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Introduction: Gene regulatory networks (GRNs) reveal the intricate interactions
between and among genes, and understanding these interactions is essential for
revealing the molecular mechanisms of cancer. However, existing algorithms for
constructing GRNs may confuse regulatory relationships and complicate the
determination of network directionality.

Methods: We propose a new method to construct GRNs based on causal
strength and ensemble regression (CSER) to overcome these issues. CSER
uses conditional mutual inclusive information to quantify the causal
associations between genes, eliminating indirect regulation and marginal
genes. It considers linear and nonlinear features and uses ensemble
regression to infer the direction and interaction (activation or regression) from
regulatory to target genes.

Results: Compared to traditional algorithms, CSER can construct directed
networks and infer the type of regulation, thus demonstrating higher accuracy
on simulated datasets. Here, using real gene expression data, we applied CSER to
construct a colorectal cancer GRN and successfully identified several key
regulatory genes closely related to colorectal cancer (CRC), including
ADAMDEC1, CLDN8, and GNA11.

Discussion: Importantly, by integrating immune cell and microbial data, we
revealed the complex interactions between the CRC gene regulatory network
and the tumor microenvironment, providing additional new biomarkers and
therapeutic targets for the early diagnosis and prognosis of CRC
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1 Introduction

Genes participate in cellular life activities through various pathways, including the
encoding of proteins. For instance, genes can promote cell proliferation or inhibit apoptosis,
thereby increasing the number of tumor cells (Dandoti, 2021). Consequently, genes have
considerable impacts on the occurrence and development of cancer. It is essential to identify
cancer-related genes because they typically regulate other genes and, in turn, affect cellular
functions and behaviors, thereby stimulating the progression and deterioration of tumors
(Douglas, 2022; Hanahan and Weinberg, 2011). Therefore, the study of genes and gene
regulation has become an important topic in bioinformatics, and constructing GRNs has
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become an essential task. GRNs interconnect genes with different
functions according to certain rules, transforming the relationships
among genes into a highly complex network structure (Kaler et al.,
2009). Gene regulation encompasses a spectrum of mechanisms
involving transcription factors and other regulatory proteins
encoded by regulatory genes that can either activate or repress
gene transcription, thus controlling the expression levels of target
genes and achieving intergenic regulation (Badia-I-Mompel et al.,
2023). Key regulatory genes play a particularly significant role in
GRN stability. The expression of key regulatory genes can affect
cancer progression. For example, Zhang et al. (2023) analyzed the
control hubs in a cancer gene regulatory network. By integrating
experimental validation, they demonstrated that these genes are
involved in multiple regulatory pathways and are associated with the
proliferation of cancer cells (Zhang et al., 2023). Importantly, GRNs
can help identify key regulatory genes related to cancer. The
representative algorithms used to construct GRNs include
algorithms based on correlation, such as weighted gene
coexpression network analysis (WGCNA) (Zhang and Horvath,
2005), and parsimonious gene correlation network analysis (Care
et al., 2019). Compared with other algorithms, algorithms based on
correlation have certain advantages for constructing GRNs because
of their reduced computational complexity. However, simple
correlation could confuse direct and indirect regulatory
relationships, leading to lower GRN accuracy. Additionally,
algorithms based on conditional mutual information, such as
conditional mutual inclusive information (CMI2) (Zhang et al.,
2015), can distinguish between direct and indirect regulation but
cannot determine the direction and type of regulation. Regression-
based algorithms, such as TIGRESS (Adabor and Acquaah-Mensah,
2019), GENIE3 (Huynh-Thu et al., 2010), and PoLoBag (Ghosh
et al., 2021), can infer the direction and type of regulation; however,
their speed and accuracy may be limited by the sample features in
the dataset. Furthermore, dynamic network inference algorithms
based on temporal progression, such as PROB (Sun et al., 2021) and
DryNetMC (Zhang et al., 2019), provide insights into the temporal
dynamics of gene regulation.

To overcome the limitation noted above, we introduced a
method of constructing GRNs based on causal strength and
ensemble regression (CSER). WGCNA based on correlation has
less complexity; thus, we initially employed it to efficiently select
gene modules closely related to cancer based on their coexpression
relationships. Since most GRNs are sparse (Kim et al., 2023), not all
genes have regulatory relationships with each other. Therefore, we
used another algorithm based on conditional mutual inclusive
information focused on causal strength. This algorithm can
quantify the correlation between genes, thereby removing indirect
regulation and marginal genes, ensuring a stronger correlation
between genes and improving network model accuracy. Finally,
an ensemble regression algorithmwas used to infer the direction and
type of gene regulation, considering both linear and nonlinear
features, to deduce the regulatory type—inhibition or
activation—and construct the final directed GRN.

Genes can regulate immune cell activity and affect immune
responses, and abnormal gene expression can affect cellular
function, including immune cells. For example, mutant p53
affects innate immunity and promotes cancer (Yang et al.,
2014), whereas high SOX17 expression in CRC reduces CD8+

T-cell infiltration, allowing cancer cells to evade immune
surveillance (Zamarron and Chen, 2011). Immune cells
infiltrate the tumor microenvironment, directly contacting
tumor cells to promote (through tumor-promoting immune
subsets, i.e., Tregs) or inhibit tumor cells growth, crucially
influencing tumor occurrence and development (Shaul and
Fridlender, 2017; Edin et al., 2019). Li et al. (2017) analyzed
the types of immune cells in early-stage nonsquamous non-small
cell lung cancer tissue in association with patient survival data
and found higher neutrophil infiltration in high-risk groups, thus
serving as an immune prognostic signature. Xiong et al. (2018)
analyzed the proportion of tumor-infiltrating immune cells in
colon cancer and found significant differences in immune
infiltration characteristics between colorectal cancer tissue and
adjacent tissue. These studies indicate subtle differences in the
composition of immune cells infiltrating the normal
microenvironment and the colorectal cancer (CRC)
microenvironment, which may, in turn, be important
determinants for cancer recognition and therapeutic response.
Therefore, we considered both gene regulation and immune cell
deployment by combining key regulatory genes and differential
immune cell ratios as features and applying a support vector
machine (SVM) algorithm to classify samples, thereby improving
the accuracy of our cancer recognition classifier.

With the continuous improvement in the depth of our
understanding of the tumor microenvironment (TME),
increasing evidence has indicated the existence of intratumor
microbiomes in mucosal-site cancers, such as lung, colorectal,
and esophageal cancers (Azevedo et al., 2020; Wong-Rolle et al.,
2021; Cogdill et al., 2018). In addition, since fungi and other
microbes in tumor tissues may play complex roles in cancer
development, microbiota is a potentially important component
of TME (Xie et al., 2022). Triner et al. (2019) reported that
microbes in tumors induce the production of IL-17, promoting
B-cell entry and tumor growth, while neutrophils can limit the
tumor microbiome. In several types of cancers, especially
gastrointestinal cancers, the microbiome is an important cause
of DNA damage. DNA damage can lead to an increase in genetic
mutations and ultimately may lead to tumors. Thus, genes,
immune cells, and microbes all interact, affecting tumor
development, which we have considered in our integrated
GRN approach. Compared with normal colon tissue, CRC
tissue is rich in Fusobacterium, which is negatively correlated
with recurrence-free survival, indicating poor prognosis (Kostic
et al., 2012; Yu et al., 2017). Thus, microbe-based detection may
serve as a noninvasive diagnostic or prognostic tool for colorectal
cancer screening.

Considering the aforementioned findings, we constructed a risk
model based on key genes in the CRC GRN, combining gene
expression and survival data to calculate a risk score that closely
aligns with colorectal cancer patient prognosis. Then, based on the
risk score, tumor samples were divided into high-risk and low-risk
groups for differential analysis to obtain differential microbes that
yielded microbial characteristics related to prognosis when
combined with the microbial interaction network. The overall
analysis process of this study is shown in Figure 1. CRC-related
biomarkers from gene expression, the immune cell ratio, and
microbial abundance were determined.
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2 Materials and methods

2.1 Datasets

We used gene expression profile data from The Cancer Genome
Atlas (TCGA), including 44 normal and 571 CRC samples.
Preprocessing steps were employed to ensure the uniqueness of
the gene expression levels. After calculating the mean values of
duplicated gene expression and removing low-expression mRNAs, a
total of 14,325 gene expression profiles were obtained from
615 samples. Clinical data for 548 colorectal cancer patients were
also downloaded, including patient IDs, survival times, and survival
statuses. By merging clinical data with gene expression profiles,
473 colorectal cancer samples were finally obtained with clinical and
gene expression profile data.

Three simulated datasets were used to evaluate the performance
of CSER, all possessing standard networks. The simulated datasets
were downloaded from the DREAM4 challenge, which provides
gene expression data for yeast and the corresponding standard
networks (Schaffter et al., 2011). Supplementary Table 1 shows
detailed information on the datasets.

Microbial relative abundance data, including the relative
abundance of 2,852 microbes in 153 colorectal cancer samples,
were obtained from Ai et al. (2023). To ensure the validity of
subsequent statistical analyses, we selected microbes present in at
least 80% of the samples and ensured that each sample contained at
least 80% of the microbial abundance data. After screening, the

relative abundance of 15 microbes in 143 CRC samples
was obtained.

2.2 Gene regulatory network
construction algorithm

CSER quantifies causal gene relationships, alleviates the
overestimation of mutual information and the underestimation of
conditional mutual information, and improves the accuracy of the
regulatory network. First, WGCNA clustered all genes into modules
to identify cancer-related hub genes. Subsequently, the causal
strength between genes was calculated using conditional mutual
inclusive information, and independent genes, i.e., genes with no
relationship, were removed to form the initial network. Finally, a
GRN was constructed using the remaining genes based on an
ensemble regression algorithm, resulting in a GRN with both
directionality and regulatory type, reflecting activation and
repression effects on the target gene.

2.2.1 Weighted gene coexpression
network analysis

WGCNA (Zhang and Horvath, 2005) is commonly used to
study the correlation between phenotypic traits and genes because it
can cluster genes with similar expression patterns into modules.
Through WGCNA, it is possible to identify gene modules with
similar expression within a large number of genes and determine the

FIGURE 1
Schematic of this study. Using CSER to construct the gene regulatory network and identify key regulatory genes of colorectal cancer. Combining
differential immune cell ratios to achieve diagnostic classification of patient samples. Performing prognostic risk assessment and microbial signature
analysis (By Figdraw).
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association between the modules and the phenotype of interest.
WGCNA assumes that gene networks follow a scale-free
distribution, and most real biological networks are scale-free
networks (Barabasi and Bonabeau, 2003). Specifically, in a scale-
free network, a small number of nodes exhibit a degree much higher
than the average degree. These nodes are referred to as hub nodes
and are connected to many other nodes; thus, they play a dominant
role in scale-free networks.

To establish a weighted gene coexpression network involves
studying the mutual relationship between two genes. The similarity
sij between gene i and gene j is represented in Equation 1:

sij � cor xi, xj( )∣∣∣∣∣ ∣∣∣∣∣ (1)

where the gene expression matrix G can be transformed into a
similarity matrix S � sij. WGCNA employs a soft threshold
approach to calculate the correlation between genes. The
correlation between any two genes i and gene j is measured by
the adjacency coefficient aij, which is computed as shown in
Equation 2:

aij � sij
∣∣∣∣ ∣∣∣∣β (2)

where the exponent β represents the soft threshold. Applying the
power function to gene correlation coefficients minimally affects
strong correlations, whereas weaker correlations exhibit a significant
decrease. Raising the correlation coefficients to the power of β

weakens already weak correlations, transforming the gene
connectivity network into a scale-free network. After eliminating
weak correlations and retaining those with biological significance,
hierarchical clustering is conducted based on the dissimilarity
between genes to obtain gene modules, which are subsequently
screened. Ultimately, hub genes are identified based on gene and
module significance.

2.2.2 Quantifying gene associations based on
causal strength

CMI2 (Zhang et al., 2015) is an effective unbiased measurement
method based on causal strength (Janzing et al., 2013) that can
quantify causal relationships between genes. In other words, in a
directed acyclic graph, if gene B is directly regulated by gene A or
indirectly regulated through gene C, the association between A and
B is defined in Equation 3:

CMI2 A, B|C( ) � DKL P‖PA→B( ) +DKL P‖PB→A( )( )/2 (3)
where P � P(A, B, C) is the joint probability distribution of A, B,
and C, PA→B � PA→B(A, B, C) is the intervention probability
distribution after removing edge A → B, and similarly, PB→A �
PB→A(A, B, C).DKL(P‖PA→B) is the Kullback‒Leibler (K–L)
divergence from P to PA→B; similarly, for DKL(P‖PB→A).
CMI2 has an order |C|, representing the number of conditional
genes C, and mutual information is the zero-order CMI2.

The probability PA→B is defined in Equation 4:

PA→B a, b, c( ) � P a, c( )∑
a

P b|c, a( )P a( ) (4)

where P(b|c, a) is the conditional probability. According to the
definition of K-L divergence. The definition of DKL(P‖PA→B) is
given in Equation 5:

DKL P‖PA→B( ) � ∑
a,b,c

P a, b, c( ) ln P a, b, c( )
P a, c( )∑aP b|c, a( )P a( ) (5)

CMI2 can be decomposed as shown in Equation 6:

CMI2 A;B|C( ) � CMI A;B|C( ) + 1
2
DKL(P B C)‖PA→B B|C( )|(

+1
2
DKL(P(A|C)‖PB→A A|C( ) (6)

where CMI(A;B|C) is conditional mutual information. If the
second and third terms are 0, meaning that A and B are
independent of C, then CMI2 is equal to CMI. Since the K–L
divergence is nonnegative, the CMI2 between A and B given C is
not less than the conditional mutual information between A and
B given C.

Assume a gene expression matrix G ∈ Rn×m, where n represents
the number of genes andm represents the number of samples. First,
a complete connected graph is generated based on the number of
genes. Second, for adjacent gene pairs i and j, calculate their mutual
information. If gene pair i and j have low mutual information,
remove the edge between genes i and j. Finally, for adjacent gene
pairs i and, calculate the first-order CMI2 given another neighboring
gene z. If the gene pair i and j have a low CMI2, remove the edge
between them. This method can eliminate indirect regulation
between genes while determining causal relationships.

Since most GRNs are sparse, some genes in the network may not
have regulatory relationships with all other genes, and some
regulatory relationships may be weak. Therefore, in this study,
genes were selected by calculating CMI2 and removing
independent genes from the network. Subsequently, the
remaining genes were used to construct a regulatory network
based on an ensemble regression algorithm.

2.2.3 Regulatory inference based on ensemble
regression algorithm

PoloBag (Ghosh et al., 2021) is an ensemble regression algorithm
that divides the regulatory network construction problem into
separate regression tasks for each target gene. Each regression
task is performed using an ensemble of Lasso models within the
bagging framework (Wang et al., 2011) trained on bootstrap
samples. The bootstrap sample includes polynomial features,
encompassing both linear features, i.e., randomly selected gene
characteristics, and nonlinear features, i.e., those obtained by
multiplying gene characteristics. Averaging the Lasso coefficients
estimated from each bootstrap sample produces corresponding
weights that can be positive or negative. Gene expression data
comprise the input data for this algorithm, such that D ∈ Rn×m

represents the input gene expression data for n genes across m
samples. In this study, the input gene expression data consisted of
174 genes and 615 samples. For nR potential regulatory genes in the
network, the purpose of constructing the network is to identify the
positive and negative edge weight vectors w ∈ RnR(n−1)×1 between
regulatory genes and target genes. These weights represent the
strength and type (activation/repression) of regulatory
interactions. In the absence of prior knowledge of regulatory
genes, all genes are considered potential regulatory genes, nR = n.

PoLoBag can determine the regulatory relationships between
regulatory genes and target genes, including the direction of
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regulation and the type of regulatory effect, whether activation or
repression.

2.3 Immune cell proportion algorithm

CIBERSORT (Newman et al., 2015) is a computational method
based on linear support vector regression that can estimate the
proportion of immune cells from gene expression profile data.
CIBERSORT is particularly useful for analyzing immune cell
infiltration in the tumor immune microenvironment and
calculating the relative abundance of different immune cells in
tumor tissues.

By integrating feature selection and robust mathematical
optimization techniques, CIBERSORT effectively amplifies the
performance of deconvolution analysis. For feature matrices
composed exclusively of immune cell types, it is possible to
filter out nonhematopoietic and cancer-specific genes to
mitigate the impact of nonimmune cells on the deconvolution
results. Additionally, CIBERSORT improves the stability of the
signature matrix and further reduces the effects of
multicollinearity by incorporating a function that minimizes
the condition number.

2.4 Support vector machine algorithm

SVM is a commonly used binary classification method
employed with the fundamental idea of finding the optimal
hyperplane in multidimensional space. The SVM algorithm
can simplify complex classification and regression tasks when
handling small samples, thereby improving the efficiency and
accuracy of the algorithm. The SVM algorithm, known for its
streamlined structure, robust generalization capabilities, and
minimal parameter requirements, has broad application across
various fields. By employing kernel functions, SVM overcomes
dimensionality disasters and nonlinear separability, thus
avoiding increased computational complexity.

2.5 Cox proportional hazards model

The Cox proportional hazards model (Cox model) (Samar et al.,
2021) is commonly used to explore whether genes affect patient
survival through survival analysis models. The model can analyze
the impact of multiple genes on survival time and identify factors
that pose significant risks to patients.

The Cox model is given in Equation 7:

h t( ) � h0 t( ) exp α1Y1 + α2Y2 +/ + αpYp( ) (7)
where Y1, Y2,/, YP are variables that might affect survival, such as
gene expression levels; h(t) is the hazard function at time t; h0(t) is
the baseline hazard function, where the independent variables are all
set to 0; and α1, α2,/, αP are the partial regression coefficients of the
variables, which can be estimated from the data. In the Cox model, if
the partial regression coefficient αi is greater than 0, the
corresponding variable is considered a high-risk factor; if it is
less than 0, it is considered a protective factor.

3 Results and discussion

3.1 Performance evaluation

To evaluate the performance of our algorithm, we defined its
accuracy in Equation 8:

Accuracy � TP + TN

TP + TN + FP + FN
(8)

where TP and TN represent the number of activations and
repression correctly inferred, respectively. FP represents the
number of inhibitions incorrectly inferred as activations. FN
represents the number of activations incorrectly predicted as
inhibitions.

We conducted benchmark tests on three simulated datasets,
which possess standard networks with directed and signed
regulations. For each dataset, the initial network of gene
interactions was obtained by first calculating the CMI2 values
based on causal strength. We then conducted a gene selection
process by removing isolated genes from the initial network. By
leveraging the expression data of these screened genes, the GRN was
constructed by quantifying the regulatory interactions utilizing the
ensemble regression algorithm. The accuracy of the three simulated
datasets is shown in Table 1, and the results indicate that CSER
outperforms PoLoBag.

3.2 Colorectal cancer gene regulatory
network construction

Constructing the gene regulatory network on real gene
expression profile data depends on gene selection. Therefore,
WGCNA was initially employed to identify cancer-associated hub
genes within the coexpression network. Since cancer occurrence is
typically related to abnormal gene expression, theWilcoxon test was
employed to identify differentially expressed genes (DEGs) between
normal and tumor samples. Then, considering both coexpression
and differential expression characteristics, we intersected the hub
genes with the DEGs and verified that all hub genes showed
expression differences between the two sample types. We further
identified the key regulatory genes in the network, ultimately
identifying biomarkers associated with CRC.

3.2.1 Hub genes related to colorectal cancer
Based on CRC gene expression data downloaded from the

TCGA database, WGCNA was used to identify CRC-related hub
genes. First, the soft threshold β = 14 was determined to establish a
scale-free network, followed by hierarchical clustering and
differentiation using various colors.

During the construction of the WGCNA coexpression module,
close connections with tumors were established to identify genes

TABLE 1 Accuracy on simulated datasets.

Algorithm Dataset A Dataset B Dataset C

PoLoBag 0.73 0.71 0.70

CSER 0.75 0.78 0.72
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FIGURE 2
(A) Correlation analysis of gene coexpression modules with clinical phenotypes. Each row represents a unique gene coexpression module. The
values enclosed in parentheses are the p values, with the numerical values outside indicating the correlation coefficients. Red denotes a positive
correlation, while blue indicates a negative correlation. (B) Heatmap of differentially expressed genes. The horizontal axis represents the samples, with
blue representing normal samples and pink representing tumor samples. The vertical axis represents the genes. The colors in the heatmap represent
the expression levels of genes in the samples, with red indicating high expression and blue indicating low expression. (C) Colorectal cancer gene
regulatory network. The circles in the graph represent genes, and the lines between them represent regulatory relationships. The tail of the arrow
connects the regulatory gene, and the head connects the target gene, with the arrow indicating an activative relationship. Light yellow represents the
target genes; the deeper the color of the gene is, the greater the out-degree is, indicating that the gene has more regulatory relationships. The red circles

(Continued )
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closely related to CRC. The correlations between the gene modules
and the normal and tumor sample groups were calculated to identify
modules closely related to tumors. The results are shown in
Figure 2A. The MEpink module had the highest Pearson
correlation coefficient with normal samples, with a value of
0.84 and p < 0.01, indicating a significant correlation. This
finding suggested that MEpink is a key module closely related to
tumors and that the genes in this module are associated with the
occurrence and development of CRC.

MEpink contains 235 genes, some of which were identified as
hub genes. The conditions for screening hub genes were GS >
0.5 and MM > 0.5, resulting in 174 hub genes. GS refers to the
correlation of the gene with normal or tumor samples; the larger the
GS is, the greater the correlation of the gene with normal or tumor
samples will be. MM represents the correlation of a gene with the
coexpression module; the larger the MM is, the more important
the gene is.

3.2.2 Differential gene expression analysis
In this study, the limma package (Ritchie et al., 2015) in R was

used to analyse the preprocessed gene expression profile data. Gene
expression data were divided into a healthy group (44 samples) and a
tumor group (571 samples) for differential expression analysis. The
Wilcoxon test was used for gene screening to identify DEGs between
normal and tumor samples, and the p values were adjusted using the
FDR correction package in R language. The conditions for screening
DEGs were as follows: |logFC|> 1, i.e., genes with more than
twofold differences in expression between healthy individuals and
cancer patients and a corrected p-value less than 0.05. The formula
for calculating the logFC is illustrated in Equation 9:

logFC � log2 fold change � log2
meanfor tumor groups

meanfor normal groups
(9)

Based on the above conditions, 3,676 DEGs were obtained,
including 2,216 upregulated and 1,460 downregulated genes. A
heatmap of the 10 significantly upregulated and downregulated
DEGs is shown in Figure 2B.

Studies show that high expression of SPRR1A is associated
with lymph node metastasis and low survival rates in CRC
patients, and SPRR1A may serve as a potential prognostic
biomarker for CRC (Deng et al., 2020). AQP8 inhibits the
growth and metastasis of colorectal cancer cells by
downregulating PI3K/AKT signaling and reducing the
expression of PCDH7 (Wu et al., 2018). TMIGD1 is a highly
downregulated gene in CRC, and overexpression of the TMIGD1
protein significantly impairs the metastatic and proliferative
capacity of CRC cells. In contrast, the downregulation of
TMIGD1 may promote CRC progression; therefore, TMIGD1
may serve as a prognostic biomarker for CRC (Mu et al., 2022).
NOTUM is associated with the proliferation and migration of

CRC cells, and NOTUM also has potential as a biomarker and
therapeutic target for colorectal cancer (Yoon et al., 2018). KLK6
expression is significantly upregulated in the tissues and serum of
colorectal cancer patients and is closely related to poor prognosis;
thus, KLK6 may also be a potential CRC biomarker and
therapeutic target (Kim et al., 2011).

3.2.3 Colorectal cancer gene regulatory network
based on the CSER

FollowingWGCNA and differential analyses, 174 hub genes and
3,676 DEGs were identified, with 174 intersecting genes between
these two sets. The CMI2 value between genes was calculated using
the gene expression profile data of these 174 intersecting genes in
615 samples, setting the threshold at 0.03. Genes with CMI2 values
less than 0.03 were considered unrelated and formed the initial
network. Independent genes were removed from this network; thus,
the initial network contained no independent genes. Subsequently,
PoLoBag was used to analyze the gene expression profile data of the
174 genes, with a focus on regulatory relationships with absolute
weights greater than 0.5. This process revealed 71 regulatory
relationships involving 74 genes. The CRC GRN was visualized
using Cytoscape (Shannon et al., 2003) and R, as illustrated in
Figures 2C, D.

The top 7 genes in the GRN, ranked by their out-degree, were
identified as key regulators of CRC: ADAMDEC1, CLDN8, GNA11,
INSL5,MT1H, SLC51A, and SST. These genes were used as features
to discriminate between normal and tumor samples. Their
expression shows significant differences between normal and
tumor samples (with FDR-corrected p < 2e-18), and Figure 2E
displays the data distribution in the two types of samples. Previous
studies have shown that ADAMDEC1 expression is lower in
adenomatous and CRC tissues than in normal colorectal tissue,
suggesting its involvement in colorectal adenoma development
(Galamb et al., 2008). Compared to that in normal tissues, the
protein expression of CLDN8 is greater in colorectal cancer tissues,
promoting the growth of CRC cells. CLDN8 increases the
proliferation, migration, and invasion of CRC cells by activating
the MAPK/ERK signaling pathway, exhibiting an oncogenic effect
on the progression of human CRC (Cheng et al., 2019). Decreased
GNA11 expression is a characteristic of advanced CRC, with
mutations in GNA11 disrupting the MAPK signaling pathway
and enabling unchecked cell proliferation (Ziolko et al., 2015).
The MT1H gene, part of the MT1 subtype of metallothionein
genes, has demonstrated tumor suppressor activity and
downregulated expression in CRC (Han et al., 2013). Mashima
et al. (2013) previously reported that INSL5 might be a unique
marker for the colorectum. Yang et al. (2021) reported that INSL5 is
more highly expressed in normal tissues than in tumor tissues and
that the overexpression of INSL5 significantly inhibits the
proliferation of CRC cells, which is correlated with a better

FIGURE 2 (Continued)

in the central area represent the seven most critical regulatory genes. (D) Chord diagram of the colorectal cancer gene regulatory network. Each
color represents a gene, and the arrows point to the target genes. The genes with greater regulatory relationships correspond to a greater width. The
sevenmost critical regulatory genes with the widest lines are marked in the diagram. (E) Boxplot of key regulatory genes, with green representing normal
samples and red representing tumor samples. The central line within each box represents the median of the dataset.
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prognosis. SST and its analogs negatively regulate cancer growth,
invasion, and metastasis by binding to specific receptors on tumor
cells (Pyronnet et al., 2008). For example, the cytotoxic SST analog
AN-162 inhibits human colon cell growth by inducing cell cycle
arrest (Hohla et al., 2010).

The above studies indicate that the abnormal expression of
key regulatory genes in the network is closely associated with the
development of CRC. These genes promote or inhibit CRC

progression through various biological mechanisms, including
directing protein synthesis, regulating signaling pathways, and
affecting cell proliferation. The identification of these key
regulatory genes demonstrates the outstanding identification
capability of CSER and provides potential therapeutic targets
for CRC. Future studies should further integrate biological
experiments to explore and validate the interactions among
these genes.

FIGURE 3
Stacked bar plot of immune cell proportions. The x-axis represents 50 samples, including 13 normal and 37 tumor samples. The y-axis represents the
percentage of immune cells.

FIGURE 4
Immune cells with different ratios between normal and tumor samples. Red indicates normal samples, blue indicates tumor samples, and white dots
denote median proportions.
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FIGURE 5
(A)Microbial interaction network. The blue circles represent microorganisms, and the lines between nodes indicate interactions, with blue and red
lines indicating positive and negative correlations, respectively. (B) Survival analysis of the high-risk and low-risk groups based on gene risk scores. The
x-axis represents survival time in years, and the y-axis represents survival rate. The numbers indicate the number of patients remaining at each time point.
(C)Multivariate Cox analysis risk assessment grouping. The blue dots and red dots represent the low-risk group and high-risk group, respectively. (D)
Differences in the abundances of microorganisms between the two groups. Blue indicates high-risk samples, red indicates low-risk samples, and white
dots denote median abundance.
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3.3 Biomarkers for colorectal
cancer diagnosis

After preprocessing the gene expression profile data, including
removing genes with low expression and performing normalization,
we used the CIBERSORT algorithm to estimate the relative
proportions of 22 types of immune cells in the samples. Filtering
the results with p < 0.05 yielded immune cell proportions for
277 samples (13 normal and 264 tumor samples). A stacked plot
of the relative proportions of 22 types of immune cells in some
samples is shown in Figure 3.

Significant differences in immune cell composition between
colorectal cancer and normal intestinal tissues were observed.
Specifically, tumor tissues exhibited higher infiltration levels of
activated mast cells and M0 macrophages. As early and abundant
infiltrators in the TME, macrophages play a critical role in tumor
progression. They are classified intoM0,M1, andM2 subtypes based
on their activation status, each with distinct immune functions.

Figure 4 shows 12 immune cell types with significantly
differential proportions between normal and tumor samples. The
findings of previous studies support our findings. For example
Stanilov et al. (2014), reported that monocytes from advanced
cancer patients secrete more TNF-α than monocytes from early-
stage patients. TNF-α is closely linked to tumor promotion and
progression; thus, the infiltration of monocytes is closely associated
with CRC survival risk. Studies have reported that macrophages and
IL-1 enhance Wnt signaling, thereby increasing transcriptional
activity and promoting the growth of colon cancer cells (Kaler
et al., 2009; Gao et al., 2017). Wu et al. (2020) reported that
increased monocyte and macrophage infiltration is correlated
with poor CRC patient prognosis.

The 7 key regulatory genes and the 12 significantly different
immune cells were used as input features for an SVM classifier. The
AUC increased from 0.77 to 0.99 when gene and immune cell
features were combined, indicating strong classification
performance. Thus, these 7 key genes and 12 types of immune
cells can be considered biomarkers for predicting CRC.

3.4 Microbial signature and risk score
calculations for prognosis

Spearman correlation coefficients were calculated based on the
relative abundance of 15 microbial types in 143 CRC samples,
resulting in a microbial abundance correlation matrix. Excluding
low and nonsignificant correlations (correlation coefficient <0.7 and
p > 0.05), we ultimately identified 11 interactions between
microorganisms. The interactions were visualized using
Cytoscape, and the resulting interaction map is depicted in
Figure 5A. CytoHubba (Chin et al., 2014) provides a variety of
analytic algorithms for assessing the importance of nodes. Key
microorganisms in the network were ranked by their Matthews
correlation coefficient (MCC) so that the top-ranked
microorganisms were considered the key microorganisms in the
interaction network. For a given microbial node v, the MCC of v is
defined as shown in Equation 10:

MCC v( ) � ∑
C∈S v( ) C| | − 1( )! (10)

where S(v) represents the set of the largest community that includes
node v, and (|C| − 1)! denotes the product of all positive integers less
than |C|.

The MCC values for 11 microorganisms are shown in
Supplementary Table 2, and in conjunction with the microbial
interaction network, the key microorganisms were Staphylococcus
hemolyticus, Enterobacter cloacae, Paracoccus mutanolyticus,
Staphylococcus aureus, Pasteurella multocida, Burkholderia
pseudomallei and Escherichia coli.

In Section 3.2, we identified 74 genes for constructing the
regulatory network. By combining the expression levels of
74 genes with the clinical survival data of 473 patients, we
used multivariate Cox analysis to identify 20 genes for risk
score calculation. Patients were classified into high-risk and
low-risk groups according to a median risk score of 1.41, and
the classification results are shown in Figure 5C. Survival analysis
revealed significant differences in survival between the high-risk
and low-risk groups (p < 0.001; Figure 5B). The median survival
time for the low-risk group was more than 10 years, with 3-year
and 5-year survival rates of approximately 90% and 80%,
respectively. In contrast, the high-risk group had a median
survival time of less than 5 years, with 3-year and 5-year
survival rates of approximately 65% and 50%, respectively.
This finding indicates a lower overall survival rate and poorer
prognosis for patients in the high-risk group.

A comparison of the microbial abundance data between the
high-risk and low-risk groups revealed significant differences in
four microorganisms (Figure 5D), three of which also exhibited
high MCC values in the microbial interaction network.
Enterobacter cloacae, Staphylococcus haemolyticus and B.
pseudomallei exhibit significant differences between high- and
low-risk groups. They also play key roles in the microbial
interaction network. Enterobacter cloacae, belonging to
Enterobacteriaceae, is a gram-negative bacterium in the gut
microbiota. It can infect the human body as an opportunistic
pathogen. This pathogen shows strong antibiotic resistance and
may cause postoperative complications, such as sepsis and
bacterial infections (E Pages and DAVIN, 2015). Asif et al.
(2021) reported that digestive tract bacteria might damage
pancreatic cells, increasing the risk of malignancy. Experiments
have shown that E. cloacae causes significant DNA damage and cell
death (Asif et al., 2021). Staphylococcus haemolyticus is a key
species of Staphylococcus associated with infections in hospital
settings; it also exhibits strong antibiotic resistance and can cause
organ infections and sepsis (Takeuchi et al., 2005). Burkholderia
pseudomallei, a pathogenic human pathogen with intrinsic
antibiotic resistance, can easily cause infections with a mortality
rate of 40% or higher (Wiersinga et al., 2006).

Previous studies and our findings support that E. cloacae, S.
haemolyticus, and B. pseudomallei are associated with patient
prognosis, indicating their potential as prognostic biomarkers for
CRC. Our findings regarding the role of microbes in CRC prognosis
are consistent with previous studies highlighting the impact of
microbiota on CRC progression (Xie et al., 2022).
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4 Conclusion

We propose a novel algorithm named CSER to construct gene
regulatory network based on causal strength and ensemble
regression. CSER quantifies gene correlations and infers
regulatory direction and type, i.e., activation or inhibition. CSER
demonstrated high accuracy on simulated datasets and identified
seven key regulatory genes influencing CRC development in real
datasets. From a multiomics perspective, we conducted a
comprehensive analysis of genes within the regulatory network,
immune cells, and microbiome data, revealing additional
interactions between the CRC gene regulatory network and both
the immune microenvironment and TME. As a result, we identified
12 immune cells and 3 microorganisms associated with CRC. These
findings provide new biomarkers for predicting CRC and patient
prognoses. Despite the potential of the CSER algorithm, further
validation in larger datasets is needed to confirm its accuracy and
applicability. Additionally, clinical trials are required to assess the
effectiveness and reliability of the identified biomarkers for CRC
diagnosis and treatment in the future.
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