 2458 VUS variants
were classified as pathogenic and 1224 as benign by
AlphaMissense, revealing that a majority of VUS variants carry
pathogenic prediction in AlphaMissense.

Sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) are shown in Table 2. Sensitivity
for predicting pathogenic variants by AlphaMissense was 92% and
specificity was 78% (p < 0.05). The overall PPV was 97%, while NPV
reached 53%. When comparing ACMG pathogenic and all non-
pathogenic variants (i.e., VUS and benign) to AlphaMissense
pathogenic and non-pathogenic variants (i.e., ambiguous and
benign), sensitivity was 86%, but specificity was 41%, and PPV
and NPV were 35% and 89%, respectively (Table 2). An individual
evaluation of sensitivity, specificity, PPV, and NPV was performed
for six genes characterized by a higher number of interpreted
missense variants (Supplementary Table S2). Sensitivity and PPV

were all above 90%, but specificity ranged from 33% to 69% and
NPV from 25% to 90%.

AlphaMissense scores for 5845 variants were compared to
REVEL (rare exome variant ensemble learner) scores, which is an
ensemble method for predicting the pathogenicity of missense
variants. AlphaMissense scores correlated highly with REVEL
scores (Spearman rank correlation coefficient, R > 0.6).

AlphaMissense predictions compared to the
type of evidence criteria

To further understand the value of AlphaMissense predictions
in variant classification, we decided to segregate each ACMG call
according to individual evidence categories. Individual ACMG
evidence sorted by type (population, functional, computational,
clinical, and molecular impact) assigned to each variant were
evaluated in relation to both AlphaMissense prediction and
ACMG classification (Figure 2). Each heatmap represents the
comparison between ACMG classification (pathogenic, benign, or
VUS) and AlphaMissense prediction (pathogenic, benign, or
ambiguous), where each row is a unique variant. We compared
concordant calls between ACMG classification and AlphaMissense
predictions—benign ACMG classification versus benign
AlphaMissense (BEN-ben, Figure 2A), pathogenic ACMG versus
pathogenic AlphaMissense (PATH-path, Figure 2B), and VUS
ACMG versus ambiguous AlphaMissense predictions (VUS-amb,
Figure 2C). This revealed a clear association between evidence
criteria and AlphaMissense calls. For VUS versus ambiguous, the
evidence showed either a lack of evidence assigned to a variant or the
presence of both benign and pathogenic criteria which designated
these variants as true VUS. For discordant calls, we compared VUS
ACMG classification versus benign AlphaMissense (VUS-ben,
Figure 2D), VUS ACMG classification versus pathogenic
AlphaMissense (VUS-path, Figure 2E), pathogenic ACMG
classification versus ambiguous AlphaMissense predictions
(PATH-amb, Figure 2F), and benign ACMG classification versus
ambiguous AlphaMissense predictions (BEN-amb, Figure 2G). For
VUS ACMG classification versus AlphaMissense benign/pathogenic
prediction comparison (Figures 2D, E), there is a clear concordance
between the benign computational calls (evidence from other
prediction tools) and benign AlphaMissense predictions, but the
existence of pathogenic evidence such as population, clinical or
molecular impact evidence classified the variants as VUS. Thus,
when comparing ACMG VUS to AlphaMissense pathogenic
prediction, the majority of variants have a pathogenic population
and computational criteria, which are insufficient to push the
classification from VUS to likely pathogenic. A small subset of
variants has computational predictions and some have functional
data pointing to their benignity. However, there is a trend where
most variants with pathogenic AlphaMissense predictions also have

FIGURE 2 (Continued)

Comparison of pathogenic variants by ACMG classification and AlphaMissense. (C) Comparison of VUS/ambiguous variants by ACMG classification
and AlphaMissense. (D) Comparison of VUS by ACMG and benign by AlphaMissense. (E)Comparison of VUS by ACMG and pathogenic by AlphaMissense.
(F) Comparison of pathogenic by ACMG and VUS by AlphaMissense. (G) Comparison of benign by ACMG and VUS by AlphaMissense. (H) Comparison of
pathogenic by ACMG and benign by AlphaMissense. (I) Comparison of benign by ACMG and pathogenic by AlphaMissense.
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pathogenic criteria assigned. Evidence from the comparison between
pathogenic ACMG classification and ambiguous AlphaMissense
implies that most ambiguous calls have pathogenic evidence
associated with them, whereas the BEN-amb comparison group
has both benign and pathogenic evidence assigned, with benign
population evidence being sufficient in calling a benign classification
with certainty. The opposite calls were also compared—pathogenic
ACMG classification versus benign AlphaMissense (Figure 2H) and
benign ACMG classification versus pathogenic AlphaMissense
predictions (Figure 2I). Comparing ACMG pathogenic to
AlphaMissense benign (n = 1,576), the majority of variants have
pathogenic evidence in most categories with a subset of benign in
silico predictions, suggesting that these AlphaMissense predictions
may be false negatives. Comparing ACMG benign classification to
AlphaMissense pathogenic predictions (n = 38), most variants have
benign population criteria, making these AlphaMissense predictions
likely false positives. Analyzing AlphaMissense ambiguous
predictions (Figures 2C,F,G), the majority of variants have also
VUS ACMG classification (n = 403), followed by pathogenic ACMG
classification (n = 108); only a few variants have benign ACMG
classification (n = 14), suggesting that ambiguous AlphaMissense

predictions correlate well with VUS classification and tend to be
associated with pathogenic ACMG classification.

AlphaMissense predictions compared to the
strength of evidence criteria

In addition to evidence type, individual ACMG calls were
categorized by their strength (benign strong (BS), benign
supporting (BP), pathogenic strong (PS), pathogenic moderate
(PM), and pathogenic supporting (PP)). Each criterion was
assigned to all evaluated missense variants that were
differently classified or predicted by Mastermind and
AlphaMissense (Tables 3, 4). The most commonly used
evidence for VUS and pathogenic variants was PM (48%–

54%), while for benign variants it was BS (37%–39%). If we
analyze ACMG groups (VUS, pathogenic and benign), the
distribution across evidence criteria was even for ACMG
pathogenic and benign variants, except for VUS variants. For
ACMG VUS variants, BP was used in 25% of variants with benign
AlphaMissense prediction compared to 3% of VUS variants with

TABLE 4 Quantity and percentage of all individual ACMG evidence items, categorized by their strength (benign strong (BS), benign supporting (BP),
pathogenic strong (PS), pathogenic moderate (PM), and pathogenic supporting (PP)) assigned to all evaluated missense variants that were differently
classified or predicted by Mastermind and AlphaMissense, respectively.

ACMG
Classification

AlphaMissense
classification

Number of
variants

Evidence group by ACMG Total

BP BS PP PM PS

VUS Benign 1,224 595
(25%)
595 (1)

0 630 (27%)
480 (1)
134 (2)
16 (3)

1,132
(48%)
956 (1)
176 (2)

1 (0%)
1 (1)

2,358

Pathogenic 2,458 133 (3%)
133 (1)

0 1952
(43%)

1,190 (1)
622 (2)
140 (3)

2,441
(54%)

1950 (1)
491 (2)

0 4,526

Pathogenic (PATH +
LPATH)

Ambiguous 108 7 (3%)
7 (1)

0 97 (38%)
35 (1)
47 (2)
11 (3)
4 (4)

108 (42%)
28 (1)
52 (2)
26 (3)
2 (4)

44
(17%)
43 (1)
1 (2)

256

Benign 116 31 (11%)
31 (1)

0 85 (30%)
40 (1)
37 (2)
6 (3)
2 (4)

115 (41%)
37 (1)
39 (2)
34 (3)
5 (4)

50
(18%)
50 (1)

281

Benign (BEN + LBEN) Pathogenic 38 5 (5%)
4 (1)
1 (2)

34
(37%)
34 (1)

29 (31%)
21 (1)
7 (2)
1 (3)

24 (26%)
19 (1)
5 (2)

0 92

Ambiguous 14 1 (3%)
1 (1)

12
(39%)
12 (1)

11 (35%)
7 (1)
3 (2)
1 (3)

7 (23%)
6 (1)
1 (2)

0 31

Total per evidence group 772 46 2,804 3,827 95

In Column 1, the Mastermind classification is presented, wherein variants classified as pathogenic and likely pathogenic fall under the Pathogenic category, and variants classified as benign and

likely benign are categorized as Benign. Column 2 shows the Alphamissense classification, and Column 3 indicates the total number of variants in each category. Columns 4–8 display ACMG

evidence, according to Richards et al. (2015), with Column 8 representing the total sum of all ACMG evidence per category. The number of variants with one, two, three, or four items of

evidence is shown in parenthesis.
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pathogenic prediction, which is explained by the frequent use of
computational BP4 evidence.

We set out to analyze and compare the already existing ACMG
computational evidence in our cohort to AlphaMissense predictions.
We found that out of 912 BP4-assigned benign variants in ACMG,
696 (76%) variants also had benign AlphaMissense prediction while
144 variants were pathogenic and 72 were ambiguous. Out of
3550 PP3-assigned variants, 2828 variants also had pathogenic
AlphaMissense prediction (80%), while 430 variants had benign
(12%) and 292 (8%) had ambiguous AlphaMissense prediction. If we
analyze only VUS variants, 72% (n = 2,944) had computational
evidence (764 VUS variants had BP4, while 2,180 of variants had
PP3 evidence). A total of 1141 out of 4085 variants did not have an
assigned computational call. Furthermore, among 764 VUS variants
that had BP4-assigned evidence, 76% (n = 579) variants were also
benign in AlphaMissense, while 120 variants were pathogenic and
65 were ambiguous. A total of 2180 VUS variants had PP3-assigned
evidence and 75% (n = 1,643) also had pathogenic AlphaMissense
prediction, while 337 were predicted benign and 200 variants were
predicted ambiguous. In conclusion, 75% of VUS variants showed
concordance between already used computational tools and
AlphaMissense.

Contribution of AlphaMissense predictions
as computational evidence in variant
interpretation and reclassification

Figure 3 depicts the quantification of variant pathogenicity using
a points-based system within a Bayesian framework (Tavtigian et al.,
2018). The quantification system uses a scale from ≤−4 to ≥10,
where variants with ≤ −4 points designated as benign, −3 to −1 likely
benign, 0–5 VUS, 6–9 likely pathogenic, and ≥10 as pathogenic. All
variants (n = 5845) are presented, demonstrating quantification by
categories and highlighting the correlation between the
AlphaMissense score and the points-based system of ACMG

classification. Quantified ACMG pathogenic and benign variants
correlated well with high and low AlphaMissense scores,
respectively.

We set out to analyze whether AlphaMissense may help in VUS
reclassification of those variants that did not have computational
evidence. Table 5 displays the impact of the addition of
AlphaMissense predictions to computational evidence for VUS
variants that did not have computational evidence. Evidence was
quantified through a points-based system using a Bayesian
framework (Tavtigian et al., 2018). It includes all 4085 variants
with VUS classification, along with evidence groups from ACMG
(20 groups, including various combinations of pathogenic very
strong (PVS), pathogenic strong (PS), pathogenic moderate (PM),
pathogenic supporting (PP), benign strong (BS), benign moderate
(BP), and stand-alone support (BA) evidence).

For each item of evidence, quantification is calculated by
assigning a point adaptation: −4 points for BS and BA, −1 point
for Benign-Supporting, 0 points for Indeterminate, 1 point for PP,
2 points for PM, 4 points for PS, and 8 points for PVS evidence.
ACMG categories are labeled as benign if the score is ≤−4 (dark
blue), likely benign if the score is −3 to −1 (light blue), VUS if 0–5
(yellow), 6–9 as likely pathogenic (light red), and ≥10 as pathogenic
(dark red). According to the calculated quantification, 24 VUS
variants lean toward likely benign (quantification: −1), and
4061 variants have uncertain significance (ranging 0–`5) (Table 5).

Additionally, all VUS variants are categorized into three groups:
Low (0–1 pts, light yellow), Mid (2–3 pts, yellow), and High (4–5 pts,
gold yellow). For VUS variants without existing computational
evidence (BP4 for benign or PP3 for pathogenic), an
AlphaMissense prediction was added to observe its influence on
subcategory change and ACMG classification. Out of 4085 VUS
variants, 1141 lacked BP4/PP3 evidence. AlphaMissense prediction,
based on the AlphaMissense score, was included as evidence
(308 were predicted as benign and 695 as pathogenic by
AlphaMissense). After incorporating BP4 or PP3 evidence, the
VUS quantification changed for 934 variants. Notably, the

FIGURE 3
Quantification (points-based system) of variant pathogenicity using a Bayesian framework. Comparison of AlphaMissense scores for each classified
variant is shown in relation to quantification (−8 to −4 as benign, −4 to −1 as likely benign, 0 to 5 as VUS, 6 to 9 as likely pathogenic, and ≥10 as pathogenic).
All variants are presented, showcasing quantification by categories. A correlation exists between the AlphaMissense score and the point-based system,
i.e., ACMG classification (p < 0.05).
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TABLE 5 Impact of AlphaMissense predictions on VUS variants that did not have computational evidence. VUS variants were quantified through a points-based system using a Bayesian framework. The approach
involves point adaptation (Tavtigian et al., 2020).

N of
variants

(n = 4,085)

PS PM PP BP BS Quantification of
ACMG

classification

Quantification after
addition of

AlphaMissense
benign prediction

Quantification after
addition of

AlphaMissense
pathogenic prediction

Reclassified
variants
(n = 934)

Quantification
changed

Quantification
leading to

reclassification

24 0 0 0 1 0 −1 0 No No

16 0 0 0 0 0 0 −1 (n = 12) 1 (n = 1) 13 Yes No

19 0 0 1 1 0 0 0 No No

35 0 0 1 0 0 1 0 (n = 9) 9 Yes No

4 0 0 2 1 0 1 0 No No

406 0 1 0 1 0 1 0 (n = 4) 2 (n = 2) 6 Yes No

23 0 0 2 0 0 2 1 (n = 1) 1 Yes No

546 0 1 0 0 0 2 1 (n = 150) 3 (n = 318) 468 Yes No

203 0 1 1 1 0 2 0 No No

1,111 0 1 1 0 0 3 4 (n = 191) 191 Yes No

4 0 0 3 0 0 3 0 No No

29 0 1 2 1 0 3 0 No No

71 0 2 0 1 0 3 2 (n = 1) 4 (n = 2) 3 Yes No

775 0 1 2 0 0 4 3 (n = 6) 5 (n = 11) 17 Yes No

2 0 1 3 1 0 4 0 No No

164 0 2 0 0 0 4 3 (n = 40) 5 (n = 114) 154 Yes No

40 0 2 1 1 0 4 0 No No

1 1 0 1 1 0 4 0 No No

450 0 2 1 0 0 5 4 (n = 16) 6 (n = 54) 70 Yes Yes, likely pathogenic

162 0 1 3 0 0 5 6 (n = 2) 2 Yes Yes, likely pathogenic

Table includes 4,085 variants with VUS classification, presented alongside all ACMG evidence groups. There are 20 groups in total, encompassing different combinations of evidence categories: PS (pathogenic strong), PM (pathogenic moderate), PP (pathogenic

supporting), BP (benign supporting), and BS (benign strong). Each item of evidence is quantified by assigning point adaptations, with ACMG categories considered benign if the score is ≤ −4 (dark blue in the table), likely benign if the score is −3 to −1 (light blue), VUS

with a score 0–5 (yellow), LPATH 6–9 (light red), and PATH if ≥ 10 (dark red). VUS variants are further divided into three groups: “Low” (0–1 pts, light yellow), “Mid” (2–3 pts, yellow), and “High” (4–5 pts, gold yellow).
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quantification for 12 VUS variants changed to likely benign (score:
−1) after adding the AlphaMissense prediction, but the ACMG
classification remained the same. For 56 variants, the quantification
changed (score: 6) after including the AlphaMissense prediction as
PP3 evidence, elevating the classification to likely pathogenic. For
the remaining 866 variants, the quantification still indicated the
VUS category, and their VUS subcategories changed depending on
whether BP4 or PP3 evidence was assigned. The list of all reclassified
VUS variants according to the quantification is listed in
Supplementary Table S3.

The AlphaMissense scores for the 12 reclassified variants with
benign predictions ranged from 0.0644 to 0.3204, while the
pathogenic prediction scores for the 56 newly classified likely
pathogenic variants were mostly above 0.9 (73%).

Since 75% of VUS variants showed concordance between the
computational tools already used and AlphaMissense, we conducted
a test to assess the impact of AlphaMissense as the sole
computational evidence. We removed existing ACMG
computational evidence from VUS variants and replaced it with
AlphaMissense predictions. The replacement of AlphaMissense
predictions, instead of existing computational evidence, resulted
in a change in VUS quantification for 1709 variants. Notably, for
29 VUS variants, the quantification changed to likely benign (score:
−1) after adding the AlphaMissense prediction, while the ACMG
classification remained the same. For 63 variants, the quantification
changed (score: 6) after including or replacing existing
computational predictions with the AlphaMissense prediction or
PP3 evidence, thereby elevating their classification to likely
pathogenic (Table 6).

When computational evidence for all variants was removed and
replaced with AlphaMissense predictions, 194 variants were benign/
likely benign (51 were benign and 143 were likely benign),
1588 variants were pathogenic/likely pathogenic (1,378 were
likely pathogenic and 210 were pathogenic), and 4063 variants
were classified as VUS (Figure 4). In total, 142 variants changed
classification, which is 2.4% of all variants. More specifically, two
variants changed from benign to likely benign, one likely benign
variant became VUS, 11 VUS variants were reclassified as likely
benign, 63 VUS variants as likely pathogenic, seven likely pathogenic
variants as pathogenic, 51 likely pathogenic variants were
reclassified as VUS, and seven pathogenic variants as likely
pathogenic.

Discussion

The accurate classification of genetic variants is crucial for the
proper diagnosis, prognosis, and therapy of genetic diseases.
Although many genetic variants are associated with known
clinical significance and treatment, more than a third of all
variants are categorized as variants of uncertain significance
(VUS), presenting a challenge to clinicians, geneticists, and
patients due to the ambiguity surrounding their impact on health
and disease. ACMG/AMP guidelines categorize variants into
benign, likely benign, VUS, likely pathogenic, and pathogenic
using several different classes of evidence that include population
data, functional data, computational in silico predictions,
segregation data, de novo data, and allelic and other data.

AlphaMissense is a promising new AI-based pathogenicity
prediction tool developed by Google’s DeepMind which
combines AI, structural information, and evolutionary
conservation to predict the functional impact of missense
variants. With the power of AI to integrate multiple levels of
evidence, it may be plausible that tools such as AlphaMissense
may provide better discriminatory power in elucidating the
classification of VUS variants as the most challenging class of
variants. Thus, the primary objective of this study was to
evaluate the predictive accuracy and reliability of AlphaMissense
in characterizing missense variants in a curated set of 59 genes
associated with neurological, musculoskeletal, and/or
neuromuscular disorders through comparative analysis between
AlphaMissense predictions and the adapted ACMG classification
provided by Genomenon’s Mastermind platform.

The analysis of 5845 missense variants in 59 genes revealed
notable disparities between pathogenicity predictions by
AlphaMissense and predictions based on the ACMG guidelines
in Mastermind. The overall assessment of sensitivity and
specificity when pathogenic versus benign calls are compared
indicates that AlphaMissense is successful in identifying variants
classified as P/LP by ACMG classification in Mastermind and
operates well in identifying B/LB ACMG-classified variants. The
high positive predictive value suggests that variants predicted as
pathogenic by AlphaMissense are indeed pathogenic/likely
pathogenic according to ACMG classification; however, the
overall NPV is lower, implying that variants predicted as benign
by AlphaMissense might have a higher chance of being misclassified
when compared to ACMG. When analyzed within the context of
VUS, AlphaMissense showed a low specificity, indicating that it was
ineffective in identifying VUS variants as classified by ACMG.
Similarly, poor PPV revealed that variants predicted as
pathogenic have a slim chance of being truly pathogenic/likely
pathogenic. A moderately high negative predictive value indicated
that AlphaMissense was effective in predicting ambiguous variants.

The results for individual genes vary; AlphaMissense showed
overall good performance in predicting variants of the SCN4A, NF1,
DOK7, and FKRP genes. GRIN2A and RYR1, however, exhibited
lower specificity and NPV, emphasizing the importance of gene-
specific assessments. The negative predictive value is consistently
less than 50% in all individually reviewed genes, which underscores
the overall result and indicates the challenges in using
AlphaMissense’s data regarding variants predicted as benign.

VUS variants classified by assigning a substantial amount of
pathogenic and benign evidence were often predicted as benign by
AlphaMissense, indicating potential overcalls. VUS variants that
were classified as benign by AlphaMissense were in most cases what
is considered a “VUS plus” or a “warm” VUS variant, which only
must fulfill one additional pathogenic criterion to be promoted to a
likely pathogenic classification but lacked one at the time of the first
classification attempt.

Variants predicted ambiguous by AlphaMissense were mostly
concordant with ACMG classification, but a notable segment was
classified as pathogenic/likely pathogenic by Mastermind, based on
the fact that almost no variant met benign criteria. Variants with
conflicting classifications and predictions, pathogenic/benign by
Mastermind and benign/pathogenic by AlphaMissense , stress the
intricacies of variant interpretation and the need for a

Frontiers in Genetics frontiersin.org14

Kurtovic-Kozaric et al. 10.3389/fgene.2024.1487608

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1487608


comprehensive evaluation of conflicting evidence through extensive
research and use of helping tools instead of solely relying on
predictions.

The re-classification of VUS in genetic testing is critical to
improving our understanding of genetic variations and their
potential impact on health. As depicted in Figure 3, among the
1019 VUSs categorized by ACMG without assigned computational
evidence, AlphaMissense predicted 314 as benign and 705 as
pathogenic. By considering the AlphaMissense benign predictions
as BP4 evidence, which signifies computational inertness, four
(1.3%) were reclassified as likely benign during the interpretation
of the 314 variants. Conversely, applying PP3 evidence—denoting

computational prediction of damage—to the 705 VUS variants
based on AlphaMissense pathogenic predictions resulted in the
promotion of 52 variants (7.4%) to likely pathogenic. Other
studies indicated that approximately 10%–15% of re-evaluated
VUS could be elevated to the category of likely pathogenic/
pathogenic, while the remaining cases may be reclassified as
likely benign/benign (Burke et al., 2022). Our analysis using
AlphaMissense predictions indicates a lower percentage (7.4%) of
variants being promoted to likely pathogenic compared to the
general estimate (10%–15%). Thus, the use of computational
evidence (AlphaMissense predictions) plays a significant role in
both reclassifications, with computational inertness leading to some

TABLE 6 Impact of AlphaMissense predictions on VUS variants when existing computational evidence is replaced by AlphaMissense predictions. VUS
variants quantified through a points-based system using Bayesian framework (Tavtigian et al., 2020).

No. of
variants

PS PM PP BP BS Quantification after AlphaMissense
replacement/addition

Quantification leading to
reclassification

49 0 0 0 1 0 −1 No

1 0 0 1 2 0 −1 No

12 0 0 0 0 0 0 No

38 0 0 1 1 0 0 No

9 0 1 0 2 0 0 No

9 0 0 1 0 0 1 No

6 0 0 2 1 0 1 No

617 0 1 0 1 0 1 No

1 0 1 1 2 0 1 No

8 0 0 2 0 0 2 No

303 0 1 1 1 0 2 No

186 0 1 0 0 0 2 No

5 0 2 0 2 0 2 No

2 0 0 3 0 0 3 No

1,083 0 1 1 0 0 3 No

36 0 1 2 1 0 3 No

133 0 2 0 1 0 3 No

842 0 1 2 0 0 4 No

2 0 1 3 1 0 4 No

44 0 2 0 0 0 4 No

42 0 2 1 1 0 4 No

1 1 0 1 1 0 4 No

153 0 1 3 0 0 5 No

440 0 2 1 0 0 5 No

2 0 1 4 0 0 6 Yes, likely Pathogenic

61 0 2 2 0 0 6 Yes, likely Pathogenic

Table includes 4085 variants with VUS classification, presented alongside all ACMG evidence groups. There are 20 groups in total, encompassing different combinations of evidence categories:

PS (pathogenic strong), PM (pathogenic moderate), PP (pathogenic supporting), BP (benign supporting), and BS (benign strong). Each item of evidence is quantified by assigning point

adaptations, with ACMG categories considered benign if the score is ≤ −4 (dark blue in the table), likely benign if the score is −3 to −1 (light blue), VUS with a score 0–5 (yellow), LPATH 6–9

(light red), and PATH if ≥ 10 (dark red). VUS variants are further divided into three groups: “Low” (0–1 pts, light yellow), “Mid” (2–3 pts, yellow), and “High” (4–5 pts, gold yellow).
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benign variants being reclassified as likely benign and computational
prediction of damage promoting some VUS variants to likely
pathogenic.

The correlation between AlphaMissense scores and ACMG
classification was evident, with quantified ACMG pathogenic and
benign variants aligning well with high and low AlphaMissense
scores, respectively. The quantification process assigned scores
based on the type and strength of evidence, establishing a
continuum from benign to pathogenic. This allowed for a
nuanced characterization of all variants—particularly of VUS
variants. Notably, 24 VUS variants were identified as likely
benign if the quantification system was used, while the majority
of 4061 variants retained an uncertain significance, with a
0–5 score range.

The stratification of VUSs based on the quantification scores
(low, mid, and high) provided additional insights into the
distribution of variants across different quantification levels and
the ability to better track the possible effects of AlphaMissense
predictions. When we explored the impact of AlphaMissense
predictions on VUS variants that lacked existing computational
evidence (BP4 for benign or PP3 for pathogenic), we incorporated
AlphaMissense predictions into the analysis and found that of the
4085 VUS variants, 1141 lacked BP4/PP3 evidence. Furthermore,
after integrating AlphaMissense predictions, 308 variants were
predicted as benign and 695 as pathogenic. Subsequent analysis
revealed notable changes in the quantification of VUS variants,
where 878 variants changed quantification within the VUS
framework. Remarkably, for 12 VUS variants, the quantification
shifted to likely benign after incorporating AlphaMissense
predictions, although the ACMG classification remained the
same. This suggests that while the quantification changed, the
overall pathogenicity assessment remained consistent. On the
other hand, for 56 variants, the quantification increased to a
score of 6, leading to an elevation in ACMG classification to
likely pathogenic. This highlights the substantial impact of
AlphaMissense predictions on reclassifying certain variants,

emphasizing their potential contribution to refining pathogenicity
assessments. This underscores the complex interplay between
computational evidence, AlphaMissense predictions, and existing
ACMG criteria in determining the significance of genetic variants.

An intriguing aspect of the study is the examination of scenarios
where AlphaMissense predictions were the sole computational
evidence, replacing existing ACMG computational evidence. The
results showed that this replacement led to changes in VUS
quantification for 1079 variants, emphasizing the significance of
AlphaMissense as an independent computational tool in the variant
interpretation of VUS.

The use of AlphaMissense as a predictive tool did not result in a
significant shift in current ACMG classification. Of the total number
of VUS variants (n = 4,085), a small number (n = 63) were
reclassified into likely pathogenic after incorporating
AlphaMissense as computational evidence. It is important to note
that 51 variants initially classified as likely pathogenic moved into
the VUS category. Therefore, the overall number of variants that
changed classification with the help of AlphaMissense was 114,
leading to the conclusion that the classifications essentially align and
there is no significant impact. It is also crucial to emphasize that
AlphaMissense is a stronger predictive tool, primarily because it
incorporates functional and population data. After the analysis and
incorporation of AlphaMissense as a predictive tool, the
recommendation is to classify variants according to ACMG
standards. However, VUS variants should undergo a completely
new classification approach. The central database should be
AlphaMissense, which should continuously improve its function
with new evidence and data. One noticeable effect is that
AlphaMissense influenced the quantification of VUS variants,
causing their transition from low to mid and high VUS levels
and vice versa.

Other studies have shown that AlphaMissense is highly effective
in predicting pathogenicity for both somatic variants, particularly in
hematological malignancy diagnostics. A study with 686 patients
across 111 genes demonstrated its accuracy, achieving an impressive

FIGURE 4
Effect of replacing existing computational evidence with AlphaMissense predictions on the final classification. ACMG classification of variants (B,
benign; LB, likely benign; VUS, variant of unknown significance; LP, likely pathogenic; P, pathogenic) is presented on the left side before AlphaMissense
predictions are added to the classification. Once AlphaMissense predictions are incorporated into the classification, the number of benign, likely benign,
VUS, likely pathogenic, and pathogenic variants is shown. Arrows going from left to right show the number of variants changing classification after
the incorporation of AlphaMissense predictions.

Frontiers in Genetics frontiersin.org16

Kurtovic-Kozaric et al. 10.3389/fgene.2024.1487608

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1487608


AUC of 0.95 (Chabane et al., 2024). Compared to 38 other predictors
using multiplexed assays of variant effect (MAVE), AlphaMissense
showed strong correlation with functional impact, especially for
specific genes (Ljungdahl et al., 2023). The analysis against
Rhapsody and its performance based on AlphaFold structures
further establishes its prominence. Utilizing advanced structural
information, AlphaMissense generates higher pathogenic
probabilities, validated by identifying annotated pathogenic
variants in the ClinVar database (Wang et al., 2023; Staklinski
et al., 2023; Ahmad et al., 2024; McDonald et al., 2024).

Current computational models for predicting the pathogenicity
of missense variants have been valuable for interpreting genetic
variants. However, these models face several challenges and
limitations, including the size of the dataset, bias in training data,
and difficulties with rare variants. REVEL and PolyPhen rely on
publicly available variant databases (e.g., ClinVar) and large
population cohorts (e.g., gnomAD) to train their algorithms.
However, many of these databases are incomplete or biased
toward common variants. Many of the available pathogenic
variant databases are biased toward well-studied diseases and
populations (e.g., European ancestry), which leads to skewed
predictions for other populations. The number of known
pathogenic variants is relatively small, which leads to challenges
in training highly accurate models, especially for rare and ultra-rare
variants. Consequently, these models tend to perform well with
common variants but struggle to generalize to unseen or rare
variants. Thus, these models often struggle with rare variants,
especially variants that have never been seen before in training
datasets because these models rely on known pathogenic or benign
labels to make predictions, and rare variants are less likely to have
established labels.

AlphaMissense could hold potential to influence clinical
decision-making in ways that go beyond ACMG classification
guidelines. One option is that the new ACMG guidelines
offer computational algorithms with more value than just
supporting evidence, allowing for their greater impact on
variant classification, particularly VUS. If AlphaMissense
predictions were to become more reliable, AlphaMissense
could integrate with broader medical guidelines and clinical
workflows in cancer oncology, pharmacogenomics, hereditary
cancer screening, and newborn screening. However, it is
notable that despite being deemed the current best-in-class
predictor, only modest improvements over other algorithms
were reported. The studies also indicate that combining
predictions from multiple tools, including SIFT4G and REVEL,
did not significantly enhance performance compared to using
AlphaMissense alone. This suggests that AlphaMissense offers
robust predictive capabilities on its own, reducing the necessity
for complex ensemble approaches in certain contexts (Nadya
et al., 2023). Our results also indicate that the classifications
essentially align and there is no significant impact on variant
classifications when different prediction tools are used.

Conclusion

AlphaMissense could hold potential to influence clinical
decision-making in ways that go beyond ACMG classification

guidelines. One option is that the new ACMG guidelines offer
computational algorithms more value than just supporting
evidence, allowing for their greater impact on variant
classification, particularly VUS. If AlphaMissene predictions
become more reliable in the future, AlphaMissense could
integrate with broader medical guidelines and clinical workflows
in cancer oncology, pharmacogenomics, hereditary cancer
screening, and newborn screening. Overall, the multifaceted
performance of AlphaMissense suggests its significant potential in
guiding diagnostic and therapeutic strategies, contributing valuable
insights to the field of precision medicine.
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