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N7-Methylguanosine (m7G) is important RNAmodification at internal and the cap
structure of five terminal end of message RNA. It is essential for RNA stability of
RNA, the efficiency of translation, and various intracellular RNA processing
pathways. Given the significance of the m7G modification, numerous studies
have been conducted to predict m7G sites. To further elucidate the regulatory
mechanisms surrounding m7G, we introduce a novel bioinformatics framework,
m7GRegpred, designed to forecast the targets of the m7G methyltransferases
METTL1 and WDR4, and m7G readers QKI5, QKI6, and QKI7 for the first time. We
integrated different features to build predictors, with AUROC scores of 0.856,
0.857, 0.780, 0.776, 0.818 for METTL1, WDR4, QKI5, QKI6, and QKI7, respectively.
In addition, the effect of window lengths and algorism were systemically
evaluated in this work. The finial model was summarized in a user-friendly
webserver: http://modinfor.com/m7GRegpred/. Our research indicates that
the substrates of m7G regulators can be identified and may potentially
advance the study of m7G regulators under unique conditions.
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1 Introduction

Transcriptomics is a rapidly emerging frontier discipline in recent years, has made many
advances. So far 170 RNA modifications have been identified (Boccaletto et al., 2022). N7-
methylguanosine (m7G) is a widely present modified form of RNA molecules, mainly found
in the 5 terminal end of cap structure and internal positions of mRNA in eukaryotes. In
addition, it is also found in the interior of rRNA and tRNA of various species. Additionally,
recent research has revealed that miRNAs are also subject to m7G methylation (Furuichi,
2015). Beyond its role in RNA’s standard physiological metabolic processes, m7G has played
as a significant role in cancer research. Recent studies indicate that m7G and its associated
regulatory proteins are considerably dysregulated in tumorigenesis (Katsara and Schneider,
2021). According to recent findings, the proportion of internal m7G/G in eukaryotic mRNAs
typically falls between 0.02% and 0.05%, which is 5%–10% of the m6A/A ratio withinmRNAs
(Malbec et al., 2019).
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As with various epigenetic modifications that have been
examined, m7G on mRNA can bind with regulatory proteins,
thus exerting pivotal roles in the complex biological processes of
human cells. It is installed by the methyltransferases METTL1 and
WDR4 (Vernet and Artzt, 1997). Additionally, three m7G readers,
QKI5, QKI6, and QKI7, have been identified to preferentially
recognize internal mRNA m7G modifications (Zhang et al.,
2019), playing key roles in the regulation of RNAs carrying m7G.

The METTL1-WDR4 methyltransferase complex facilitates the
formation of N (7)-methylguanosine on RNA with different
category, including tRNA, mRNA, and microRNA (miRNA).
Together, they mediate the m7G modification at the 46th
position of tRNA. METTL1, the active unit of the complex, is a
member of the Class I methyltransferase (MTase) family.
Specifically, METTL1 is responsible for the addition of N (7)-
methylguanosine at the 46th guanosine (m7G46) in a subset of
tRNAs characterized by the presence of the 5′-RAGGU-3′ motif in
the variable loop. This particular modification contributes to the
stabilization of the tRNA’s tertiary structure and shields it from
enzymatic degradation (Katsara and Schneider, 2021).

WDR4, on the other hand, is an inactive unit with the classic
ring structure of the WD40 protein family, composed of seven
repeated domains (B1-B7). METTL1 and WDR4 form a binary
complex that provides a positively charged binding platform for the
tRNA substrate. The tRNA is positioned at an angle on the complex,
allowing its modification site (G46) to face the active pocket of
METTL1. WDR4 serves as a scaffold, binding METTL1 and tRNA
through its B3-B4 domains. Therefore, METTL1 requires the
association with WDR4 to exert its normal methyltransferase
activity (Li et al., 2023).

QKI belongs to the STAR domain family, a group of RNA-
binding proteins (RBPs) with the K homology (KH) domain that
plays a role in signaling pathways and RNAmetabolism modulation
(Zhao et al., 2023). The QKI gene encodes three major isoforms:
QKI5, QKI6, and QKI7 (Darbelli and Richard, 2016). Research
indicates that while QKI6 and QKI7 isoforms are mainly found in
the cytoplasm, QKI5 is predominantly located in the nucleus. Stress
granules (SGs) are non-membrane-bound cytoplasmic organelles
formed under stress conditions, which can regulate mRNA stability,
translation, storage, and may be linked to tumorigenesis and drug
resistance. Recent studies have highlighted the significance of RNAs
and their interacting RNA-binding proteins (RBPs) in stress granule
formation. Under stress conditions, both QKI6 and QKI7 isoforms
directly interact with G3BP1, a core component of stress granules
leading to their co-localization within SGs. This interaction
facilitates the sequestration of numerous internally m7G-modified
mRNAs into stress granules impacting mRNA stability and
translational efficiency (Zhao et al., 2023).

While numerous bioinformatics studies have collected RNA
modification sites (Song et al., 2020; Ma et al., 2022; Zhang et al.,
2023), and successfully predicted RNA modification sites in
transcriptomics (Chen et al., 2019a; Chen et al., 2018; Chen
et al., 2019b). For the prediction of m7G sites, about a dozen of
predictor were developed and updated, by using sequence and
structure features of m7G sites and training models with
machine learning and deep learning (summarized in
Supplementary Table S1). These state-of-the-art tools provide the
accurate prediction of m7G sites, there has been a lack of focus on

the specific substrates targeted by various m7G-related enzymes.
Our study presents a new bioinformatics framework,
“m7GRegpred,” which utilizes machine learning algorithms and
sequence-based features to predict substrate specificity for m7G
writers METTL1, WDR4, and readers QKI5, QKI6, and QKI7.
Previous research has linked RNA modification and their
regulators to various diseases (Song et al., 2023a; Wang et al.,
2024; Song et al., 2023b). The m7GRegpred framework may aid
in identifying substrates for each m7G regulator, offering insight
into their roles in human diseases.

2 Methods and materials

2.1 The m7G sites and substrates of
regulators

The m7GHub V2.0 database (Wang et al., 2024) provided data
on m7G sites throughout the entire transcriptome, with
430,898 potential m7G sites identified in 23 species using both
commonly used next-generation sequencing (NGS) and the newly
developed Oxford Nanopore direct RNA sequencing (ONT)
techniques. In this study, we utilized the 169,718 human m7G
sites acquired from m7GHub V2.0 (Wang et al., 2024) and the
binding regions of writers or readers from Gene Expression
Omnibus (GEO) (Barrett et al., 2013) dataset (Table 1). The
modification sites that overlapped with binding regions were
identified as the substrates of m7G regulators.

In our predictions, we identified positive sites as guanine sites
within the substrate region of m7G regulatory factors, andmaintained
a 1:1 ratio by randomly selecting negative sites from unmethylated or
unregulated guanine sites on the same transcript. Redundant
sequences were removed using CD-HIT (Fu et al., 2012) software
with default parameters. The non-redundant site data was then used
to train the predictor, with 80% of the sites reserved for training and
the remaining 20% for independent testing. Our prediction models
were constructed using full transcript data, the unmodified and
methylated sites from both exons and introns were considered.

2.2 Feature encoding methods

2.2.1 Binary encoding method (OH)
Binary encoding method as known as one hot encoding is used

to convert nucleotides in biological sequences into numerical form

TABLE 1 Sequencing results for identifying substrate of m7G regulators.

Regulators
Techniques GEO

accession
References

METTL1 PAR-CLIP GSE100756 Bao et al. (2018)

GSE112276 Zhang et al.
(2019)

WDR4

QKI5 RIP-seq GSE193036 Zhao et al. (2023)

QKI6

QKI7
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(Zhou et al., 2016). Each nucleotide (A, C, G, U) is encoded as a four-
bit binary vector. For example, the sequence UACCGU are
converted into binary vectors {(0,0,0,1), (1,0,0,0), (0,1,0,0),
(0,1,0,0), (0,0,1,0), (0,0,0,1)}.

2.2.2 Nucleic acid composition (NAC)
Within the scope of our research, we have harnessed the

frequencies of dinucleotide pairs for the encoding of sequences,

encapsulated in a 16-dimensional feature vector encompassing
combinations from AA to UU. The feature vector Fi is defined
as (fAA, fAc, fAG, . . . . . .fUU, ). Wherein the symbol f signifies the
relative incidence of the dinucleotide within the i-th sequence.

2.2.3 Accumulated nucleotide frequency (ANF)
This method breaks down each sequence into individual

nucleotides and generates a feature at each position within the

FIGURE 1
The data statistics and motif analysis of m7G regulator-specific substrates. (A) The number of known substrates of m7G regulators. The details are
shown in Supplementary Table S2. (B) The Venn diagram of m7G substrates for m7G regulators by R package, ggvenn. (C) The major motifs of substrates
for m7G regulators using XSTREME.
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sequence. Each feature represents the cumulative occurrence of the
nucleotides at that position in the sequence. The i-th nucleotide
feature is determined by the frequency of that nucleotide appearing
in the initial i nucleotides of the sequence.

2.2.4 Pseudo k-tuple composition (PKC)
In the bioinformatic field, PKC has gained widespread adoption

as an encoding method, encompassing applications in protein,
DNA, and RNA prediction (Feng C. Q. et al., 2019; Feng P.
et al., 2019; Guo et al., 2014; Liu et al., 2018a; Liu et al., 2018b;
Su et al., 2018). Numerous bioinformatics tools, web-based
platforms, and software packages have incorporated PKC
methods into their repertoire. In this study, we applied the PKC
method to encode RNA sequence from online servers (Chen Z.
et al., 2021).

2.2.5 Chemical property (CP)
The encoding of nucleotide sequences is achieved by leveraging

three distinct chemical properties: the presence of ring structures,
the type of functional groups, and the capacity for hydrogen
bonding. Specifically, adenine (A) and cytosine (C) are
characterized by an amino group, in contrast to guanine (G) and
uracil (U), which feature a keto group. A and G possess a double-
ring structure, while C and U are distinguished by a single ring.
During the process of hybridization, A and U are capable of
establishing two hydrogen bonds, but triple hydrogen bond
happens in G and C hybridization. Utilizing these chemical

attributes, A = (1,1,1), C = (0,1,0), G = (1,0,0), U = (0,0,1).

2.2.6 Electron-ion interaction
pseudopotential (EIIP)

Different Nucleic acids have different electron-ion interaction
potential values, which follows: A is 0.1260, U is 0.1335, C is 0.1340,
and G is 0.0806. This method can transform each nucleic acid in an
RNA sequence into a numeric vector corresponding to the EIIP
values. For example, “AUCG” will be converted into (0.1260, 0.1335,
0.1340, 0.0806).

2.3 Algorisms and evaluation

Machine learning algorithms have powerful data processing and
pattern recognition capabilities, making them widely used in the
field of biological research, particularly in DNA, RNA and protein
modification prediction. In this study, we trained all models with R
programme (Version 4.3.3) and corresponding packages for each
m7G regulator, and use Support Vector Machine (SVM,
e1071 package (Meyer et al., 2020)) to construct predictive

FIGURE 2
GO enrichment analysis of the regulator substrates. The top 15 GO terms of each regulator are shown.
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models that are tuned to form the final predictor. For the feature
selection of six encoding methods, all 63 combinations of single or
multiple feature encoding methods were individually used to train
and test, and the feature combination with best performance was
selected for further improvement. In addition to the feature
encoding, the sequence length is important for predictor. For the
selection of sequence length, we tested 21, 41, 61, and 81 nucleotides
(nt), centered on the m7G modification site.

In order to determine the most appropriate algorithm to build
the model, we systematically compared other three of the more
popular machine learning algorithms, including Random Forest
(RF, randomForest (Liaw and Wiener, 2001)), Generalized Linear
Model (GLM, stats package (R Core Team, 2011)), and efficient
extreme gradient boosting (XGBoost, xgboost package (Chen and
Guestrin, 2016)). We assessed the performance of the predictor

through independent tests, in addition to testing the effect of
parameter selection. The main metric used to assess performance
was AUROC (Area Under the Receiver Operating Characteristic
Curve). We also calculated Accuracy (ACC), Sensitivity (Sn) and
Specificity (Sp) to compare algorithm performance.

2.4 The design and construction of
m7GRegpred website

The framework of m7GRegpred website was structured into two
primary components, including the core module for prediction and

FIGURE 3
Comparison of different combinations of features. AUROC values of all feature combinations on independent dataset were evaluated
(Supplementary Table S3), and selected the feature combination with the best prediction: CP: Chemical property, EIIP: Electron-ion interaction
pseudopotential, NAC: Nucleic acid composition.

TABLE 2 The AUROC values on independent test with individual features
and selected feature combination. All AUROC values of independent test
for different combinations of features is shown in Supplementary Table S3.

Feature
METTL1 WDR4 QKI5 QKI6 QKI7

OH 0.669 0.597 0.691 0.709 0.660

NAC 0.737 0.735 0.754 0.696 0.697

ANF 0.639 0.602 0.666 0.693 0.637

EIIP 0.737 0.735 0.754 0.696 0.697

CP 0.684 0.629 0.730 0.721 0.683

PKC 0.669 0.687 0.659 0.689 0.672

NAC, EIIP, and CP 0.774 0.769 0.779 0.732 0.718
FIGURE 4
Prediction performance with different window lengths.
Performance of CP, EIIP, and NAC feature combination encoding
method comparing windows of different lengths.
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adjuvant interface. For the former, the “Prediction,” “Controller”
and “Results” collectively constitute the prediction system of
m7GRegpred. For the latter, the “Home,” “Guide,” “Download”
and “Contact” are major functional page for providing the
associated information of m7GRegpred. The pages of
m7GRegpred webserver were developed through the
amalgamation of HTML5, CSS, JavaScript, PHP, and JavaScript
library (jQuery), and the “Results” page used the DataTables, a
JavaScript library, to provide interactive visualization of
predicted results.

3 Results

3.1 Data statistics and function analysis of
m7G regulator-specific substrates

Recent research results have indicated the reliability and efficacy of
sequence-derived features in reflecting the intrinsic specificity of target
sequences. Therefore, we conducted an exploration of six different
encoding methods to compare the efficacy of different encoding
methods in predicting the substrate specificity of the m7G regulators.
After de-redundancy by CD-HIT (Fu et al., 2012) filter, within the full
transcriptome model, a total of 228, 186, 824, 1,072, and 617 sequences
were considered as substrates for METTL1, WDR4, QKI5, QKI6, and
QKI7, respectively (Figure 1A; SupplementaryTable S2). Then, theVenn
diagram of substrates across fivem7G regulator indicated a low coverage
between two m7G writers or among three m7G readers (Figure 1B).

Only 44 sites were modified by bothMETTL1 andWDR4, and 365 sites
were recognized by 3 m7G readers (Figure 1B). Furthermore, the motif
analysis of m7G regulator-specific substrates was performed by using
XSTREME (Bailey, 2021) with default parameters. The m7G writers
exhibit diverse patterns, the substrates of METTL1 showed a “GxAG”
motif, while WDR4 recognize the “GxxxGA” motif (Figure 1C). For
m7G readers, QKI5 and QKI6 showed a similar motif of “GxxG,”
whereas QKI7 recognize the “CxG” motif (Figure 1C). The results
indicated that different m7G regulator recognized different sequence
preferences for substrate m7G (Figures 1B,C).

In order to explore the correlation between m7G regulator
substrates, m7G modifications and biological functions, we
performed Gene Ontology (GO) enrichment analysis using the R
package, ClusterProfiler (Wu et al., 2021). With this approach, we
were able to identify biological processes associated with m7G
regulators and reveal their potential roles in cellular functions.
Figure 2 displays the top fifteen relevant GO biological process
terms corresponding to each regulator substrate. The substrates of
METTL1 and QKIs in particular showing significant enrichment
under the GO term “positive regulation of protein localization,”
which may indicate their key roles in regulating protein transport
and localization.

3.2 Features and performances

We performed the model training on the training data for each
m7G regulator, followed by validation on the independent test

FIGURE 5
Performance comparison of different machine learning algorithms. Four commonly used machine learning algorithms are compared: SVM, RF,
GLM, XGBoost. And AUROC, Acc, Sn, Sp are evaluated, and finally SVM is chosen as the model.
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data, to determine the best features predicted by the m7G
regulators by calculating the AUROC values (Table 1). We
considered all possible combinations of features across six
encoding schemes, ranging from single features to multiple
feature combinations for each regulator (Supplementary Figure
S1; Supplementary Table S3). The results indicated that the feature
combinations from the NAC, EIIP, and CP encoding methods
exhibited the best performance in the prediction of regulators and

substrates (Figure 3). We demonstrate the performance (AUROC)
of various feature combinations in the prediction of substrate
regulation across several substrates. Consequently, we selected
the NAC, EIIP, and CP encoding methods to construct the
preliminary m7GRegpred, the three-feature combination and
selection framework demonstrates higher accuracy, surpassing
the performance of any individual sequence-derived feature
(Table 2; Supplementary Table S3).

FIGURE 6
SVM model tuning parameters on an independent set. (A–E) Adjust the parameters of the SVM model, with the x-axis representing the logarithm
base two of the cost values (log2 (cost)), and the y-axis representing the negative logarithm base two of the gamma values (-log2 (gamma)), with the
y-axis also indicating the corresponding AUROC values. (F) The ROC curves and AUROC values of independent dataset for final model.
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3.3 Performance of different
length windows

Different lengths of sequence window lengths contain different
amounts of sequence information, and the choice of length directly
affects the performance of the trained predictor (Chen K. et al., 2021;
Chen et al., 2015). Therefore, we chose reasonable length of the input
sequence after comprehensive consideration. We tested sequences
centered on the m7Gmodification site with lengths of 21, 41, 61, and
81 nucleotides (nt) to determine the optimal predictive results
(Figure 4). In the full transcriptome model, the substrate
prediction performance for several regulators initially improved.
As the length increased, the AUROC score reached its highest value,
and then the AUROC score gradually decreased or leveled off. Based
on these results, we selected a sequence length of 61 nt in the full
transcriptome model for several regulators to generate
features (Figure 4).

3.4 Algorisms and evaluation

Support Vector Machine (SVM) have been widely recognized
and applied in the field of RNA modification prediction due to their
excellent prediction accuracy and generalisation ability (Chen et al.,
2019a; Chen et al., 2019b; Chen K. et al., 2021; Chen et al., 2015; Liu
et al., 2020; Huang et al., 2018; Chen et al., 2016; Feng et al., 2017). In
order to confirmed that SVM is a more suitable machine learning
algorithm for our project to perform prediction of substrate of
regulators, we conducted a systematically comparison with other
prominent algorithms, including RF, GLM, and XGBoost (Figure 5).
The performance of the predictors was assessed primarily by
calculating AUROC on the independent test data, and also by
evaluating metrics such as Accuracy, Sensitivity and Specificity to
aid judgement of the performance of the predictors. In sum, when
employing an optimized sequence length, SVM demonstrated the
most consistent and superior performance across the board.

3.5 Parameter optimization of the
SVM model

The parameter settings of the SVMmodel will affect the model’s
predictive performance. The parameters we commonly adjust for
SVM are Cost (C) and Gamma. The C parameter is a key
hyperparameter that controls the model’s tolerance to
misclassification. Setting a higher value of C increases the
model’s fit to the training data, but this may also cause
overfitting and make the model less able to generalise.
Meanwhile, the gamma parameter determines the coverage of the
Radial Basis Function (RBF) kernel, affecting the model’s sensitivity
to local variations. Therefore, reasonable tuning of the C and gamma
parameters is essential to achieve optimal performance of the
SVM model.

In this study, we combined all the parameter combinations for
the C parameter range from 2̂ (−3) to 2̂ 9 and the Gamma parameter
range from 2̂ (−15) to 2 (̂−3) and used this to compare the predictive
performance of the models by calculating the AUROC values
(Figures 6A–E). Based on the resulting AUROC values, the most
appropriate parameter combinations were selected. Specifically, the
final optimized model achieved AUROC scores of 0.856, 0.857,
0.780, 0.776, and 0.818 in the independent tests for substrate
prediction of the full transcriptome model for METTL1, WDR4,
QKI5, QKI6, and QKI7, respectively (Figure 6F).

3.6 Model cross-validation prediction

Based on the optimized predictors obtained above, the cross-talk
between among five regulators were estimated (Figure 7). The high
AUROC scores suggest most m7G sites could be regulated by the
METTL1/WDR4 and recognized by the proteins from QKIs family.
Please also notice that, the higher performance of QKIs or METTL1/
WDR4 model predict substrate of themselves than METTL1/
WDR4 predict QKIs suggest the there are some new writers and

FIGURE 7
Cross-prediction of predictive models and m7G regulator substrate data. The values represent the predictive efficacy in terms of AUROC values
(Left). The values indicate the ratio of sites predicted to be positive to all regulator substrate site (Right). The values were visualized by R
package, pheatmap.
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readers participated the regulation of m7G, which should be
identified in further.

3.7 Webserver of m7GRegpred

The web server of m7GRegpred was developed with a user-
friendly manner (Figure 8), and structured into the kernel prediction
component and adjuvant interfaces. The concise and interactive
pages of online server used the amalgamation of HTML5, CSS, PHP,
JavaScript, and JavaScript libraries (jQuery and DataTables). Users
can select an interesting m7G writer or reader, and upload single or
multiple RNA sequences (61 nt) in FASTA format. After the clicking
of “Example” button of console, the m7G writer METTL1 and
multiple RNA sequences will be loaded as an example (Figure 8A).

After submitting, the predicted results of selected m7G regulator will
be visualized, the probabilities of submitted sequences are shown in
an interactive table (Figure 8B). Also, the predicted results can be
directly downloaded as a text file, to further process for users without
login requirement (Figure 8B).

4 Conclusion

In this study, we present a full-transcriptome prediction model
based on the SVM algorithm designed to identify potential
substrates for m7G regulatory factors. The model covers a series
of key m7G regulators, including METTL1, WDR4, QKI5, QKI6,
and QKI7. We selected six sequence encoding methods in pursuit of
the most effective feature combination and ultimately chose features

FIGURE 8
The webserver of the m7Gregpred. (A) The interface of “Prediction” page with the example, by clicking the “Example” button. (B) The filtered results
of the prediction of selected m7G regulator and submitted sequences.
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constituted by a combination of three sequence encoding methods
to train the model. Our framework achieved high performance on
independent test sets. Subsequently, we constructed predictors using
different subsets of sequence-derived features for comparison. The
results showed that this framework has higher performance than
traditional sequence encoding methods. After comparing different
machine learning algorithms, we ultimately chose SVM as the
model. We then adjusted the parameters of the SVM model,
compared the predictive effects of different parameter
combinations, and selected the optimal predictive parameters to
construct the final predictive model. Finally, GO enrichment
analysis was performed to explore the similar biological functions
of substrate of METTL1, WDR4 and QKI5, QKI6 and QKI7 from
the QKI family, which suggest our processed training data is
appropriate and consistent with known biological knowledge.

We also provide a website for proper sharing of our prediction
models, which can be used by users for m7G regulator substrate
prediction. This tool enables researchers to pinpoint m7G regulators
sites in the transcriptome, providing a means to understand the
regulatory mechanisms and biological functions affected by m7G
regulators. May potentially advance the study of m7G regulators
under unique conditions.

Despite the progress made in this study in predicting substrates of
m7G regulators, we recognise that there are some limitations. Firstly,
although predictors based on sequence-derived features have
demonstrated an acceptable level of performance, in order to
further improve prediction accuracy and reliability, future research
should consider more advanced genomic features in combination
(ChenK. et al., 2019). Recent studies have indicated that deep learning
algorithms are effective in site prediction (Song et al., 2021; Huang
et al., 2022). Therefore, incorporating additional genomic features or
applying deep learning algorithms may help to improve performance.
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