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Introduction: The differential ratio of nonsynonymous to synonymous
nucleotide substitutions (dN/dS) is a common measure of the rate of
structural evolution in proteincoding genes. In addition, we recently suggested
that the proportion of transposable elements in gene promoters that host
functional genomic sites serves as a marker of the rate of regulatory evolution
of genes. Such functional genomic regions may include transcription factor
binding sites and modified histone binding loci.

Methods: Here, we constructed a model of the human interactome based on
600,136 documented molecular interactions and investigated the overall
relationship between the number of interactions of each protein and the rate
of structural and regulatory evolution of the corresponding genes.

Results: By evaluating a total of 4,505 human genes and 1,936 molecular
pathways we found a general correlation between structural and regulatory
evolution rate metrics (Spearman 0.08–0.16 and 0.25–0.37 for gene and
pathway levels, respectively, p < 0.01). Further exploration revealed in the
established human interactome model lack of correlation between the rate of
gene regulatory evolution and the number of protein interactions on gene level,
and weak negative correlation (~0.15) on pathway level. We also found a
statistically significant negative correlation between the rate of gene structural
evolution and the number of protein interactions (Spearman −0.11 and −0.3 for
gene and pathway levels, respectively, p < 0.01).
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Discussion: Our result suggests stronger structural rather than regulatory
conservation of genes whose protein products have multiple interaction partners.
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human gene regulation, molecular evolution, retrospect, regulatory evolution rate,
structural evolution rate, human interactome model, molecular pathways,
oncoboxpd database

1 Introduction

The structural evolution of protein-coding genes is currently
central to the field of evolutionary genomics. An established method
for quantifying the magnitude of evolutionary pressure on protein-
coding genes includes estimation of the ratio of nonsynonymous
(changing amino acids) to synonymous (not changing) base
substitutions in coding codons, known as dN/dS (Jeffares et al.,
2015). Specifically, a dN/dS ratio significantly greater than one
serves as an indicator of positive Darwinian selection, while a
ratio below one indicates purifying selection. In turn, a dN/dS
ratio equal or close to one indicates neutral selection. Thus, a
higher dN/dS value corresponds to an accelerated rate of gene
structural evolution, while a lower value reflects structural
conservation of a gene product (Kryazhimskiy and Plotkin, 2008).

Another important aspect of gene evolution is related to
functional changes in transcriptional activity. Recently, we have
proposed for the first time a Retrospect method that measures the
rate of regulatory evolution of genes through relative quantification
of the enrichment of gene promoters with functional motifs that
map to transposable elements. Such functional motifs can be
transcription factor binding sites or modified histone binding
loci. Greater association of regulatory modules with transposable
elements means faster evolution of gene regulation. In the case of the
human genome, Retrospect considers a class of transposable
elements called retroelements (REs), which are selfish elements
capable of replicating in the genome through reverse
transcription (Nikitin et al., 2019C).

REs constitute the vast majority of human transposable elements
and occupy about 40% of total human DNA. They can participate in
the control of gene expression by providing functional regulatory
elements such as alternative promoters, enhancers, silencers,
polyadenylation signals and others (Gogvadze and Buzdin, 2009).
In particular, about half of all transcription factor binding sites
(TFBS) in the human genome are estimated to be associated with
REs (Nikitin et al., 2019a). In addition, REs may be involved in
chromatin tag rearrangement by converting euchromatic (active)
regions to heterochromatic (inactive) regions and vice versa. In
general, RE insertions tend to be much less conserved than
surrounding genomic regions (Lander et al., 2001) and thus may
indicate rapidly evolving regulatory features if they are enriched with
functional motifs.

The regulatory influence of REs on individual genes can be
measured using a metric called Gene RE-linked Enrichment score
(GRE) (Nikitin et al., 2018). This metric can be applied to different
types of regulatory elements such as TFBS or chromatin tags. For
example, in the case of TFBS analysis, a gene’s GRE score is
calculated as the sum of RE-linked TFBS hits mapped in the 10-
kb neighborhood of its transcription start site divided by the average
number of RE-linked TFBS hits across all genes analyzed. A further

modification of this metric, called Normalized Gene RE-linked
Enrichment score (NGRE), takes into account the fact that the
number of TFBS hits, whether RE-linked or not, can vary greatly
between different genes with different regulatory mechanisms. Thus,
an NGRE estimate for a gene can be obtained by further normalizing
the GRE value by the balanced number of all (not just RE-linked)
TFBS hits for that gene. Similarly, GRE and NGRE scores can also be
calculated for chromatin tags such as modified histone binding sites
(Igolkina et al., 2019).

Another approach is to look at the bigger picture by combining
genes at the molecular pathway level. The quantitative measure here
is the pathway involvement index (PII), calculated as the average
GRE value for all genes involved in the pathway of interest. Similarly,
PII can be normalized by the average effect of TFBS or chromatin
tags on all genes in the pathway analyzed, yielding a normalized
pathway involvement index (NPII). In general, aggregating data at
the molecular pathway level improves the overall stability of the data
by reducing the bias that can be caused by variations in metrics for
individual genes (Borisov et al., 2017).

Previously, for the first time we reported a consistent positive
correlation between the rate of structural and regulatory evolution of
human protein coding genes and molecular pathways (Zakharova
et al., 2023).

In addition, the pathway-level approach can be transferred to
the interactome level. In particular, many attempts have been made
to investigate the relationship between the evolution of proteins and
their properties in the interaction network, such as connectivity.
Indeed, it has been shown that the rate of structural evolution of
individual proteins is negatively correlated with the number of their
interactions in yeast (Fraser et al., 2002). Indeed, intuitively one can
expect that genes encoding proteins involved in a large number of
molecular interactions should be more evolutionarily conservative,
since excessive structural variation in them is more likely to disrupt
some of their functional sites that support their downstream
interactions. However, this conclusion has been questioned
(Bloom and Adami, 2003; Jordan et al., 2003; Batada et al.,
2006), and a number of studies (Hahn et al., 2004; Drummond
et al., 2006) have reported that the relationship between knot
connectivity and evolutionary rate is weak, although significant.

However, to the best of our knowledge, there have been no
studies to date examining the regulatory evolution of protein-coding
genes in the context of interactome connectivity.

In this paper, we combined the quantitative measures of
structural and regulatory evolution described above to
characterize the human interactome. We constructed a model of
the human interactome based on 600,136 documented molecular
interactions and investigated the overall correlation between the
number of interactions of each protein and the rate of structural and
regulatory evolution of the corresponding genes. We found a general
correlation between metrics for the rate of structural and regulatory
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evolution of genes encoding human proteins for both transcription
factor binding sites and histone modification mapping data.

However, no correlation was observed between the rate of
regulatory evolution and the number of gene interactions in the
human interactome model. In contrast, we found a negative
correlation between the rate of structural evolution and the
number of gene interactions in the human interactome model,
which was more pronounced for the pathway level of data
analysis. Taken together, these results suggest structural rather
than regulatory conservation of genes whose protein products
have multiple interaction partners.

2 Methods

2.1 Genomic retroelement enrichment data

To quantitatively characterize the rates of regulatory evolution
of genes, we have previously introduced analytic metrics termed
Gene RE-linked Enrichment (GRE) and Normalized RE-linked
Enrichment (NGRE) (Nikitin et al., 2018). The GRE score of a
gene x characterizes the total number of RE-linked regulatory
elements in that gene and is calculated as follows:

GREx � FESx

1
n ∑

n

i�1
FESi

,

where FESx (Feature Enrichment Score) is the number of RE-linked
regulatory element alignment hits that were mapped within 10 kb-
frame centered at the canonical transcription start site of gene x; n is
the total number of genes under analysis, and the denominator is the
average FES of all genes under analysis. GRE score is calculated for a
single type of a regulatory feature at a time, e.g., for mapped hits of
TFBS or of a specific histone tag.

Additional variable GFE (gene feature enrichment) score
characterizes gene-specific hits distribution trends, expressed by
the formula:

GFEx � TFSx

1
n ∑

n

i�1
TFSi

,

where TFSx is the total number of feature hits mapped in the 10-kb
neighborhood of gene x and TFSm is the mean TFS for all genes
under investigation (Figure 1).

A normalized RE-specific enrichment measure for an individual
gene termed NGRE (normalized gene RE-linked enrichment score)
was calculated for a gene x as follows:

NGREx � GREx

GFEx
,

Relative retroelement enrichment scores for genes (NGRE),
which were previously calculated using ChIP-seq profiles of
human cell lines, were extracted from our previous published
datasets (Igolkina et al., 2019; Nikitin et al., 2019B) for six
histone modifications (H3K4me1, H3K4me3, H3K9ac, H3K27ac,
H3K27me3, and H3K9me3), and for a total of 563 transcription
factor binding sites (TFBSs) in 13 human cell lines (Nikitin et al.,
2019a). NGRE reflects the ratio of RE-linked regulatory elements to

all regulatory elements in the 10-kb frame centered around the gene
canonical transcriptional start site (Nikitin et al., 2018; 2019c; 2019a;
Igolkina et al., 2019).

For the analysis at the level of molecular pathways, the
Normalized Pathway Involvement Index (NPII) that describes the
normalized proportion of RE-associated regulatory features of a
given type in pathway member genes, was calculated as follows:

NPIIp � 1
k
∑
k

j�1
NGREj,

where NGREj is the NGRE of a gene j involved in a pathway p, and k
is the total number of genes in this pathway.

2.2 Assessment of structural and functional
evolution rates

For the analysis of structural evolution, at the gene-wise level we
used dN/dS values for 10,890 common hominid genes extracted
from (Scally et al., 2012). For the pathway level of data analysis, we
used averaged dN/dS_pw values calculated across all genes
participating in the respective pathway, according to our
previously published research (Zakharova et al., 2023).

For the analysis of regulatory evolution, we used aggregated
NGRE (gene-wise level) and NPII (for pathways) scores. NGRE and
NPII were aggregated separately for the different types of
biomarkers used: (i) TFBS, (ii) active, and (iii) condensed
chromatin marks. Pre-calculated GRE and NGRE values for
10,891 genes in five human cell lines (K562, HepG2, GM12878,
MCF-7, HeLa-s3) were taken from our previous studies: for TFBS
data (Nikitin et al., 2019b; Zakharova et al., 2023), for
H3K4me1 chromatin mark (Nikitin et al., 2019c), and for
chromatin marks H3K4me3, H3K9ac, H3K27ac, H3K27me3, and
H3K9me3 (Igolkina et al., 2019). For each type of biomarkers,
weighted average NGRE profiles (NGREAGG) were calculated
among all 5 cell lines under analysis. The weight of a profile i
was expressed by the formula

wi � 1 − zi( )3

where zi is the proportion of zero/no data values in the profile i. This
factor increases importance of more informative profiles in the
calculation of an overall evolutionary metric.

2.3 Link between connectivity and evolution

We used our previously published molecular interactions
database comprising known protein-protein interactions and
metabolic reactions including 293,187 protein-protein and
600,136 total interactions (Zolotovskaia et al., 2022a; 2022b;
2023) to create human interactome model and quantify
interactions for 7,483 protein-coding genes.

To create this model, we used molecular architectures of
50,178 different pathways from public databases, uniformly
processed (Zolotovskaia et al., 2022b). Complex pathway nodes
containing n molecular participants were divided into n nodes
with only one participant. Thus, each vertex represents one
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pathway participant on the graph. We then combined all pathway
graphs together based on the coinciding gene products and
metabolites.

From all these pathways, we excluded molecular participants
which were not connected within the overall network (less than 1%
of the initial pathway members). The remaining molecular
interactors formed a connected graph.

The model exists as a directed graph where the nodes
correspond to gene products and metabolites, and edges
represent known pairwise molecular interactions between the
nodes (Supplementary Table S1). To assess connectivity on both
gene and pathway levels, we utilized data from interactome and
OncoboxPD pathway database (Zolotovskaia et al., 2022b;
Zakharova et al., 2023). The connectivity of a protein-coding
gene was defined as the number of incoming and outcoming
edges for the corresponding node. For the comparison of gene
connectivity with the NGRE scores and dN/dS, we used intersected
gene set where both types of data (connectivity and evolution
metrics), were available (Supplementary Figure S1). 12 genes
were excluded as outliers by connectivity (Supplementary Figure
S2). We obtained 4,505 genes (Supplementary Table S2). The same
gene sets were used also for the analysis at the level of molecular
pathways (Supplementary Figure S1).

The metric for assessing the connectivity of molecular pathways
is the averaged number of interactions per pathway. However, the
interactions were taken not from the individual pathway graph, but
they were obtained from the reconstructed human whole-
interactome model. The number of interactions was then divided
by the number of respective genes present in the corresponding
pathway. Thus, a normalized measure of interactions per pathway
was obtained, which provided an estimate of the interconnectivity
and interactions of genes in molecular pathways.

We evaluated connectivity in two ways: considering direct
protein-protein interactions and considering all interactions

including direct and indirect interactions with proteins,
metabolites. Indirect interactions were represented by interactions
through auxiliary nodes of biochemical reactions and
transport processes.

2.4 Estimating evolutionary rate of
molecular pathways

To analyze pathways and estimate their evolutionary rate, we
algorithmically constructed molecular pathways based on amodel of
the human interactome that integrates protein-protein interactions
and metabolic reactions (Zolotovskaia et al., 2022b; 2023).

Each molecular pathway was defined by a central gene and its
immediate neighbors directly connected in the graph of the interactome.
If a neighbor represented a node involved in a known biochemical
reaction or transport process, all members of that process were included
tomaintain process integrity. This resulted in 7,483molecular pathways.
In addition, we took 3,025 classicmolecular pathways fromOncoboxPD
database (Zolotovskaia et al., 2022b).

10,244 of 10,508 pathways contain genes with evolution and
interactome data (from the set of 4,505 genes). Then we selected
pathways with 10 and more genes and with more than 60% of genes
with data available to increase statistic robustness and assess
objectively whole molecular pathways. Also, we excluded
pathways, which were full duplicates accordingly to their gene
composition and pathways with high similarity (Jaccard
coefficient >0.7). This resulted in 1936 molecular pathways. All
filtration steps are available in Supplementary Figure S1. Duplicated
and similar pathways were excluded to avoid false positive results in
further correlation analysis due to duplicated values caused by the
same or similar gene composition.

For each pathway, structural evolutionary rates were determined
by calculating the dN/dS_pw, that is an aggregated dN/dS value for

FIGURE 1
Characterization of regulatory evolution rate at gene-wise level, exemplified for the analysis of TFBS data. Higher GRE reflects greater number of RE-
linked TFBS in a gene, higher NGRE - greater proportion of RE-linked TFBS in a gene. RE-linked TFBS are boxed. TFSx (Total Feature Score) is the total
number of hits associated with the regulatory feature of interest (both RE-linked and not) mapped within a 10-kb vicinity of the transcription start site of a
gene x.
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all genes involved in a pathway, averaged to the number of gene
products in a pathway, for which dN/dS data were available.

For regulatory evolution, normalized pathway involvement
indexes (NPII) that characterize the regulatory evolution were
calculated based on NGRE values. NPII values were then
calculated for each type of data, and weighted average NPII
values were obtained for aggregated TFBS, active and inactive
chromatin tags according to (Zakharova et al., 2023).

3 Results

3.1 Design of the study

Using the Retrospect method (Nikitin et al., 2019c), we
separately calculated NGRE and NPII scores for sets of (i) TFBS
data, (ii) active chromatin tags, and (iii) inactive chromatin tags
(Zakharova et al., 2023). Here, H3K4me3, H3K4me1, H3K9ac and
H3K27ac histone modifications were recognized as signatures of
promoter/enhancer regions and, consequently, marks of the active
chromatin. Conversely, H3K27me3 and H3K9me3 were considered
as markers of heterochromatin representing transcriptionally silent
domains of DNA (Zakharova et al., 2023). In addition, TFBS
patterns were indicative of the transcriptional factor binding
regulation of genes. We then aggregated the results for each of
these groups of raw data and compared the resulting aggregated
NGREagg and NPIIagg scores with dN/dS data (gene-wise as well as
aggregated at the molecular pathway level).

Using molecular interaction databases, we reconstructed the
human interactome, which includes 600,136 total and 293,187 direct
protein-protein interactions (Zolotovskaia et al., 2022b) and
determined the number of incoming and outgoing interactions
for each involved protein. Finally, we compared the obtained
estimates of NGRE (gene-level regulatory evolution metric), NPII
(pathway-level regulatory evolution metric), and dN/dS (gene- and
pathway-level structural evolution metric) with the number of
interactions for individual genes or molecular pathways.

3.2 Human oncointeractome model

Presenting overall interactome as a network/graph in addition to
providing a useful option for visualization also enables applying
mathematical apparatus for graph analysis, such as vertex/node
degree, degree distribution, degree sequence, and Brook’s and
Vizing’s theorems (Frieze et al., 1988; Karloff, 1989; Misra and
Gries, 1992) Here, a vertex/node is the fundamental unit of which
graphs are formed (Perfect, 1977).

In our study, we constructed a model of the human interactome
(Figure 2) built with 7,483 genes accordingly to (Zolotovskaia et al.,
2022b). The total number of interactions was 600,136, of which
293,187 were direct protein-protein interactions. The number of
interactions for each gene product is available in
Supplementary Table S2.

Some gene products showed an outstanding connectivity. For
example, gene PIK3CA that regulates key cellular processes
including growth and survival had 593 interactions. Gene
PRKACA, known for its multifaceted role in mediating cAMP

signaling and thereby influencing multiple cellular functions, had
588 mapped interactions. Similarly, gene GNG12 that encodes an
integral component of heterotrimeric G-proteins critical for signal
transduction, showed 574 interactions.

In addition, some gene products had numerous connections
with both proteins and metabolites, such as Lipin 1 (LPIN1), 1-
Acylglycerol-3-Phosphate O-Acyltransferase 1 (AGPAT) and
Phosphatidylserine Synthase 1 (PTDSS1), had 1,234, 1,227, and
960 interactions, respectively.

3.3 Comparison of structural and regulatory
evolution rates

On levels of individual genes, we found no meaningful
correlations for the connectivity with all types of regulatory
evolution rate metrics - for both protein-protein interactions
(Figures 3A, C, E, G) and metabolite-protein-protein interactions
(Figures 4A, C, E, G). For molecular pathways, we observed a weak
negative correlation (from −0.144 to −0.2, Figures 3B, D, F, H;
Figures 4 B, D, F, H).

However, on the level of structural evolution metrics, we
detected significant negative correlations with the connectivity for
both protein-protein (Figure 5) and metabolite-protein-protein
(Figure 6) interactions. These results are in line with the
previously published findings. However, we show here for the
first time that in both types of analysis, these correlations were
stronger for the pathways than for the individual gene products
(Spearman correlation −0.106 vs. −0.297 and −0.1 vs. −0.296,
respectively; Figures 5, 6).

At the same time, the structural and regulatory evolutionmetrics
themselves correlated on both gene (Spearman correlation
0.082–0.159, Figure 7) and pathway (Spearman correlation
0.253–0.374, Figure 8) levels. Again, the pathway level of data
analysis resulted in far stronger correlations among the
quantitative evolution rate metrics.

4 Discussion

Structural and regulatory evolution of protein-coding genes is
one of the central areas of evolutionary genomics. The dN/dS ratio, a
standard measure of evolutionary pressure, indicates the rate of
evolution of protein-coding genes, where values above one indicate
positive selection, below one indicates purifying selection, and near
one indicates neutral evolution (Kryazhimskiy and Plotkin, 2008).
This metric has long been used as a universal barometer of the rate of
evolution of genes, highlighting those undergoing rapid evolution
or, instead, conservation.

Recently, regulatory changes in gene evolution have attracted
increasing attention from the research community. The evolution of
gene regulation is often studied through changes in regulatory
elements such as transcription factor binding sites (TFBS) and
enhancers (Wray et al., 2003). In addition, histone modifications,
DNA methylation patterns and transposable elements also play a
major role in studying the evolution of gene regulation (Bird, 2007;
Feschotte, 2008). The Retrospect method we introduced recently
represents a new approach to measure regulatory evolution by
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quantifying the enrichment of functional motifs in gene promoters,
particularly motifs associated with transposable elements.
Retroelements (RE), for example, constitute a significant fraction
of transcription factor binding sites (TFBS), rearranging the
regulatory structure of the human genome. The specific metrics
were developed to quantitate the regulatory impact of REs on
individual genes with a focus on TFBS and chromatin tags
(Nikitin et al., 2019a).

The regulatory context can be extended to the level of molecular
pathways and the interactome. Studies integrating evolutionary
perspectives have explored the relationship between the evolution
of proteins and their properties in interaction networks, such as
connectivity (Dosztányi et al., 2006; Mosca et al., 2012), suggesting
that there is a complex relationship between a gene’s position in the

interactome and its rate of evolution (Hahn and Kern, 2005). It has
been repeatedly suggested that proteins with higher connectivity
evolve slowly (Brookfield, 2000; Fraser et al., 2002; Fraser et al., 2003;
Teixeira et al., 2019). This is probably due to the constraints imposed
by their multiple interactions. Lemos et al. (2004) observed a
negative correlation between protein-protein interactions and
evolutionary diversity in gene expression, implying a possible
constraint on the regulatory evolution of genes. This relationship
implies that higher levels of protein-protein interactions are
associated with reduced variability in gene expression across
evolutionary periods, while lower levels of protein interactions
may lead to greater variability in gene expression.

In addition, Brown et al. demonstrated that the number of
interacting proteins is positively correlated with evolutionary

FIGURE 2
Schematic representation of the human interactomemodel. Graph vertices correspond to gene products, metabolites and auxiliary nodes denoted
biochemical reactions and transport processes. Edges present interactions between nodes. (A) Color indicates number of protein-protein interactions
per each protein node. (B), Color indicates number of total molecular interactions per each protein node. (C), representative interaction network shown
for protein P53. (D), representative interaction network shown for protein BRAF. Edges inherit color from the corresponding outcoming
donor nodes.
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conservation, suggesting that proteins with more interactions are
more likely to be conserved (Brown and Jurisica, 2007). In addition,
structurally disordered regions of proteins, especially those that play
a role in their interaction networks, have been found to be
evolutionarily important. As become evident in large-scale
analysis of the human, fly, and yeast interactomes, although less
conserved, these regions are involved in the evolutionary adaptation
of protein networks (Dosztányi et al., 2006; Mosca et al., 2012).

A study of the cancer interactome showed that cancer proteins
playing major roles in pathology, evolve more slowly and undergo
stronger purifying selection compared to non-cancerous proteins.
These proteins show a strong association between their evolutionary
age and network connectivity. In these proteins, a significant correlation
between nonsynonymous mutation rate and network connectivity was
detected, thus highlighting the impact of these mutations on tumor
development and progression (Cheng et al., 2014).

FIGURE 3
Correlation analysis of gene-level (left) and pathway-level (right) connectivity metrics deduced for protein-protein interactions with the respective
regulatory evolution rates measured for the active chromatin, inactive chromatin, and TFBS marks. (A) Number of direct protein-protein interactions
versus active chromatin marks-based retroelement enrichment metrics (NGREac). Each point corresponds to a gene. (B) Averaged number of direct
protein-protein interactions per pathway versus active chromatin marks-based retroelement enrichment metrics (NPIIac). Each point corresponds
to a pathway. (C) Number of direct protein-protein interactions versus heterochromatin marks-based retroelement enrichment metrics NGREhc. Each
point corresponds to a gene. (D) Averaged number of direct protein-protein interactions per pathway versus heterochromatinmarks-based retroelement
enrichment metrics (NPIIhc). Each point corresponds to a pathway. (E) Number of direct protein-protein interactions versus TFBS-based retroelement
enrichment metrics (NGRETFBS). Each point corresponds to a gene. (F) Averaged number of direct protein-protein interactions per pathway versus TFBS-
based retroelement enrichment metrics (NPIITFBS). Each point corresponds to a pathway. (G) Number of direct protein-protein interactions versus
aggregated retroelement enrichment metrics NGREAGG. Each point corresponds to a gene. (H) Averaged number of direct protein-protein interactions
per pathway versus aggregated retroelement enrichment metrics (NPIIAGG). Each point corresponds to a pathway.
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We detected a week negative association between the rate of
structural evolution and number of protein interactions. The
association is strongly statistically significant and may represent
a general trend. However, there are remarkable exceptions where
the opposite is true, e.g., proteins UBE2U, IL3, and
CXCL13 having high dN/dS (>1.3) and at the same time high

number of protein-protein interactions (361, 184 and 168,
respectively).

On the other hand, regulatory evolution appears to proceed
differently than structural evolution. The relationship between the
rate of regulatory evolution and position in the interactome is not so
clear-cut and may vary depending on specific regulatory elements

FIGURE 4
Correlation analysis of gene-level (left) and pathway-level (right) connectivity metrics deduced for metabolite-protein-protein interactions (all
interactions) with the respective regulatory evolution rates measured for the active chromatin, inactive chromatin, and TFBS marks. (A) Number of all
(direct and indirect, with proteins and metabolites) interactions versus active chromatin marks-based retroelement enrichment metrics (NGREac). Each
point corresponds to a gene. (B) Averaged number of all (direct and indirect, with proteins and metabolites) interactions per pathway versus active
chromatin marks-based retroelement enrichment metrics (NPIIac). Each point corresponds to a pathway. (C) Number of all (direct and indirect, with
proteins and metabolites) interactions versus heterochromatin marks-based retroelement enrichment metrics NGREhc. Each point corresponds to a
gene. (D) Averaged number of all (direct and indirect, with proteins and metabolites) interactions per pathway versus heterochromatin marks-based
retroelement enrichment metrics (NPIIhc). Each point corresponds to a pathway. (E) Number of all (direct and indirect, with proteins and metabolites)
interactions versus TFBS-based retroelement enrichment metrics (NGRETFBS). Each point corresponds to a gene. (F) Averaged number of all (direct and
indirect, with proteins andmetabolites) interactions per pathway versus TFBS-based retroelement enrichmentmetrics (NPIITFBS). Each point corresponds
to a pathway. (G) Number of all (direct and indirect, with proteins and metabolites) interactions versus aggregated retroelement enrichment metrics
NGREAGG. Each point corresponds to a gene. (H) Averaged number of all (direct and indirect, with proteins and metabolites) interactions per pathway
versus aggregated retroelement enrichment metrics (NPIIAGG). Each point corresponds to a pathway.
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and mechanisms (He and Zhang, 2006; Jovanovic et al., 2021). So
far, different opinions have been expressed as to whether there is a
relationship between the rate of protein evolution and the number of

protein interactions (Saeed and Deane, 2006). There remains a gap
in our understanding of how regulatory evolution is consistent with
interactome connectivity.

FIGURE 5
Correlation analysis of gene-level (left) and pathway-level (right) connectivity metrics deduced for protein-protein interactions with the respective
structural evolution rates. (A) Number of direct protein-protein interactions versus dN/dS. Each point corresponds to a gene. (B) Averaged number of
direct protein-protein interactions per pathway versus dN/dS_pw (averaged dN/dS per pathway). Each point corresponds to a pathway.

FIGURE 6
Correlation analysis of gene-level (left) and pathway-level (right) connectivity metrics deduced formetabolite-protein-protein interactions with the
respective structural evolution rates. (A) Number of all (direct and indirect, with proteins and metabolites) interactions versus dN/dS. Each point
corresponds to a gene. (B) Averaged number of all (direct and indirect, with proteins and metabolites) interactions per pathway versus dN/dS_pw
(averaged dN/dS per pathway). Each point corresponds to a pathway.
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Here we for the first time investigated relationship between
regulatory evolution metrics and number of protein-protein and
protein-metabolite interactions. We had no starting hypotheses of
whether such an association should exist or not. We observed
statistically significant correlation on the level of molecular
pathway analysis, but not on the level of individual genes. These
results may suggest an overall evolutionary selection trend that
largely reshapes the biological processes rather than
individual genes.

In our study, we combined quantitative measures of
structural and regulatory evolution to analyze the human
interactome model built with 7,483 genes. We found a marked
correlation between the rates of structural and regulatory
evolution of protein-coding genes, evident at both the gene
and pathway levels, as assessed by transcription factor binding
sites and histone modification mapping data. Our results suggest
a common structural/regulatory evolutionary trajectory at the
pathway level and weaker but still discernible trends at the
gene level.

Weak correlations at the gene level mean that structural and
regulatory evolution are relatively dissociated in many individual
genes. This may suggest that genes can adopt regulatory flexibility
that allows them to change gene expression pattern without altering
protein function. Such flexibility may be important for adapting to
new environmental or developmental contexts while maintaining
the desired protein structure. Other genes may be less conservative
structurally but more stable in terms of regulation. Bigger
correlations at the pathway level suggest more coordinated
evolution because pathways depend on multiple genes working in
concert. Significant structural changes in a gene may require
regulatory changes to maintain the balance of protein function
within a pathway, meaning that coordination between these two
forms of evolution becomes more pronounced within integral
biological processes.

On the other hand, we detected no significant correlation
between the rate of regulatory evolution and human gene
connectivity in the interactome model built, suggesting that the
dynamics of regulatory mechanisms do not necessarily correspond

FIGURE 7
Correlation analysis of gene-level structural and regulatory evolutionmetrics deduced for active chromatin (A), inactive chromatin (B), TFBS (C), and
aggregated regulatory evolution metric (D).
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to the degree of gene connectivity. This indicates that regulatory
adaptation may act independently of the frequency of gene
interactions.

In this study, we performed the first comparison of structural
and regulatory evolution rates with the connectivity, on both gene
and pathway levels. A correlation was detected for the structural
evolution rates, and the pathway level of data analysis resulted in
greater correlations. Thus, as found in several previous studies from
different domains (Borisov et al., 2017), the pathway level of data
analysis has the advantage of increased data stability.

The correlation between dN/dS and gene connectivity may have
applications, for example, for the task of determining the type of
inheritance of a gene-related disease. Thus, we verified that both dN/
dS and gene connectivity are related to inheritance type. We took
genes with known non-conflict inheritance type (543 genes with
autosomal dominant inheritance only and 894 genes with autosomal
recessive inheritance only accordingly to OMIM) and obtained
significant differences in both dN/dS and linkage between genes

with different inheritance type (Wilcoxon test p-values of 1.3*10–38

and 2.2*10–13, respectively, Supplementary Figure S3). Genes with
autosomal dominant inheritance were more conservative and had
more direct protein-protein interactions than genes with autosomal
recessive inheritance. The combination of dN/dS and number of
interactions increases the difference (Wilcoxon test p-value 1*10–40,
Supplementary Figure S3), and can be used as an additional criterion
for in silico determination of the type of inheritance for gene-related
disease. In addition, one of these two parameters can be used when
data for another is absent.

We used previously published datasets on human functional
gene regulatory markers, which limits the study from capturing
novel interactions or evolutionary changes. Nevertheless, we chose
data that allowed us to perform a comprehensive assessment of RE-
enrichment of histone marks and TFBS. In the future, our analysis
can be repeated with greater samples and more diverse types of
functional genome marks to further explore the evolutionary trends
of human, primate, and non-primate genomes.

FIGURE 8
Correlation analysis of pathway-level structural and regulatory evolution metrics deduced for active chromatin (A), inactive chromatin (B), TFBS (C),
and aggregated regulatory evolution metric (D).
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This study deepens our understanding of evolutionary
interactions at the genetic and pathway levels, offering new
perspectives on the adaptive landscape of molecular biology. Our
understanding of the co-evolution of structural and regulatory
aspects of genes paves the way for further exploration of the
complex interdependencies governing gene and pathway
evolution, with broad implications for disease research,
evolutionary biology, and other fields.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

RM: Data curation, Formal Analysis, Visualization,
Writing–original draft. MZ: Conceptualization, Methodology,
Project administration, Writing–review and editing. MS:
Conceptualization, Methodology, Project administration,
Writing–review and editing. TM: Investigation, Writing–review
and editing. NS: Data curation, Formal Analysis, Writing–review
and editing. IM: Formal Analysis, Writing–review and editing. VT:
Conceptualization, Methodology, Writing–review and editing. AM:
Data curation, Writing–review and editing. AS: Data curation,
Writing–review and editing. DK: Conceptualization, Project
administration, Writing–review and editing. Anton AB:
Conceptualization, Methodology, Writing–original draft.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The
processing of the interactome model was financially supported by
the project “Digital technologies for quantitative medicine
solutions” FSMG-2021–0006 (Agreement No. 075-03-2024-117 of
17 January 2024). Correlation analysis of structural and regulatory
evolutionary metrics was supported by the Russian Science
Foundation grant 20-75-10071.

Conflict of interest

Author VT was employed by Oncobox Ltd.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1472638/
full#supplementary-material

SUPPLEMENTARY TABLE S1
Interactome model, including list of interactions, genes and metabolites.

SUPPLEMENTARY TABLE S2
Lists of genes and molecular pathways analyzed with evolution metrics and
number of direct protein-protein and all (protein-protein-metabolite)
interactions.

SUPPLEMENTARY FIGURE S1
Selection of the genes and pathways, used in the study.

SUPPLEMENTARY FIGURE S2
Distribution of number of interactions per gene product. (A) Number or
direct protein-protein interactions. (B) Number of all direct and indirect
molecular interactions. Red vertical line is threshold for outliers, which
were excluded from the study.

SUPPLEMENTARY FIGURE S3
Distribution of number of direct protein-protein interactions and dN/dS for
genes with known inheritance type. (A) Number of direct protein-protein
interactions per gene. (B) dN/dS values. (C) Combination of dN/dS and
number of direct protein-protein interactions (ranked value).

References

Batada, N. N., Hurst, L. D., and Tyers, M. (2006). Evolutionary and physiological
importance of hub proteins. PLoS Comput. Biol. 2, e88–e0756. doi:10.1371/JOURNAL.
PCBI.0020088

Bird, A. (2007). Perceptions of epigenetics. Nature 447, 396–398. doi:10.1038/
NATURE05913

Bloom, J. D., and Adami, C. (2003). Apparent dependence of protein evolutionary
rate on number of interactions is linked to biases in protein-protein interactions data
sets. BMC Evol. Biol. 3, 21. doi:10.1186/1471-2148-3-21

Borisov, N., Suntsova, M., Sorokin, M., Garazha, A., Kovalchuk, O., Aliper, A., et al.
(2017). Data aggregation at the level of molecular pathways improves stability of
experimental transcriptomic and proteomic data. Cell Cycle 16, 1810–1823. doi:10.1080/
15384101.2017.1361068

Brookfield, J. F. Y. (2000). What determines the rate of sequence evolution? Curr. Biol.
10, R410-R0411. doi:10.1016/S0960-9822(00)00506-6

Brown, K. R., and Jurisica, I. (2007). Unequal evolutionary conservation of human
protein interactions in interologous networks. Genome Biol. 8, R95. doi:10.1186/GB-
2007-8-5-R95

Cheng, F., Jia, P., Wang, Q., Lin, C. C., Li, W. H., and Zhao, Z. (2014). Studying
tumorigenesis through network evolution and somatic mutational perturbations in the
cancer interactome. Mol. Biol. Evol. 31, 2156–2169. doi:10.1093/MOLBEV/MSU167

Dosztányi, Z., Chen, J., Dunker, A. K., Simon, I., and Tompa, P. (2006). Disorder and
sequence repeats in hub proteins and their implications for network evolution.
J. Proteome Res. 5, 2985–2995. doi:10.1021/PR060171O

Drummond, D. A., Raval, A., and Wilke, C. O. (2006). A single determinant
dominates the rate of yeast protein evolution. Mol. Biol. Evol. 23, 327–337. doi:10.
1093/MOLBEV/MSJ038

Feschotte, C. (2008). Transposable elements and the evolution of regulatory networks.
Nat. Rev. Genet. 9, 397–405. doi:10.1038/NRG2337

Frontiers in Genetics frontiersin.org12

Mekic et al. 10.3389/fgene.2024.1472638

https://www.frontiersin.org/articles/10.3389/fgene.2024.1472638/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1472638/full#supplementary-material
https://doi.org/10.1371/JOURNAL.PCBI.0020088
https://doi.org/10.1371/JOURNAL.PCBI.0020088
https://doi.org/10.1038/NATURE05913
https://doi.org/10.1038/NATURE05913
https://doi.org/10.1186/1471-2148-3-21
https://doi.org/10.1080/15384101.2017.1361068
https://doi.org/10.1080/15384101.2017.1361068
https://doi.org/10.1016/S0960-9822(00)00506-6
https://doi.org/10.1186/GB-2007-8-5-R95
https://doi.org/10.1186/GB-2007-8-5-R95
https://doi.org/10.1093/MOLBEV/MSU167
https://doi.org/10.1021/PR060171O
https://doi.org/10.1093/MOLBEV/MSJ038
https://doi.org/10.1093/MOLBEV/MSJ038
https://doi.org/10.1038/NRG2337
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1472638


Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C., and Feldman, M. W. (2002).
Evolutionary rate in the protein interaction network. Science 296, 750–752. doi:10.1126/
SCIENCE.1068696

Fraser, H. B., Wall, D. P., and Hirsh, A. E. (2003). A simple dependence between
protein evolution rate and the number of protein-protein interactions. BMC Evol. Biol.
3, 11. doi:10.1186/1471-2148-3-11

Frieze, A. M., Jackson, B., McDiarmid, C. J. H., and Reed, B. (1988). Edge-colouring
random graphs. J. Comb. Theory, Ser. B 45, 135–149. doi:10.1016/0095-8956(88)90065-2

Gogvadze, E., and Buzdin, A. (2009). Retroelements and their impact on genome evolution
and functioning. Cell Mol. Life Sci. 66, 3727–3742. doi:10.1007/S00018-009-0107-2

Hahn, M. W., Conant, G. C., and Wagner, A. (2004). Molecular evolution in large
genetic networks: does connectivity equal constraint? J. Mol. Evol. 58, 203–211. doi:10.
1007/S00239-003-2544-0

Hahn, M. W., and Kern, A. D. (2005). Comparative genomics of centrality and
essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22,
803–806. doi:10.1093/MOLBEV/MSI072

He, X., and Zhang, J. (2006). Toward a molecular understanding of pleiotropy.
Genetics 173, 1885–1891. doi:10.1534/GENETICS.106.060269

Igolkina, A. A., Zinkevich, A., Karandasheva, K. O., Popov, A. A., Selifanova, M. V.,
Nikolaeva, D., et al. (2019). H3K4me3, H3K9ac, H3K27ac, H3K27me3 and
H3K9me3 histone tags suggest distinct regulatory evolution of open and condensed
chromatin landmarks. Cells 8, 1034. doi:10.3390/CELLS8091034

Jeffares, D. C., Tomiczek, B., Sojo, V., and dos Reis, M. (2015). A beginners guide to
estimating the non-synonymous to synonymous rate ratio of all protein-coding genes in
a genome. Methods Mol. Biol. 1201, 65–90. doi:10.1007/978-1-4939-1438-8_4

Jordan, I. K., Wolf, Y. I., and Koonin, E. V. (2003). No simple dependence between protein
evolution rate and the number of protein-protein interactions: only the most prolific
interactors tend to evolve slowly. BMC Evol. Biol. 3, 1. doi:10.1186/1471-2148-3-1

Jovanovic, V. M., Sarfert, M., Reyna-Blanco, C. S., Indrischek, H., Valdivia, D. I.,
Shelest, E., et al. (2021). Positive selection in gene regulatory factors suggests adaptive
pleiotropic changes during human evolution. Front. Genet. 12, 662239. doi:10.3389/
FGENE.2021.662239

Karloff, H. J. (1989). An NC algorithm for brooks’ theorem. Theor. Comput. Sci. 68,
89–103. doi:10.1016/0304-3975(89)90121-7

Kryazhimskiy, S., and Plotkin, J. B. (2008). The population genetics of dN/dS. PLoS
Genet. 4, e1000304. doi:10.1371/JOURNAL.PGEN.1000304

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al.
(2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.
doi:10.1038/35057062

Lemos, B., Meiklejohn, C. D., and Hartl, D. L. (2004). Regulatory evolution across the
protein interaction network. Nat. Genet. 36, 1059–1060. doi:10.1038/NG1427

Misra, J., and Gries, D. (1992). A constructive proof of Vizing’s theorem. Inf. Process
Lett. 41, 131–133. doi:10.1016/0020-0190(92)90041-S

Mosca, R., Pache, R. A., and Aloy, P. (2012). The role of structural disorder in the
rewiring of protein interactions through evolution. Mol. Cell Proteomics 11,
M111.014969. doi:10.1074/MCP.M111.014969

Nikitin, D., Garazha, A., Sorokin, M., Penzar, D., Tkachev, V., Markov, A., et al.
(2019a). Retroelement-linked transcription factor binding patterns point to quickly
developing molecular pathways in human evolution. Cells 8, 130. doi:10.3390/
CELLS8020130

Nikitin, D., Kolosov, N., Murzina, A., Pats, K., Zamyatin, A., Tkachev, V., et al.
(2019b). Retroelement-linked H3K4me1 histone tags uncover regulatory evolution
trends of gene enhancers and feature quickly evolving molecular processes in human
physiology. Cells 8, 1219. doi:10.3390/CELLS8101219

Nikitin, D., Penzar, D., Garazha, A., Sorokin, M., Tkachev, V., Borisov, N., et al.
(2018). Profiling of human molecular pathways affected by retrotransposons at the level
of regulation by transcription factor proteins. Front. Immunol. 9, 30. doi:10.3389/
FIMMU.2018.00030

Nikitin, D., Sorokin, M., Tkachev, V., Garazha, A., Markov, A., and Buzdin, A.
(2019c). RetroSpect, a new method of measuring gene regulatory evolution rates using
co-mapping of genomic functional features with transposable elements. Evol. Orig. Life,
Concepts Methods, 85–111. doi:10.1007/978-3-030-30363-1_5

Perfect, H. (1977). by Graph theory 1736-1936, by N. L. Biggs, E. K. Lloyd and R.
J. Wilson. Pp xi, 239. £9·50. 1976. SBN 0 19 853901 0 (oxford university press),
N. L. Biggs, E. K. Lloyd, and R. J. Wilson Graph theory 1736-1936, by N. L. Biggs, E. K.
Lloyd and R. J. Wilson. Pp xi, 239. £9·50. 1976. SBN 0 19 853901 0 (oxford university
press), Oxford University Press. The mathematical gazette 61, 233. doi:10.2307/3617244

Saeed, R., and Deane, C. M. (2006). Protein protein interactions, evolutionary rate,
abundance and age. BMC Bioinforma. 7, 128. doi:10.1186/1471-2105-7-128

Scally, A., Dutheil, J. Y., Hillier, L. W., Jordan, G. E., Goodhead, I., Herrero, J., et al.
(2012). Insights into hominid evolution from the gorilla genome sequence. Nature 483,
169–175. doi:10.1038/NATURE10842

Teixeira, M. B., Alborghetti, M. R., and Kobarg, J. (2019). Fasciculation and
elongation zeta proteins 1 and 2: from structural flexibility to functional diversity.
World J. Biol. Chem. 10, 28–43. doi:10.4331/WJBC.V10.I2.28

Wray, G. A., Hahn, M. W., Abouheif, E., Balhoff, J. P., Pizer, M., Rockman, M. V.,
et al. (2003). The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol.
20, 1377–1419. doi:10.1093/MOLBEV/MSG140

Zakharova, G., Modestov, A., Pugacheva, P., Mekic, R., Savina, E., Guryanova, A.,
et al. (2023). Distinct traits of structural and regulatory evolutional conservation of
human genes with specific focus on major cancer molecular pathways. Cells 2023 12,
1299. doi:10.3390/CELLS12091299

Zolotovskaia, M., Kovalenko, M., Pugacheva, P., Tkachev, V., Simonov, A., Sorokin,
M., et al. (2023). Algorithmically reconstructed molecular pathways as the new
generation of prognostic molecular biomarkers in human solid cancers. Proteomes
11, 26. doi:10.3390/proteomes11030026

Zolotovskaia, M. A., Kovalenko, M. A., Tkachev, V. S., Simonov, A. M., Sorokin, M. I.,
Kim, E., et al. (2022a). Next-generation grade and survival expression biomarkers of
human gliomas based on algorithmically reconstructed molecular pathways. Int. J. Mol.
Sci. 23, 7330. doi:10.3390/IJMS23137330

Zolotovskaia, M. A., Tkachev, V. S., Guryanova, A. A., Simonov, A. M., Raevskiy, M.
M., Efimov, V. V., et al. (2022b). OncoboxPD: human 51 672 molecular pathways
database with tools for activity calculating and visualization. Comput. Struct. Biotechnol.
J. 20, 2280–2291. doi:10.1016/J.CSBJ.2022.05.006

Frontiers in Genetics frontiersin.org13

Mekic et al. 10.3389/fgene.2024.1472638

https://doi.org/10.1126/SCIENCE.1068696
https://doi.org/10.1126/SCIENCE.1068696
https://doi.org/10.1186/1471-2148-3-11
https://doi.org/10.1016/0095-8956(88)90065-2
https://doi.org/10.1007/S00018-009-0107-2
https://doi.org/10.1007/S00239-003-2544-0
https://doi.org/10.1007/S00239-003-2544-0
https://doi.org/10.1093/MOLBEV/MSI072
https://doi.org/10.1534/GENETICS.106.060269
https://doi.org/10.3390/CELLS8091034
https://doi.org/10.1007/978-1-4939-1438-8_4
https://doi.org/10.1186/1471-2148-3-1
https://doi.org/10.3389/FGENE.2021.662239
https://doi.org/10.3389/FGENE.2021.662239
https://doi.org/10.1016/0304-3975(89)90121-7
https://doi.org/10.1371/JOURNAL.PGEN.1000304
https://doi.org/10.1038/35057062
https://doi.org/10.1038/NG1427
https://doi.org/10.1016/0020-0190(92)90041-S
https://doi.org/10.1074/MCP.M111.014969
https://doi.org/10.3390/CELLS8020130
https://doi.org/10.3390/CELLS8020130
https://doi.org/10.3390/CELLS8101219
https://doi.org/10.3389/FIMMU.2018.00030
https://doi.org/10.3389/FIMMU.2018.00030
https://doi.org/10.1007/978-3-030-30363-1_5
https://doi.org/10.2307/3617244
https://doi.org/10.1186/1471-2105-7-128
https://doi.org/10.1038/NATURE10842
https://doi.org/10.4331/WJBC.V10.I2.28
https://doi.org/10.1093/MOLBEV/MSG140
https://doi.org/10.3390/CELLS12091299
https://doi.org/10.3390/proteomes11030026
https://doi.org/10.3390/IJMS23137330
https://doi.org/10.1016/J.CSBJ.2022.05.006
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1472638

	Number of human protein interactions correlates with structural, but not regulatory conservation of the respective genes
	1 Introduction
	2 Methods
	2.1 Genomic retroelement enrichment data
	2.2 Assessment of structural and functional evolution rates
	2.3 Link between connectivity and evolution
	2.4 Estimating evolutionary rate of molecular pathways

	3 Results
	3.1 Design of the study
	3.2 Human oncointeractome model
	3.3 Comparison of structural and regulatory evolution rates

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


