
Elucidating macrophage
scavenger receptor 1’s
mechanistic contribution as a
shared molecular mediator in
obesity and thyroid cancer
pathogenesis via bioinformatics
analysis

Fangjian Shang1, Zhe Xu2, Haobo Wang1, Bin Xu1, Ning Li1,
Jiakai Zhang3, Xuan Li4, Zhen Zhao5, Xi Zhang5, Bo Liu1* and
Zengren Zhao1*
1Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei,
China, 2Department of Urology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei,
China, 3Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei,
China, 4Department of Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang,
Hebei, China, 5Department of General Surgery, The Fourth Hospital of Hebei Medical University,
Shijiazhuang, Hebei, China

Introduction: Obesity is a disease characterized by the excessive accumulation
of fat. Concurrently, thyroid carcinoma (THCA) stands as the foremost endocrine
malignancy. Despite the observed escalation in concurrent prevalence of both
conditions, the underlying interconnections remain elusive. This indicates the
need to identify potential biomarkers to predict the pathways through which
obesity and THCA coexist.

Methods: The study employed a variety of methods, including differential gene
expression analysis, Weighted Gene Co-expression Network Analysis (WGCNA),
and gene enrichment analysis. It was also supplemented with
immunohistochemical data from the Human Protein Atlas (HPA), advanced
machine learning techniques, and related experiments such as qPCR, to
identify important pathways and key genes shared between obesity and THCA.

Results: Through differential gene expression analysis, WGCNA, and machine
learning methods, we identified three biomarkers (IL6R, GZMB, and MSR1)
associated with obesity. After validation analysis using THCA-related datasets
and biological experiments, we selected Macrophage Scavenger Receptor 1
(MSR1) as a key gene for THCA analysis. The final analysis revealed that MSR1
is closely related to the degree of immune cell infiltration in patients with obesity
and THCA, suggesting that this gene may be a potential intervention target for
both obesity and THCA.
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Discussion: Our research indicates that MSR1 may influence the occurrence and
development of obesity and THCA by regulating the infiltration level of immune
cells. This lays the foundation for future research on targeted therapies based on
their shared mechanisms.
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1 Introduction

Obesity is a significant public health issue characterized by
abnormal or excessive accumulation of fat (Pamplona et al.,
2022). This condition increases the risk of chronic diseases such
as type 2 diabetes, cardiovascular diseases, and certain cancers
(Biswas et al., 2017; Swinburn et al., 2011). Contemporary
research has expanded from the traditional focus on obesity’s
impact on metabolism and cardiovascular health to its complex
interactions with various types of cancer, especially thyroid
carcinoma (THCA) (Blériot et al., 2024; Schmid et al., 2015;
Yuan et al., 2023). THCA is one of the most common endocrine
malignancies, with its incidence continuously increasing worldwide
(Lee et al., 2022; Jermain et al., 2022). Evidence suggests that obesity
is a significant factor in the development and progression of THCA.
Specifically, a meta-analysis of 21 studies involving 12,199 cases of
THCA found that overweight individuals had a 25% increased risk
of developing THCA compared to individuals of normal weight,
while obese individuals had a 55% increased risk. This indicates a
clear dose-response relationship between body weight and the risk of
developing THCA, with the risk being substantially higher for those
classified as obese (Schmid et al., 2015).

A growing body of research has initiated investigations into the
mechanisms driving the obesity-THCA nexus. Studies have
demonstrated an upregulation of Triiodothyronine (T3)
expression in obese individuals, a pivotal hormone in the
proliferation of thyroid cells. The heightened presence of T3 may
be directly implicated in the oncogenesis of THCA among obese
populations (Nannipieri et al., 2009; Hard, 1998). Additionally, a
range of obesity-correlated biomarkers have been pinpointed as
potential genetic markers for THCA’s early detection, prognosis
assessment, or response to treatment. This includes the analysis of
cytokines with pro-inflammatory and anti-inflammatory properties,
such as TNF-α, IL-6, and IL-10. These cytokines are linked to obesity
and are believed to influence THCA’s progression or therapeutic
outcomes (Liu et al., 2012; Ozgen et al., 2009; Stassi et al., 2003;
Iyengar et al., 2017). The MAPK signaling pathway is also posited as
a critical conduit for thyroid carcinogenesis, where obesity-induced
chronic inflammation may facilitate an excessive generation of
reactive oxygen species (ROS), subsequently activating the MAPK
pathway and leading to THCA’s advancement and invasiveness
(Prete et al., 2020; Pérez-Torres et al., 2021; Nakamura et al., 2019).
Nonetheless, the intricacies of the mechanisms fostering the obesity-
THCA interrelation largely remain elusive (Ma et al., 2015).

In this study, we endeavor to uncover previously unidentified
links between two diseases using bioinformatics and machine
learning approaches. The advancements in bioinformatics have
paved the way for the identification of potential biomarkers and

their roles across various diseases (Akalin, 2006; Gu et al., 2019).
Moreover, machine learning techniques are employed to delve into
the pathological mechanisms and therapeutic targets at the genetic
level across different diseases (Kumar et al., 2021). In our research,
through an integrated analysis combining bioinformatics and
machine learning, we identify shared key genes and molecular
mechanisms between obesity and THCA, providing significant
insights into the potential pathways through which obesity may
facilitate the onset and invasion of THCA.

2 Methods and materials

2.1 Data collection and processings

Gene expression profiles were searched in the GEO database
using “obesity” and “THCA” as keywords (Barrett et al., 2013). The
inclusion criteria for the datasets were as follows: (1) gene expression
analyses must include case and control groups. (2) Raw or processed
data must be available for re-analysis. Three datasets were ultimately
downloaded (GSE44000, GSE151839, GSE65144). GSE44000
(obesity: 7 cases; control: 7 cases) was conducted on the
GPL6480 platform, while GSE151839 (obesity: 20 cases; control:
20 cases) and GSE65144 (THCA: 12 cases; control: 13 cases) were
both conducted on the GPL570 platform. GSE44000 was used as the
training set, and the external validation set was composed of
GSE151839 and GSE65144 (Supplementary Table S1).

For gene expression analysis, the dataset’s series matrix files were
log2 transformed, and then probes weremapped to their gene symbols
using the annotation files of the respective platforms. This produced a
gene matrix with gene column names and sample row names, which
was used for subsequent analyses. For differential gene expression
analysis, the “limma” package was used to perform linear modeling
and empirical Bayes moderation of gene-wise variance.

2.2 Identification of differentially
expressed genes

Differentially expressed genes (DEGs) between the obesity case
group and the control group were obtained using the “limma”
package in R software (version 4.2.2) (Leek et al., 2012). The
differential expression was assessed using moderated t-tests, with
cutoff criteria were set with an adjusted P-value of less than 0.05 and
an absolute log fold change (|logFC|) greater than 1. Volcano plots
were generated to highlight the differential expression of DEGs.
Heatmaps were produced using the pheatmap package in R, based
on the selected DEGs.
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2.3 Weighted gene co-expression network
analysis and selection of module genes

Using the “WGCNA” package, we conducted a Weighted Gene
Co-expression Network Analysis (WGCNA) to identify key
modules in obesity (GSE44000). WGCNA is a systems biology
approach for constructing modules of co-expressed genes and
exploring the correlation between genes and diseases (Alderden
et al., 2018). Initially, the median absolute deviation (MAD) of each
gene was determined, and the 50% of genes with the smallest MAD
were removed. Secondly, samples with missing values and outliers
were excluded using the Hclust function and the goodSamplesGenes
function. Thirdly, adjacency was calculated using a “soft”
thresholding power (β) derived from co-expression similarity,
which was then transformed into a Topological Overlap Matrix
(TOM) and its corresponding dissimilarity (1−TOM). Fourthly, a
dendrogram of the TOM matrix was created using hierarchical
clustering with average linkage, segregating similar gene expressions
into different modules, with a minimum gene group size of (n =
100). Fifthly, the correlation between each module and the
phenotype was assessed, where modules correlated with p<
0.05 were defined as key modules. Lastly, the network of
characteristic genes was visualized. The statistical correlation
between each module and the phenotype was evaluated using
Pearson’s correlation coefficient.

2.4 Functional enrichment analysis

To identify shared biological processes and signaling pathways
involved in the DEGs in obesity, we conducted Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis using the “clusterProfiler” package in R.
Additionally, we employed Gene Set Enrichment Analysis
(GSEA) to uncover potential molecular mechanisms of key
genes, utilizing the “clusterProfiler” package for analysis.
Fisher’s exact test was used for GO and KEGG enrichment
analyses, and enrichment analysis results with a statistical
significance of P < 0.05 were considered significant in statistics,
and were visualized using the Sangerbox platform (http://vip.
sangerbox.com/).

2.5 Construction of PPI network and
identification of hub genes

To observe the common functional features of DEGs, we
constructed a protein-protein interaction (PPI) network using
STRING (https://cn.string-db.org/), extracting PPI pairs with
interaction scores greater than 0.15. Subsequently, the network
was visualized using Cytoscape 3.9.1 (https://cytoscape.org). We
utilized the CytoHubba plugin within Cytoscape to identify hub
genes, employing eight ranking algorithms (Betweenness (BC),
Eigenvector (EC), Closeness (CC), Degree (DC), Local Average
Connectivity-based method (LAC), Network (NC), Subgraph
(SC), Information (IC)). The ranks of the hub genes were
determined by each algorithm, and a consensus ranking was
obtained through intersection using Venn diagrams.

2.6 Machine learning

To further identify key genes for diagnosing obesity, two
machine learning algorithms, Random Forest (RF) (Tai et al.,
2019; Zhang et al., 2024; Ishwaran and Kogalur, 2010), and
Support Vector Machine Recursive Feature Elimination (SVM-
RFE) algorithm (Huang et al., 2018), were employed using the
“randomForest” and “e1071″R packages (Austermann et al.,
2014). RF can predict continuous variables and provide
predictions with no apparent changes, offering the advantage of
no variable condition restrictions. SVM-RFE, on the other hand,
focuses on genes with high discriminatory power through fine
selection. Feature importance in the Random Forest model was
assessed through the Gini impurity index, whereas SVM-RFE used
recursive elimination based on accuracy improvement. The
intersection genes of RF and SVM-RFE are considered key genes
for diagnosing obesity. To address potential overfitting, especially in
the context of the small sample sizes used in this study, we will
implement cross-validation techniques in future analyses.
Additionally, we recognize the importance of utilizing more
extensive performance metrics, such as precision, recall, and
F1 score, to validate the robustness of our predictive models.
This approach will enhance the reliability of our findings and
provide a clearer understanding of the models’ performance. To
construct a gene interaction network of the key genes and their
neighboring genes, we utilized the GeneMania online database
(http://www.genemania.org).

2.7 Screening and validation of key genes
in THCA

To determine whether the key genes obtained from obesity are
involved in THCA, we downloaded clinical data of THCA from The
Cancer Genome Atlas database (https://tcga-data.nci.nih.gov/tcga/).
This dataset comprised a total of 501 cases of THCA patients and
63 control patients. We used the t-test to compare gene expression
levels between the case and control groups to assess for significant
differences. Additionally, we evaluated the clinical diagnostic value
of the key genes in THCA through Receiver Operating
Characteristic (ROC) curve analysis. The statistical significance of
the ROC curve was determined using the DeLong test. The area
under the ROC curve (AUC) and its 95% confidence interval were
calculated to quantify the diagnostic value of key genes for the
disease, with an AUC >0.5 considered ideal diagnostic value (Zhou
et al., 2021). Furthermore, we selected immunohistochemical images
of key genes in THCA and normal tissues from the Human Protein
Atlas (HPA) database (https://www.Proteinatlas.org/). These images
were used to detect differential expression of key genes at the
protein level.

2.8 Evaluation and correlation analysis of
infiltrating immune cells

We utilized the “ggstatsplot” and “ggplot2″ packages to analyze
the Spearman correlation between key genes and immune
infiltrating cells in obesity, presenting the results graphically.
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Subsequently, we employed TIMER, EPIC, IPS, MCP-counter,
xCELL, CIBERSORT, and QUANTISEQ algorithms to explore
the relationship between Macrophage Scavenger Receptor 1
(MSR1) expression and immune infiltration in THCA.
Spearman’s rank correlation coefficient was used to determine
the relationship between MSR1 expression and immune cell
infiltration. A statistical significance in immune cell infiltration
was considered when P < 0.05 (Le et al., 2021).

2.9 Real-time quantitative RT-PCR

This study involved a total of 50 adult inpatients diagnosed with
THCA. Tissue samples were collected from the cancerous regions of
these patients and designated as the THCA group, while adjacent
non-cancerous tissue samples were collected and designated as the
Control group. The research protocol strictly adhered to the
principles outlined in the Declaration of Helsinki, ensuring
ethical handling of human tissues. Furthermore, the study was
approved by the Clinical Research Ethics Committee of the First
Hospital of Hebei Medical University. Prior to their participation,
each patient provided informed consent by signing the
necessary forms.

To ensure that the sample sizes used in the qPCR validation were
sufficient to detect meaningful differences, we conducted a power
analysis. This analysis was performed to determine the minimum
number of samples required to achieve adequate statistical power
(typically set at 0.8). The results of the power analysis indicated that
our sample size of 50 patients was sufficient to detect significant
differences in gene expression between the THCA and
Control groups.

To extract total RNA from human liver tissue, the RNA isolation
kit (RNAiso, Takara, San Jose, CA, United States) was utilized. In
this experiment, the isolated RNA was dissolved in 20 mL of DEPC-
treated water. Subsequently, reverse transcription was performed
using the reverse transcription reagent kit (mL RT reagent kit with
gDNA Eraser, Takara) and a thermal cycler (ἧ, Eppendorf,
Hamburg, Germany). The resulting cDNA was used for qPCR
detection, and amplification curves were generated using SYBR
PremiexExTaqII from Takara. Statistical comparison of gene
expression between THCA and Control groups was performed
using a paired t-test, with P < 0.05 considered statistically
significant. This experimental validation ensured the accuracy
and reliability of the identified gene expression levels, reinforcing
the robustness of our results. The primers used for quantitative PCR
are as follows:

FIGURE 1
Identification of DEGs. (A) Heatmap of DEGs in GSE44000. (B) Volcano plot of DEGs in GSE44000.
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GAPDH forward - AATGGACAACTGGTCGTGGAC;
GAPDH reverse - CCCTCCAGGGGATCTGTTTG;
MSR1 forward - GTTAGGGGTTTGGACTGC;
MSR1 reverse - GATGTGGCCACCAAATAC.

2.10 Statistical analysis

All statistical analyses were conducted using the R statistical
software. To assess whether the data complied with a normal

distribution, the Shapiro-Wilk test was employed. Differential
analyses of gene expression, immune cell infiltration, and other
parameters were performed using appropriate statistical tests based
on the normality assessment (such as t-tests for comparing two
groups, analysis of variance (ANOVA) for comparing multiple
groups, and chi-square tests for categorical variables). The
significance threshold was set at a P-value less than 0.05.
Correlation coefficients were computed to determine the
relationship between biomarkers and clinical features, ensuring
the integrity and validity of our results.

FIGURE 2
Construction of WGCNA Co-expression Network. (A), (B) Soft thresholding power (β = 7) and scale-free topology fit index (R2). (C) Co-linearity
heatmap of module eigengenes. Red indicates high correlation, blue indicates the opposite. (D) Display of original and merged modules under the
clustering tree. (E) Heatmap of module-trait correlations. Red represents positive correlation, blue represents negative correlation. (F–I) MM vs. GS
scatter plot of the brown module, pink module, light green module and brown2 module.
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3 Results

3.1 Identification of DEGs in obesity

The flow chart of this study is shown in Supplementary Figure
S1. In GSE44000, a total of 2,131 DEGs were identified, including
894 upregulated genes and 1,237 downregulated genes. These
DEGs were visualized in both heatmaps and volcano plots
(Figures 1A, B). In summary, a comprehensive identification of
DEGs in obesity has been achieved, providing a foundation for
further analyses.

3.2 Identifying key modules in obesity

Using WGCNA analysis, a soft threshold of 14 was set in
GSE44000 when R̂2 = 0.87, ensuring biologically meaningful
scale-free networks (Figures 2A, B). Subsequently, 39 modules
were detected by merging strongly correlated modules with a
clustering height cut-off of 0.25. The modified and merged
modules were ultimately displayed under the clustering tree
(Figure 2D). The correlation between modules was examined,
revealing no significant associations between them (Figure 2C).
Investigating the relationship between modules and clinical

FIGURE 3
Enrichment Analysis of Immune-RelatedOverlappingGenes. (A) Venn diagram showing immune genes from the ImmPort database overlappedwith
key module genes and DEGs. (B) GO analysis. (C) KEGG analysis.
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symptoms, the brown module showed a positive correlation with
obesity (r = 0.66, p = 0.01) and a negative correlation with normal
status (r = −0.66, p = 0.01). Similarly, the pink module exhibited a
positive correlation with obesity (r = 0.72, p = 0.0036) and a negative
correlation with normal status (r = −0.72, p = 0.0036), while the light
green module showed a negative correlation with obesity (r = −0.67,
p = 0.009) and a positive correlation with normal status (r = 0.67, p =
0.009). Additionally, the brown2 module displayed a negative
correlation with obesity (r = −0.77, p = 0.0014) and a positive
correlation with normal status (r = 0.77, p = 0.0014) (Figure 2E).
Finally, clinically significant modules were identified, indicating a
strong correlation with obesity in the MM versus GS scatter plots
(Figures 2F–I). Consequently, all genes within these four modules
were further examined. In conclusion, key modules related to
obesity have been identified, highlighting potential biomarkers
for further investigation.

3.3 Enrichment analysis of immune-related
overlapping genes in obesity

To acquire immune-related genes associated with obesity, we
extracted 1793 immune-related genes from the ImmPort

database. Utilizing a Venn diagram, we overlapped these genes
with the DEGs obtained from the GEO database and the key
module genes identified from WGCNA, revealing a total of
91 overlapping genes related to immunity (Figure 3A).
Subsequently, functional analysis was conducted to understand
the biological functions of these overlapping genes. GO
enrichment analysis indicated that biological processes (BP)
were primarily enriched in the regulation of stimulus
response, response to chemicals, and immune system
processes. Molecular functions (MF) were associated with
signal receptor binding, signal receptor activity, and molecular
transducer activity. Cellular components (CC) enrichment was
related to extracellular region, extracellular region part, and
vesicle (Figure 3B; Supplementary Table S2). In the KEGG
analysis, pathways such as cytokine-cytokine receptor
interaction, chemokine signaling pathway, interaction of viral
proteins with cytokines and cytokine receptors, natural killer cell
mediated cytotoxicity, neuroactive ligand-receptor interaction,
tuberculosis, human cytomegalovirus infection, T cell receptor
signaling pathway, and Rap1 signaling pathway were found to be
relevant (Figure 3C; Supplementary Table S3). Thus, this analysis
elucidates the significant immune-related pathways and
processes involved in obesity.

FIGURE 4
PPI network of overlapping DEGs.
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3.4 Identifying key genes in obesity through
PPI network and machine learning

To analyze the PPI network of overlapping genes, we utilized
STRING, as shown in Figure 4. The PPI network comprised
91 nodes and 423 edges. Subsequently, we further refined the
understanding of the network using Cytoscape, highlighting
central genes as key nodes (Figure 5A). The cytoHubba
plugin in Cytoscape was employed to identify hub genes,
utilizing eight ranking algorithms (BC, EC, CC, DC, LAC,
NC, SC, IC), selecting the top 50 genes from each method,
and determining 39 common hub genes via a petal plot

(Figure 5B; Supplementary Table S4). Following this, to
further identify key genes from the hub genes, we employed
two machine learning algorithms: RF and SVM-RFE. RF can
predict continuous variables and provide predictions with no
apparent variance, offering the advantage of no variable
condition limitations (Figure 5C). SVM-RFE, on the other
hand, focuses on fine selection, targeting genes with high
discriminative power (Figure 5D). Through a Venn diagram,
we found three key genes from the intersection of these two
methods: GZMB, MSR1, and IL6R (Figure 5E). These findings
highlight the identification of crucial genes involved in the
pathophysiology of obesity.

FIGURE 5
Identification of Hub Genes and Key Genes. (A)Detailed view of network nodes in Cytoscape. (B)Hub genes identified by eight centrality algorithms
in Cytoscape. (C) Biomarker selection based on the RF algorithm. (D) Biomarker selection based on SVM-RFE. (E) Venn diagram showing the intersection
of key genes obtained through both algorithms.
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3.5 Expression and Validation of Key Genes
in obesity

Initially, in the training dataset GSE44000, we observed
significant upregulation of GZMB, MSR1, and IL6R in adipose
tissues of the obesity group (Figure 6A). The established ROC
curve results also indicate high diagnostic value of GZMB (AUC:
0.857), MSR1 (AUC: 0.959), and IL6R (AUC: 0.857) for obesity
(Figure 6C). Subsequently, we selected an additional dataset,

GSE151839, associated with obesity as the validation group. In
the validation group, GZMB, MSR1, and IL6R were similarly
significantly upregulated in adipose tissues of the obesity group
(Figure 6B). The ROC curve results also demonstrate high diagnostic
value of GZMB (AUC: 0.790), MSR1 (AUC: 0.959), and IL6R (AUC:
0.857) for obesity (Figure 6D). This confirms that these three key
genes are associated with obesity and should be further examined in
subsequent analyses. Overall, these key genes are validated as reliable
biomarkers for obesity diagnosis and merit further exploration.

FIGURE 6
Expression and Validation of Key Genes. (A) Expression of GZMB, MSR1 and IL6R in the training group GSE44000. (B) Expression of GZMB, MSR1 and
IL6R in the validation group GSE151839. (C) ROC curve of GZMB, MSR1 and IL6R in the training group GSE44000. (D) ROC curve of GZMB, MSR1 and IL6R
in the validation group GSE151839.
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3.6 Analysis of immune infiltration and GSEA
analysis of key genes in obesity

Due to the recognized role of immune-inflammatory responses
as the foremost regulatory factors in obesity, the CIBERSORT
method was employed to elucidate the immune modulation in
obesity. The heatmap reveals that GZMB upregulates the
expression levels of monocytes, dendritic cells, and eosinophils in

obesity, MSR1 upregulates the expression levels of macrophages and
natural killer cells in obesity, and IL6R upregulates the expression
levels of dendritic cells in obesity (Supplementary Figure S2A).
Through GSEA analysis, we found that in obesity, GZMB is
primarily involved in antigen processing and presentation,
natural killer cell-mediated cytotoxicity, cell adhesion molecules
(CAMs), leukocyte transendothelial migration, cytokine-cytokine
receptor interaction, chemokine signaling pathway, JAK-STAT

FIGURE 7
Functional analysis of three key genes and twenty interacting genes conducted through the GeneMania database.
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signaling pathway, and FCεRI signaling pathway (Supplementary
Figure S2B). MSR1 is primarily involved in natural killer cell-
mediated cytotoxicity, focal adhesion, and FCεRI signaling
pathway (Supplementary Figure S2C). IL6R is primarily involved
in lysosome, leukocyte transendothelial migration, B cell receptor
signaling pathway, and FCγR-mediated phagocytosis
(Supplementary Figure S2D). In summary, the analysis
underscores the immune-related pathways and gene functions
that may contribute to obesity pathogenesis.

3.7 Analysis of immune infiltration and GSEA
analysis of key genes in obesity

To further investigate the functions of key genes, three key genes
and twenty interacting genes underwent functional analysis, and a
co-expression network was constructed using the GeneMania
database. The three key genes are represented in the inner circle,
while the outer circle represents genes connected to the key genes.
Figure 7 indicates that these genes are mainly enriched in cellular
responses to interleukin-6, acute inflammatory responses,
leukocyte-mediated cytotoxicity, regulation of chemokine
production, receptor signaling through the JAK-STAT pathway,
and smooth muscle cell proliferation. Overall, these findings suggest

that MSR1 may serve as a significant biomarker linking obesity and
thyroid cancer.

3.8 Key gene screening and validation
in THCA

As immune response is crucial not only in obesity but also in
THCA, we examined whether there is any connection between
these two diseases using the key genes. In the TCGA dataset,
GZMB did not show significant differential expression between
normal and thyroid tumor tissues. In contrast, MSR1 was
significantly upregulated in THCA. IL6R exhibited marked
downregulation in tumor tissues (Supplementary Figure S3A).
Which was confirmed by paired analysis (Supplementary Figure
S3B). To validate the reliability of the key genes, we selected
another GEO dataset, GSE65144, related to THCA as the
validation group. In the validation dataset, we observed
significant upregulation of MSR1 in THCA tissues, while
GZMB and IL6R did not show significant differential
expression (Supplementary Figure S3C). ROC curve results also
demonstrated that MSR1 (AUC = 0.923) is a perfect diagnostic
indicator with extremely high diagnostic accuracy for THCA,
while GZMB (AUC = 0.679) and IL6R (AUC = 0.551) were

FIGURE 8
Immunohistochemical Staining and Enrichment Analysis of MSR1. (A) Immunohistochemical staining of MSR1 in normal and THCA tissues according
to the HPA database. (B) A quantitative analysis of MSR1 mRNA transcription levels was conducted in THCA tissue samples (n = 50) and adjacent non-
cancerous tissues (n = 50). (C) Major enrichment pathways of MSR1 in THCA.
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particularly suboptimal, with diagnostic capabilities close to
random levels for THCA (Supplementary Figure S3D). This
confirms MSR1 as an important biomarker regulating both
obesity and THCA. These findings reinforce the role of
MSR1 in tumor progression and underscore its potential as a
biomarker for thyroid cancer.

3.9 MSR1 Immunohistochemical Staining
and Enrichment Analysis in THCA

To validate the selected key gene, we conducted
immunohistochemical analysis of MSR1 in THCA tissues using
the HPA database. The results revealed a significant increase in

FIGURE 9
Immunoinfiltration Analysis of MSR1 in THCA. (A) Correlation of MSR1 with immune cells in THCA and normal samples. (B) Spearman correlation
between MSR1 expression and StromalScore. (C) Enrichment scores of immune cells and pathways between high and low MSR1 expression in THCA.
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MSR1 expression in THCA tissues compared to the control group
(Figure 8A). Subsequently, we employed qPCR to further
quantitatively analyze the mRNA levels of MSR1 in human
THCA tissues. Consistent with our previous findings,
MSR1 expression was significantly upregulated in the THCA
group compared to the adjacent non-cancerous control group
(Figure 8B). Finally, through GSEA, we found that MSR1 was
primarily enriched in complement and coagulation cascades,
FCγR-mediated phagocytosis, the p53 signaling pathway, gap
junctions, and pancreatic cancer in THCA (Figure 8C). Overall,
these findings indicate that MSR1 is significantly upregulated in
THCA tissues and is involved in critical pathways related to tumor
progression and immune response.

3.10 MSR1 Immunoinfiltration Analysis
in THCA

To gain further insights into the role of MSR1 in tumor
immune responses, we employed the CIBERSORT method to
elucidate the immune modulation of MSR1 in THCA. The
results demonstrated that MSR1 was significantly upregulated in
THCA, particularly in macrophages, dendritic cells, and T cell
subtypes (Figure 9A). Moreover, the positive correlation between
MSR1 levels and StromalScore further supported the potential role
of MSR1 in the formation and maintenance of the tumor
microenvironment, particularly with components associated
with the tumor stroma (Figure 9B). Furthermore, the
enrichment scores of immune cell infiltration indicated that in
the high MSR1 expression group compared to the low
MSR1 expression group, most immune cell types showed higher
enrichment, particularly in aDCs, CD8 T cells, cytotoxic cells, and
eosinophils, suggesting a correlation between high
MSR1 expression and the abundance of these immune cells
(Figure 9C). Lastly, to further understand the role of MSR1 in
tumor immune responses, we utilized seven algorithms including
TIMER, EPIC, IPS, MCP-counter, xCELL, CIBERSORT, and
QUANTISEQ to assess the relationship between
MSR1 expression and the infiltration of immune cells at
different levels. The TIMER algorithm revealed significant
upregulation of B cells, CD4+ T cells, neutrophils, and myeloid
dendritic cells by MSR1 (Supplementary Figure S4A). The EPIC
algorithm showed significant upregulation of neutrophils and
macrophages by MSR1 (Supplementary Figure S4B). The IPS
algorithm demonstrated significant upregulation of endothelial
cells and stem cells by MSR1 (Supplementary Figure S4C). The
MCP-counter algorithm indicated significant upregulation of
T cells, B cells, and NK cells by MSR1 (Supplementary Figure
S4D). The xCELL algorithm indicated significant upregulation of
CD8+ T cells and cytotoxic T cells by MSR1, among others
(Supplementary Figure S4E). The CIBERSORT algorithm
demonstrated upregulation of various immune cells by MSR1
(Supplementary Figure S4F). Lastly, the QUANTISEQ algorithm
showed significant upregulation of B cells, M1, and
M2 macrophages by MSR1 (Supplementary Figure S4G). These
analyses highlight the critical role of MSR1 in modulating immune
cell infiltration in THCA, emphasizing its potential as a therapeutic
target for enhancing anti-tumor immunity.

4 Discussion

Obesity, as a major global public health concern, is increasingly
being linked to the pathogenesis of various cancers, including THCA
(Huang et al., 2024; Yu et al., 2024). The simultaneous rise in the
incidence rates of obesity and THCA suggests a potential connection
between the two (Masone et al., 2021). Emerging evidence indicates
that obesity not only predisposes individuals to THCA but also
influences its progression, thereby highlighting the need for a deeper
investigation into this relationship. In this study, we employed
bioinformatics approaches to explore the molecular associations
between obesity and THCA. Through in-depth analysis of
GSE44000, we identified 2,131 DEGs. WGCNA analysis revealed
key module genes closely associated with obesity. Following
identification of overlapping genes between DEGs, module genes,
and those in the Immport database using Venn diagrams, we further
identified hub genes in obesity through PPI network analysis, and
precisely identified GZMB, MSR1, and IL6R as biomarkers in
obesity using machine learning methods. Validation of these
three key genes in the THCA-related dataset revealed that
MSR1 is the only gene exhibiting significantly different
expression in THCA tissues. Furthermore, our qPCR results also
showed that the transcription level of MSR1 in THCA tumor tissues
was significantly increased compared to adjacent normal tissues.
These findings are consistent with our previous results, indicating
that MSR1 may play an important role in the development and
progression of THCA. Subsequent immune infiltration analysis
revealed that MSR1 can modulate specific types of immune cells
to influence the immune microenvironment in obesity and THCA,
thereby impacting the development of both diseases. Thus, we
hypothesize that MSR1 is a crucial factor underlying the link
between obesity and THCA, providing novel targets for future
therapeutic strategies for these two diseases. In addition, the
other significant genes identified in our analysis, particularly
IL6R and GZMB, also warrant further exploration. Their roles in
the obesity-THCA axis could provide additional insights into the
molecular mechanisms at play and enhance the overall
understanding of disease pathology. Future studies should aim to
investigate the functional roles of IL6R and GZMB, as this could
reveal their contributions to obesity and THCA and potentially
identify new therapeutic targets.

The MSR1 protein, encoded by the MSR1 gene, is a
transmembrane protein primarily expressed by macrophages.
Initially discovered on chromosome 19, it was later found to be
present on all chromosomes except the mitochondrial genome (Wei
et al., 2024). Recent studies have shown significant inhibition of
ovarian and pancreatic cancer development in mice lacking MSR1
(Neyen et al., 2013). This suggests that MSR1 may play a role in
macrophage-induced tumor activation and act as a molecular switch
regulating gene expression (Ji et al., 2022). In this study, we found
that MSR1 is upregulated in obesity, associated with inflammation-
related immune cells such as macrophages and natural killer cells,
while in THCA, it enhances the activity of macrophages, dendritic
cells, and T cell subsets. This finding highlights the critical role of
MSR1 in regulating disease-specific immune cell infiltration.
Furthermore, GSEA analysis revealed that MSR1 affects key
immune regulatory pathways in obesity and THCA, such as
natural killer cell-mediated cytotoxicity, cytokine-cytokine
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receptor interaction, and the JAK-STAT signaling pathway, further
confirming the multifunctionality of MSR1 in disease progression
and its importance as a potential therapeutic target. Given these
insights, the role of MSR1 in modulating the immune response
presents a significant opportunity for developing targeted therapies.
For instance, pharmacological agents that enhance or inhibit
MSR1 activity could be explored as potential treatments for
obesity-related THCA. Additionally, understanding the
mechanisms by which MSR1 influences immune cell behavior
could inform the design of immunotherapies that improve
clinical outcomes for patients with these conditions. Therefore,
MSR1’s role as a therapeutic target not only has implications for
understanding disease mechanisms but also provides a pathway for
clinical applications aimed at obesity and THCA treatment.

In this study, we integrated various advanced techniques,
including WGCNA, PPI network analysis, and machine learning
algorithms, to identify the key gene MSR1 and assess its diagnostic
value for obesity and THCA patients, ensuring the depth and breadth
of the research findings. Additionally, we validated our findings
through multiple independent datasets, enhancing the credibility
and applicability of the discoveries. However, a major limitation of
this study is the lack of laboratory validation, particularly regarding
direct evidence of the specific biological functions and mechanisms of
action of MSR1 in disease progression. Therefore, to enhance the
translational potential of this research, it will be essential to strengthen
our understanding of the functional role of MSR1 through
experimental validation and to explore its potential applications in
the treatment of obesity and THCA.

5 Conclusions

This study, through the integration of bioinformatics analysis and
machine learning, has discovered thatMSR1 can influence the occurrence
and development of obesity and THCA by modulating the infiltration of
immune cells. This provides new diagnostic and therapeutic strategies for
obesity-related THCA. However, it is important to note that this study
has certain limitations and shortcomings, primarily stemming from the
lack of a more profound investigation into the mechanisms underlying
MSR1’s role in the interplay between obesity and THCA. Despite these
limitations, our study establishes a robust theoretical framework that
paves the way for future research to further elucidate the relationship
between obesity and THCA.
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