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Mathematical algorithms known as “epigenetic clocks” use methylation values at
a set of CpG sites to estimate the biological age of an individual in a tissue-specific
manner. These clocks have demonstrated both acceleration and delays in
epigenetic aging in multiple neuropsychiatric conditions, including
schizophrenia and neurodevelopmental disorders such as autism spectrum
disorder. However, no study to date has examined epigenetic aging in ADHD
despite its status as one of the most prevalent neurodevelopmental conditions,
with 1 in 9 children having ever received an ADHD diagnosis in the US. Only a
handful of studies have examined epigenetic age in brain tissue from
neurodevelopmental conditions, with none focused on ADHD, despite the
obvious relevance to pathogenesis. Thus, here we asked if post-mortem brain
tissue in thosewith lifetime histories of ADHDwould show accelerated or delayed
epigenetic age, as has been found for other neurodevelopmental conditions. We
applied four different epigenetic clocks to estimate epigenetic age in individuals
with ADHD and unaffected controls from cortical (anterior cingulate cortex, N =
55) and striatal (caudate, N = 56) post-mortem brain tissue, as well as peripheral
blood (N = 84) and saliva (N = 112). After determining which epigenetic clock
performed best in each tissue, we asked if ADHD was associated with altered
biological aging in corticostriatal brain and peripheral tissues. We found that a
range of epigenetic clocks accurately predicted chronological age in all tissues.
We also found that a diagnosis of ADHD was not significantly associated with
differential epigenetic aging, neither for the postmortem ACC or caudate, nor for
peripheral tissues. These findings held when accounting for comorbid psychiatric
diagnoses, substance use, and stimulant medication. Thus, in this study of
epigenetic clocks in ADHD, we find no evidence of altered epigenetic aging in
corticostriatal brain regions nor in peripheral tissue. We consider reasons for this
unexpected finding, including the limited sampling of brain regions, the age range
of individuals studied, and the possibility that processes that accelerate epigenetic
age may be counteracted by the developmental delay posited in some models
of ADHD.
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1 Introduction

Alterations of the intrinsic biological aging process have been
shown to be a feature of neuropsychiatric disorders. A widely used
method for estimating biological age is to examine variations in the
methylation of CpG sites with age (Horvath and Raj, 2018). Such
“epigenetic clocks” are mathematical algorithms that take a linear
combination of methylation values at a set of specific CpG
methylation sites to estimate age (Field et al., 2018). Given that
changes in the methylome are tissue specific, multiple epigenetic
clocks have been trained on different tissue types (Bergsma and
Rogaeva, 2020; Field et al., 2018; Horvath, 2013; McEwen et al., 2020;
Shireby et al., 2020; Zhang et al., 2019), with most studies using
peripheral tissues such as whole blood and saliva to estimate
epigenetic age (Shenk et al., 2021; Wolf et al., 2019; Han et al.,
2018; Protsenko et al., 2021; McEwen et al., 2020). However, studies
focusing on changes in epigenetic markers in brain tissues are
particularly important to advance our understanding of
neuropsychiatric disorders.

Prior studies using post-mortem brain tissue have demonstrated
acceleration of brain epigenetic aging in major depressive disorder
(Han et al., 2018), bipolar disorder (Fries et al., 2020), and substance
use disorders (Rosen et al., 2018; Poisel et al., 2023; Zillich et al.,
2024). Studies in schizophrenia found delayed epigenetic aging in
the cerebellum and frontal cortex (McKinney et al., 2017;
AuthorAnonymous, 2018; Voisey et al., 2017; Liu et al., 2023;
Teeuw et al., 2021; Wu et al., 2021). Among neurodevelopmental
conditions, one study has demonstrated accelerated aging in ASD
restricted to the cerebellum of older adults (Liu et al., 2023). Here we
ask if a similar phenomenon applies to another neurodevelopmental
condition, attention-deficit hyperactivity disorder (ADHD), which
is characterized by impairing, age-inappropriate symptoms of
inattention, hyperactivity, and impulsivity (Faraone et al., 2015).
A prior study found increased ADHD genetic burden as measured
by polygenic score to be associated with advanced epigenetic age in
blood (Arpawong et al., 2023), and another study applied BrainAGE,
a machine learning algorithm trained on structural neuroimaging
data, to demonstrate delayed age in children with ADHD (Kurth
et al., 2022). Importantly, no prior study to date has examined
epigenetic aging in post-mortem brain tissue in ADHD.We focus on
the caudate and anterior cingulate cortex (ACC), as neuroimaging
studies have demonstrated subtle changes to their structure and
function in ADHD (Hoogman et al., 2019; Hoogman et al., 2017;
Hart et al., 2013; Yap, Abdul Manan, and Sharip, 2021). Further, the
caudate and ACC are key components of corticostriatal circuitry
that support cognitive processes pertinent to ADHD such inhibitory
processing (Hart et al., 2013). Finally, the ACC and caudate are
representative of cortical and subcortical regions, respectively, that
could potentially capture alterations related to ADHD trajectory
with age (Shaw and Sudre, 2021).

What alterations to epigenetic aging might be found in the brain
in ADHD?We consider three possibilities. First, ADHDmay be tied
to accelerated biological aging in the brain, analogous to the shifts
seen in other neurodevelopmental conditions such as ASD (Liu
et al., 2023; Teeuw et al., 2021). Such accelerated epigenetic aging has
been previously tied to the cumulative stresses of living, for example,
with a neurodevelopmental challenge such as ADHD (Zannas et al.,
2015). Secondly, ADHD, which is sometimes held to stem from

developmental immaturity or delays, could be tied to a younger
biological age–an instance of epigenetic age deceleration. Evidence
for developmental immaturity has come from in vivo neuroimaging
studies, including neuroanatomic (Muetzel et al., 2018; Shaw et al.,
2013), functional connectivity (Francx et al., 2015; Clerkin et al.,
2013; Schulz et al., 2017), and electrophysiological indices (Michelini
et al., 2016; Cheung et al., 2016; Michelini et al., 2019). Finally,
different brain regions may show different epigenetic ages. This
proposition rests upon a model that ties the onset of ADHD to
changes in the prenatal and infantile deep structures, such as the
caudate, whereas the course of the disorder into adolescence and
beyond is linked to prefrontal cortical plasticity, such as in the
anterior cingulate cortex (Halperin and Kurt, 2006; Shaw and Sudre,
2021; Schulz et al., 2017). This model would suggest that the caudate
and ACC might have different epigenetic ages, aligned with the
different cognitive and neural changes occurring in these
regions in ADHD.

In this study, we first determined which epigenetic clock
algorithm(s) most accurately predicted chronological age in
individuals with no lifetime psychiatric disorders. Next, we use
the best performing clocks to determine if a diagnosis of ADHD
is associated with altered epigenetic age in the brain. Finally, we ask
if our findings for brain tissue hold in peripheral tissues (blood,
saliva) obtained from a different cohort of youth with ADHD.

2 Materials and methods

2.1 Participant selection for postmortem
brain specimens

Postmortem brain tissue was obtained from three brain
banks: the NIMH Human Brain Collection Core, the
Maryland Brain Collection, and the University of Pittsburgh
Brain Tissue Donation Program. Anterior cingulate cortex
and/or caudate tissue was obtained from 26 individuals with
ADHD and 33 individuals with no psychiatric diagnoses (see
Table 1). For the NIMH HBCC and Maryland Brain Collection,
postmortem diagnostic interviews were performed with at least
one family member of the deceased by a trained psychiatric social
worker using the Structured Clinical Interview for the DSM-IV
(SCID) and Diagnostic Evaluation After Death (DEAD). Two
psychiatrists then reviewed the case write-up and arrived at a
consensus for a possible DSM diagnosis, and in the case of the
Maryland Brain Collection, medical records as well as records
from the medical examiner’s office all contributed to the
diagnosis (Donati et al., 2008). The University of Pittsburgh
program similarly conducts a postmortem interview with the
family of the deceased using a structured interview for the DSM-
5, and this information is then reviewed during a consensus
conference of psychiatrists and psychologists along with any
medical records and publicly available records to arrive at a
DSM diagnosis (Department of PsychiatryUniversity of
Pittsburgh, 2020). Unaffected controls had no psychiatric
disorders during the consensus diagnostic process. Race data
was not available for one donor, so ACC and caudate tissue from
this individual was excluded from the linear regression analysis
where race was a covariate.
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2.2 Participant selection for blood and
saliva specimens

Blood and saliva samples were obtained from a separate cohort
based at the NIH Intramural Research Program in a study approved by
the NIH central IRB. Individuals with no psychiatric diagnoses were
contrasted against those with a diagnosis of ADHD, as determined by
the clinician-administered Diagnostic Interview for Children and
Adolescents-Fourth Edition (DICA-IV) with the parent. For adults
aged 18 or over, diagnoses were made using the Connors’Adult ADHD
Diagnostic Interview for DSM-IV (CAADID; Epstein et al., 2001) and
Structured Clinical Interview for DSM-IV Axis I Disorders (SCID). The
main exclusion criteria were full scale IQ less than 70, birth before
32 weeks gestation, neurological disorder impacting brain structure, and
psychoses. All adults and parents provided written informed consent,
and written assent was obtained from children under 18. After
methylation quality control, the final cohort included saliva
specimens from 112 participants and peripheral whole blood
specimens from 84 participants (see Table 1). There were
17 individuals who provided both saliva and blood. All tissues were
from unrelated individuals.

2.3 Methylation data processing

Anterior cingulate cortex and caudate tissues were dissected from
coronal slabs, whichwere prepared and frozen at −80°C during autopsy.
DNA extraction and bisulfite conversion was performed on bulk
homogenates of the dissected tissues using the EZ DNA Methylation
Kit (Zymo Research, Irvine, CA, United States). In whole blood, DNA
extraction and bisulfite conversion was performed using the EZ

Methylation-Gold Kit (Zymo Research), and saliva was collected
using the Oragene DNA collection Kit (Genotek).

All biospecimens were processed using the Infinium
HumanMethylationEPIC BeadChip (Illumina, San Diego, CA),
performed by the Genomics Core at the National Human Genome
Research Institute (NHGRI). Methylation data was separated based on
tissue type and processed using the minfi (Aryee et al., 2014),
wateRmelon (Pidsley et al., 2013), and ChAMP (Tian et al., 2017)
packages in R. Quality control involved removal of samples with
incorrect predicted sex based on methylation values, poor quality
based on plots of the log median intensity of methylated and
unmethylated signals, mean detection p-value greater than or equal
to 0.05, and bisulfite conversion rate less than or equal to 80%. These
steps resulted in the removal of 0 brain samples, 0 blood samples, and
24 saliva samples. Probes with a detection p-value greater than or equal
to 0.01 in any sample or bead count <3 in at least 5% of samples were
removed, and only autosomal probes were considered. Methylation
values were normalized using the Noob normalization method and
were not batch-corrected, both as suggested by the authors of the
Horvath Online Age Calculator (https://dnamage.genetics.ucla.edu)
(Horvath, 2013). The final beta matrices were 827,701 CpG probes x
56 caudate specimens, 827,891 CpG probes x 55 ACC specimens,
828,686 CpG probes x 84 blood specimens, and 827,891 CpG probes x
112 saliva specimens.

2.4 Epigenetic age estimation and method
comparison

Four epigenetic clocks were included in this study: the Cortical
Clock trained on brain tissue by Shireby et al (Shireby et al., 2020), the

TABLE 1 Demographics of sample cohorts by biospecimen type.

ACC Caudate Blood Saliva

Total Individualsa 55 56 84 112

Male N (%) 46 (84%) 44 (79%) 56 (67%) 74 (66%)

White N (%) 36 (65%) 36 (64%) 62 (74%) 81 (72%)

White, non-Hispanic 56 (67%) 76 (68%)

Black/African American 8 (9%) 11 (10%)

Asian 4 (5%) 5 (4%)

More than one race/other 10 (12%) 15 (13%)

ADHD Diagnosis N (%) 24 (44%) 23 (41%) 35 (42%) 55 (49%)

Age mean (SD: range) 21.7 (8.0: 6.7–38.8) 22 (8.0: 6.7–38.8) 11.2 (2.7: 5.4–17.7) 10.2 (2.9:
4.5–18.4)

Individuals with ADHD who had comorbid psychiatric
diagnoses

9 (37%)
(1 ASD,

6 MDD/dysthymia, 1 BPAD,
1 MDD + GAD + panic

disorder)

8 (35%)
(1 ASD,

6 MDD/dysthymia,
1 BPAD)

8 (23%)
(7 ODD,

1 panic disorder)

12 (22%)
(9 ODD, 2 GAD,

1 DMDD)

Substance use disorders 12 (50%) 11 (48%)

Stimulant medication 26 (71%) 47 (85%)

a52 individuals shared between ACC, and caudate, and 17 individuals shared between blood and saliva cohorts. ASD, autism spectrum disorder; MDD,major depressive disorder; BPAD, bipolar

affective disorder; GAD, generalized anxiety disorder; ODD, oppositional defiant disorder; DMDD, disruptive mood dysregulation disorder.
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DNAmmulti-tissue clock byHorvath et al (Horvath, 2013), a blood and
saliva-derived clock by Zhang et al that utilizes two different methods
for age estimation (Zhang et al., 2019), and the PedBE clock trained on
pediatric buccal epithelial cells by McEwen et al (McEwen et al., 2020).
These clocks were selected because they were trained on cohorts with
age ranges and tissue types (post-mortem brain, blood, or saliva) most
similar to our study samples. Beta values were submitted to the Horvath
Online Age Calculator, and the “Advanced Analysis” option was
selected for blood samples to obtain immune cell proportion
estimates based on the Horvath and Houseman methods (Horvath,
2013; Houseman et al., 2012). The remaining epigenetic age estimates
were obtained using publicly available code published by the respective
clock authors. The most accurate clock was selected for each tissue type
by finding the lowest mean absolute difference between epigenetic and
chronological age in unaffected (non-ADHD) individuals.

2.5 Examination of diagnostic differences in
epigenetic aging

We examined the difference between chronological and epigenetic
age in ADHD individuals versus unaffected individuals in the two brain
regions separately. In this comparison, positive values indicate advanced
epigenetic age, while negative values indicate younger epigenetic age as
compared to chronological age. All regression analyses adjusted for the
following technical factors: plate on which samples were processed
during the EPIC methylation array procedure (“sample group”) and
array scanner used to survey methylation sites. Analysis of brain tissue
included additional technical covariates (brain bank of origin, post-
mortem interval), neuronal proportion estimated using the R package
CETYGO (selecting the most accurate estimates based on the CETYGO
“score”) (Vellame et al., 2023; Hannon et al., 2024), and whether the
manner of death was by suicide versus all other modes of death. The
ADHD and unaffected groups did not differ significantly in proportion
of sex assigned at birth (see Table 1) but did differ significantly in
proportion of those of different race/ethnicity, and we adjusted for both
these demographic factors. Mean chronological age did not differ
significantly between groups for the post-mortem analyses but was
also included as a covariate as suggested by the Horvath tutorial.

We tested the hypothesis that different brain regions would
show different epigenetic aging using a mixed model regression, first
testing for an interaction between diagnosis and brain region and
including a random intercept term for donor identity. Brain tissue
analyses were repeated with a subset of individuals with no
comorbid psychiatric diagnoses (N = 45 for ACC and N = 47 for
caudate), and with a subset of individuals without documented
substance use (N = 42 for ACC and N = 44 for caudate, see Table 1).

Analyses of peripheral tissue were conducted in a similar
manner, adjusting for relevant technical variables (methylation
array plate and scanner) as well as race/ethnicity, sex assigned at
birth, and chronological age. In blood analyses, there was further
adjustment for immune cells known to be influenced by
chronological age. Per the Horvath Online Age Calculator
tutorial (Horvath, 2013), the included cell types were naïve CD8+
T cells, CD8+CD28-CD45RA- T cells, plasmablasts, CD4+ T cells,
natural killer cells, monocytes, and granulocytes (see Models S1, S2).
Cell abundance measures were generated using the Horvath Online
Age Calculator’s “Advanced Analysis” option. For robustness,

peripheral sample analyses were repeated with stimulant use as a
covariate and again with only individuals with no comorbid
psychiatric diagnoses (N = 76 for blood and N = 100 for saliva).

3 Results

3.1 Comparison of epigenetic clock
performance in the brain

We first determined which of the five epigenetic clock methods
most accurately predicted chronological age in the brain regions,
considering only the individuals with no lifetime history of
psychiatric disorders. We found that the Zhang et al. elastic net
method produced the lowest mean absolute age difference between
predicted and actual age in both the ACC [absolute mean 2.6 years (SD
2.35 years)] and caudate [absolute mean 3.36 years (SD 2.26 years)]—
see Table 2, Figure 1. For the caudate, this clock provided estimates of
epigenetic age that were a mean of 0.97 years (SD 3.97) less than the
chronological age; for the ACC, the epigenetic age was a mean of
1.00 years (SD 3.39 years) more than chronological age. The
performance of the other clocks is shown in Table 2.

3.2 Is ADHD associated with altered brain
epigenetic age?

As is illustrated in Figure 2, there was no diagnostic effect on the
difference between epigenetic and chronological age for the caudate
(t = −0.13, p = 0.90). Among those with ADHD, epigenetic age
slightly underestimated chronological age in the caudate
(mean −0.85, SD 2.85 years), similar to the underestimation
observed in the unaffected group as noted above (mean −0.97,
SD 3.97 years). For the ACC, epigenetic age among those with
ADHD was again close to chronological age (mean 0.26, SD
3.22 years), and this did not differ significantly (t = 0.83, p =
0.41), from estimates for the unaffected group (mean 1.00,
SD 3.39 years).

We next asked if there were differences in epigenetic aging
between the two brain regions using mixed model linear regression,
adjusting for covariates as described in the methods. We found no
significant interaction between brain region and diagnosis in
association with the age prediction error (beta = 0.60, t =
0.65, p = 0.52).

All findings held for analyses confined to those with no
comorbid psychiatric diagnosis and when we excluded those with
known substance use (Supplementary Table S1)

3.3 Association between ADHD and
alterations in epigenetic age in
peripheral tissues

We asked if a similar pattern of results would be found for
peripheral tissues. The Horvath multi-tissue clock performed best in
predicting epigenetic age in unaffected individuals for both blood
(mean absolute age difference 2.02 years [SD 1.52]) and saliva (mean
absolute age difference 1.31 years [SD 1.12])—see Figure 3, Table 2.
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Using the Horvath clock, for those with ADHD, epigenetic age
predicted chronological age well in saliva (mean difference −0.05, SD
1.90 years). This did not differ significantly from the unaffected
group (mean difference 0.02 years, SD 1.74, t = 0.22, p = 0.82). In
blood from ADHD individuals, epigenetic age was a little over a year
greater than chronological age (mean difference 1.20, SD 1.90 years),
which did not significantly differ from estimates in the unaffected
individuals (mean difference 1.51 years, SD 2.03, t = 0.73, p = 0.47),
indicating a similar overestimation–see Figure 3. Findings held
when stimulant use was included as a covariate, and when
analyses were restricted to those without comorbid psychiatric
diagnoses—see Supplementary Table S2.

4 Discussion

This is the first study to examine epigenetic aging in the brain of
those with lifetime histories of ADHD. There were three central
findings. First, we find that epigenetic clocks trained on peripheral

tissue performed as well as, if not better than, clocks trained on brain
tissue in estimating brain epigenetic age. Second, we find no
evidence of significantly altered epigenetic aging in either the
post-mortem anterior cingulate cortex or caudate of individuals
with lifetime histories of ADHD. Finally, there are no ADHD-
related differences in epigenetic aging in peripheral blood or saliva
obtained from a separate cohort of individuals.

This study reinforces the validity of epigenetic clock algorithms
in predicting chronological age across tissue types. It is noteworthy
that the Zhang elastic-net clock most closely predicted chronological
age in brain tissue from unaffected individuals, as this clock was
initially trained on blood and saliva-derived methylation data. This
suggests some degree of similarity between peripheral methylation
changes and those found in the brain. This finding is consistent with
a study by Cabrera-Mendoza et al. (Cabrera-Mendoza et al., 2023)
which found significant positive correlations between blood and
brain epigenetic age in healthy controls across multiple epigenetic
clocks. Another consideration is differences in neuropathological
load, as the age range of our post-mortem cohort is younger on

TABLE 2 Epigenetic clock comparison in years based on unaffected (Non-ADHD) individuals.

ACC (N = 31) Caudate (N = 33) Blood (N = 49) Saliva (N = 57)

Abs age diff mean (SD) Abs age diff mean (SD) Abs age diff mean (SD) Abs age diff mean (SD)

Horvath clock 6.62
(3.62)

6.67
(3.29)

2.02
(1.52)

1.31
(1.12)

McEwen clock 19.41
(7.02)

20.24
(7.53)

4.00
(2.34)

1.45
(1.16)

Shireby clock 5.18
(2.33)

5.66
(3.51)

7.15
(2.88)

14.21
(3.42)

Zhang clock: EN method 2.60
(2.35)

3.36
(2.26)

9.11
(2.72)

9.01
(2.99)

Zhang clock: BLUP method 5.08
(2.74)

4.61
(2.70)

5.73
(1.99)

6.36
(2.54)

Abs age diff = Absolute value of (Epigenetic Age–Chronological Age) in years.

Bolded values indicate the best performing algorithm.

FIGURE 1
Epigenetic Clock Comparison: Plot of epigenetic versus chronological age for ACC and Caudate samples from unaffected (non-ADHD) individuals.
Predicted ages are color-coded based on the clock used to generate the ages. The black line represents the line of perfect prediction (y = x) for reference.
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FIGURE 2
Comparison of age difference (epigenetic age–chronological age) in participants with ADHD versus unaffected volunteers in post-mortemACC and
caudate using the Zhang EN clock. Positive age difference indicates advanced epigenetic age.

FIGURE 3
Epigenetic clock comparison and comparison of age prediction accuracy in peripheral tissues. Top two panels show epigenetic versus
chronological age for blood (left) and saliva (right) samples from unaffected (non-ADHD) individuals. The black line represents the line of perfect
prediction (y = x) for reference. The bottom two panels show the comparison of age difference (epigenetic age–chronological age) in participants with
ADHD versus unaffected volunteers in blood (left) and saliva (right) using the Horvath multi-tissues clock. Positive age difference indicates advanced
epigenetic age.
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average than the training cohort of the Cortical Clock by Shireby
et al. Prior work has demonstrated that neurodegenerative
pathology including neuritic plaques and amyloid load is
associated with advanced epigenetic age (Levine et al., 2015).
While the Cortical Clock excluded individuals with a known
history of Alzheimer’s disease or other major neurological
phenotypes, such histological findings can exist without clinical
diagnosis and may skew the model. Finally, the PedBE clock by
McEwen et al. performed the poorest in predicting chronological age
in unaffected controls. This was also the only clock of those selected
in this study to be trained exclusively on buccal epithelial cells from a
pediatric cohort, potentially limiting its generalizability.

We found no evidence for altered epigenetic aging in ADHD,
contrary to other neurodevelopmental conditions (Liu et al., 2023; Wu
et al., 2021). There are several possible explanations. First, we examined
only the caudate andACC, while shifts in epigenetic agemay lie in other
brain regions. Such regional specificity in brain epigenetic patterns has
been reported for other disorders. For example, Liu et al. (2023)
demonstrated advanced epigenetic age in ASD in post-mortem
cerebellar tissue of adults older than 45 years, but not in the
prefrontal cortex or temporal cortex. The same study also found
delayed epigenetic age in the post-mortem cerebellar tissue from
adults with a diagnosis of schizophrenia aged 50–70 years, but not
in the striatum or hippocampus. Secondly, there may be developmental
effects. For example, studies suggest that there is delayed epigenetic
aging in the frontal cortex among those with schizophrenia aged
between 20 and 39 years, but not for those aged 60–90 years,
though it is unclear whether neurodegenerative histopathology was
fully accounted for in this work (Wu et al., 2021). Thus, it is possible that
we might have found altered epigenetic aging if we had examined
younger or older donors. Third, we used whole brain tissue
homogenate, and methylation changes may be cell-specific. For
example, several studies find accelerated epigenetic age to correlate
with the proportion of non-neuronal cells, including oligodendrocytes
and microglia, in the brain tissue samples used (Shireby et al., 2020;
Stevenson et al., 2022; Murthy et al., 2023). However, we found no
association between neuronal proportion and epigenetic age prediction
accuracy in the present study. A final consideration is that ADHDmay
combine components of accelerated epigenetic aging, through the stress
of living with a mental health challenge, with components of delayed
epigenetic aging due to developmental immaturity—with these
antagonistic processes “cancelling” one another out. Related to this
possibility is the “last in, first out” hypothesis, developed based on
P3 event-related potential data in ADHD, which proposes that the same
brain regions with delayed maturation will also develop accelerated
degeneration over time (Kakuszi et al., 2020).

There are several limitations to consider. First, the study’s
biospecimens were obtained from different cohorts with no
overlap between postmortem brain donors (ACC, caudate) and
peripheral sample donors (blood, saliva). Our study samples were
derived from a majority of white, non-Hispanic males, limiting the
generalizability of our results. Additionally, the ADHD cohort
included individuals with other comorbid psychiatric conditions
as well as patients taking psychotropic medication. However,
previous findings held when post-mortem brain analysis was
repeated with a subset of individuals with no comorbid
psychiatric illness, and again with the subset of individuals with
no known substance use. Similarly, peripheral findings remained

consistent when accounting for stimulant use or restricted to
individuals with no comorbid psychiatric diagnoses.

In summary, we find no evidence of altered epigenetic aging tied
to a diagnosis of ADHD in post-mortemACC or caudate tissues, nor
in peripheral blood or saliva. Future work might look at cell specific
change, other brain regions, and a wider age range of individuals.
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