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Background: Sepsis and colorectal cancer (CRC) are leading causes of death.
Given their mutual dependence for susceptibility, we used bioinformatics to
explore potential connections between septic shock (SS) and CRC.

Methods: We identified 452 co-expressed genes between SS-related differential
expression genes (SS-DEGs) and CRC patient-expressed genes (TCGA-CRC
genes). CRC samples were categorized into two cluster subgroups through
hierarchical clustering. We then compared the prognosis and immune
landscapes of the two cluster subgroups through survival analysis, immune
microenvironment analysis, and immune therapy response evaluation.

Results:Clustering analysis of the 452 CRC patient-expressed SS-DEGs identified
two subtypes: SS-like CRC (SL-CRC) and non-SS-like CRC (NSL-CRC). There
were no significant differences in overall survival between the CRC subtypes.
However, the subtypes displayed significant differences in immune score, stromal
score, and ESTIMATE score. Based on immune therapy databases, there were also
significant differences in responses to anti-CTLA-4 and anti-PD-1 immune
checkpoint inhibitors between the subtypes.

Conclusion: Our study reveals significant differences in the immune
microenvironment and immune therapy responses between SL-CRC and NSL-
CRC subtypes. These findings provide a foundation for identifying new
therapeutic targets and developing personalized treatment strategies for
specific CRC subtypes.
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Introduction

Sepsis is a complication resulting from a host’s dysregulated
response to a primary infection, often leading to organ dysfunction
or death (Singer et al., 2016). Despite advancements in medical care,
sepsis still reported 48.9million cases globally in 2017, with 11million
associated deaths (Rudd et al., 2020). Septic shock (SS), a severe form
of sepsis, poses a higher risk of mortality (Das, 2023). Colorectal
cancer (CRC) affects the colon or rectum and is the third most
common cancer worldwide, as well as the second leading cause of
cancer-related deaths. In 2020, there were over 1.9 million new cases
of CRC and more than 930,000 deaths (The World Health
Organization, 2024). Sepsis is a common complication in cancer,
significantly associated with increased risk in several cancers,
including CRC (Liu et al., 2019; Rhee et al., 2017). Postoperative
sepsis complications negatively affect the prognosis of CRC (Levy
et al., 2017). Inflammatory and septic infectionsmay also present early
signs of CRC (Hotchkiss et al., 2013; Sidhu et al., 2019). The mutual
dependence for susceptibility of sepsis and CRC suggests common
biological traits between them (Tripathi et al., 2020).

Molecular mechanisms in sepsis and CRCmight share intersecting
biological pathways, with immune and inflammatory responses playing
crucial roles in both diseases. Unlike earlier concepts, excessive
inflammatory responses and immune suppression occur successively.
Immune suppression can occur simultaneously with excessive
inflammation, particularly in viral-induced sepsis (Fu et al., 2023;
Hotchkiss et al., 2013). Additionally, studies have shown that
patients with sepsis and those with cancer exhibit similar
immunosuppressive responses. Both conditions are characterized by
reduced expression of MHCmolecules, diminished production of IFN-
γ by T cells, enhanced signatures of myeloid-derived suppressor cells
and regulatory T cells, and increased levels of inhibitory receptor
ligands (Hotchkiss and Moldawer, 2014; Washburn et al., 2019).
Inflammation in CRC can be categorized into three types: chronic
inflammation before tumor therapy, tumor-induced inflammation, and
treatment-induced inflammation, all promoting activation of innate
immune cells and establishment of an immunosuppressive tumor
microenvironment (Schmitt and Greten, 2021).

Research on the role and clinical significance of SS-related genes in
CRC is still relatively limited. Therefore, we utilized bioinformatics to
explore the potential relationship between SS-related differential
expression genes (SS-DEGs) and CRC. In our study, we collected
SS-DEGs from the published literature and extracted 452 SS-DEGs
expressed in CRC patients. Using hierarchical clustering, we divided the
CRC samples into two clusters, categorizing them into SS-like CRC
subgroups (SL-CRC) and non-SS-like CRC subgroups (NSL-CRC).We
conducted survival analysis, immune microenvironment analysis, and
immune therapy response evaluation to investigate differences in
prognosis, immune microenvironment, and immune therapy
response between the two clusters.

Materials and methods

Data collection

TCGA (The Cancer Genome Atlas, https://www.cancer.gov/
tcga) data were used to obtain gene expression data for rectal

adenocarcinoma (TCGA-READ) samples and colon
adenocarcinoma (TCGA-COAD) samples as TCGA-CRC
samples. We excluded samples that were unqualified due to poor
sequencing results from formalin-fixed paraffin-embedded tissues
(n = 19), as well as samples from normal tissues (n = 51) and those
lacking clinical data (n = 30), resulting in a total of 598 samples
comprising the TCGA-CRC dataset. Data for SS were obtained from
the Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/), under GEO accession: GSE26440, which includes
32 healthy control samples and 98 SS samples (Wong et al., 2009). In
cases where expression data contained missing values, genes with
these missing values were excluded.

Identification of SS-DEGs and hierarchical
clustering of CRC

We preprocessed the TCGA-CRC and GSE26440 data using R
(version 4.3.0), standardizing across samples through Z-score
normalization. Batch effects between different sample batches
were removed using the removeBatchEffect function from the
‘limma’ package (version 3.56.2). Differential analysis on the
GSE26440 dataset was also conducted using the ‘limma’ package,
with an FDR <0.05 and |log2FC| > 1 as the threshold for selecting SS
DEGs (Bioinformatics for Biologists, 2020; Love et al., 2014).

log 2 FC( ) � log 2
Expression LevelExperimental

Expression LevelControl
( )

FDR � Expected False Positives

Total Significant Results

Expression data for SS-DEGs were then extracted from the CRC
data. Hierarchical clustering of the CRC cohort was conducted using
the “ConsensusClusterPlus” package. The distance between all
possible pairs of clusters was calculated using the Euclidean
distance formula, and the closest cluster pairs were merged into a
new cluster.

Distance �
����������∑n
i�1

xi − yi( )2√
Through this clustering analysis, the CRC samples were divided

into two clusters. A consensus matrix was employed to determine
whether the expression of genes related to septic shock is associated
with CRC.

mij � number of times samples i and j are in the same cluster( )
number of resamplings( )

Subsequently, a heatmap was then used to explore the
association between each cluster and SS expression patterns. The
two clusters were subsequently categorized into SL-CR and NSL-
CRC based on their association with SS.

Survival analysis

Survival analysis of SL-CRC and NSL-CRC was performed using
the “survival” package (Version 3.5–8) in R (Therneau, 2024),
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combined with clinical survival information obtained from TCGA
(including observation days and survival status). The survival model
was fitted using the using the survfit () function, employing the
Kaplan-Meier method for estimating survival curves.

S t( ) � ∏
ti ≤ t

1 − di

ni
( )

This approach evaluates the survival probabilities at different
time points. Visualization of the survival analysis results was
performed using the R package “survminer” (version 0.4.9).
Additionally, the Cox proportional hazards model was fitted
using the coxph function.

h t( ) � h0 t( )exp β1X1 + β2X2 + . . . + βpXp( )
The summary function was used to extract the hazard ratios

(HRs) and 95% confidence intervals from the Cox model,
quantitatively describing the survival differences between
subtypes. Finally, to further validate the survival differences,
we conducted a non-parametric test using the survdiff
function to assess survival time differences, providing
additional statistical evidence for comparing survival times
across different subtypes.

Enrichment analysis

For enrichment analysis, differential expression analysis
between SL-CRC and NSL-CRC subgroups within the CRC
cohort was first conducted using the “limma” package (Version
3.56.2) to obtain log fold changes (with NSL-CRC as the control).
Gene Set Enrichment Analysis (GSEA) was then performed on the
CRC cohort using the “clusterProfiler” package (Version 4.8.3) (Wu
et al., 2021), with a p-value <0.05 considered statistically significant
for gene enrichment.

Immune microenvironment analysis

To assess immune infiltration abundance, immune infiltration
analysis was conducted on the CRC cohort gene expression matrix
using ssGSEA algorithms, resulting in an immune cell infiltration
matrix (Newman et al., 2019). Additionally, the ESTIMATE
algorithm was used to evaluate stromal score, immune score, and
ESTIMATE score for the CRC cohort.

Immune therapy response evaluation

To evaluate and predict the response of CRC to immunotherapy,
the Cancer Immunome Atlas (TCIA, https://tcia.at/) was used to
predict the response of SL-CRC and NSL-CRC groups to anti-
CTLA-4 and anti-PD-1 immune checkpoint inhibitors (ICIs).
Furthermore, data on CRC tumor immune dysfunction and
exclusion (TIDE) score, exclusion score, and dysfunction data
were downloaded from the TIDE database (http://tide.dfci.
harvard.edu/) to analyze immune escape and immune
dysfunction in SL-CRC and NSL-CRC groups.

Results

Clinical information for CRC patients

The clinical information of all CRC patients is shown in Table 1
and Supplementary Table S1. A total of 598 CRC patients were
included in the study, comprising 155 READ patients and
443 COAD patients. The majority of patients were of White race,
followed by Black or African American; however, race was not
reported for 45.81% of READ patients and 35.21% of COAD
patients. Nearly all patients (99.35% and 99.55%) had
primary tumors.

Extraction co-expressed genes of SS-DEGs
and TCGA-CRC

We utilized the GSE26440 dataset with healthy participants as
controls, employing an FDR <0.05 and |log2FC| >1 as the
threshold for significant differential expression. This process
identified 610 SS-DEGs, consisting of 387 upregulated and
223 downregulated genes (Figure 1A). Additionally, we
intersected these 610 SS-DEGs with 19,938 genes expressed in
CRC patients (TCGA-CRC genes), identifying 452 SS-DEGs
expressed in CRC patients (Figure 1B).

Hierarchical clustering associated with co-
expressed genes

To explore the relationship of these 452 co-expressed genes
with CRC subtypes, we conducted hierarchical clustering
analysis. The cumulative distribution function (CDF) under
different cluster numbers (2–8) is displayed in Figure 2B. The
CDF curve was flattest at k = 2, indicating that a clustering into
two groups yielded the most stable and consistent results. The
relative change in the area under the CDF curve in Figure 2C was
greatest at k = 2, after which the rate of change significantly
diminished, suggesting that adding more clusters did not
significantly improve clustering quality. Thus, we divided the
CRC patients into two distinct clusters (Figure 2A).
Additionally, we created a heatmap displaying the expression
patterns of the 452 co-expressed genes in the two cluster
subgroups. The results showed that the expression pattern of
cluster 2 was similar to that of SS samples, leading us to
designate cluster 2 as SL-CRC and cluster 1 as NSL-CRC. We
further validated the independence between the two cluster
subgroups using PCA, which showed significant separation
(Figure 2E). However, the survival analysis revealed no
significant difference in overall survival between the two
cluster subgroups (Figure 2F).

GSEA enrichment analysis of two
cluster subgroups

To further validate the clustering results related to SS, we
identified DEGs between the SL-CRC and NSL-CRC subgroups.
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TABLE 1 Clinical information for CRC patients.

Variables TCGA-READ (n = 155) TCGA-COAD (n = 443)

Age 65.04 ± 11.22 66.98 ± 12.79

Gender

Male 87 (56.13%) 238 (53.72%)

Female 68 (43.87%) 205 (46.28%)

Race

Asian 1 (0.65%) 11 (2.48%)

White 77 (49.68%) 217 (48.98%)

Black or african american 6 (3.87%) 58 (13.09%)

Not reported 71 (45.81%) 156 (35.21%)

Pathological classification

Primary 154 (99.35%) 441 (99.55%)

Recurrence 1 (0.65%) 1 (0.23%)

Metastatic 0 1 (0.23%)

History of colon polyps

NO 49 (31.61%) 86 (19.41%)

YES 18 (11.61%) 92 (20.77%)

Not reported 88 (56.77%) 265 (59.82%)

Lymphatic invasion present

NO 30 (19.35%) 82 (18.51%)

YES 33 (21.29%) 90 (20.32%)

Not reported 92 (59.35%) 271 (61.17%)

FIGURE 1
Identification of co-expressed genes. (A) Volcanic plot of SS-related differential expression genes (SS-DEGs) (B). A Venn diagram is generated to
represent 452 co-expressed genes of DEGs and TCGA-CRC genes.
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GSEA revealed that the DEGs between the two cluster subgroups are
predominantly involved in pathways related to the ribosome,
antigen processing and presentation, cytoskeleton in muscle cells,
and Epstein-Barr virus infection (Figures 3A, B). The complete
GSEA enrichment results are provided in Supplementary Table S2.

Immune analysis of two cluster subgroups

In the immune analysis of the two cluster subgroups, we
utilized the ssGSEA algorithm to assess the infiltration levels of
28 immune cell types, identifying significant differences in 27 of

FIGURE 2
Hierarchical clustering based on 452 co-expressed genes. (A) Clustering heatmap of co-expressed genes. (B) Cumulative distribution function area
of different clustering (k = 2–8). (C) The relative change of area under the CDF curve. (D) A heatmap of co-expressed genes in different clustering groups.
(E) PCA plot of two clustering subgroups. (F) Analysis of overall survival between two cluster subgroups.
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these types (Figure 4A). Additionally, we employed the
ESTIMATE algorithm to calculate the immune score, stromal
score, and ESTIMATE score for the two subgroups. The
immune score evaluates the proportion of immune cells, the
stromal score assesses the stromal component proportion, and

the ESTIMATE score reflects the overall non-tumorous cell
component in the tumor microenvironment. The results
showed that the ESTIMATE score, immune score and stromal
score of the NSL-CRC subgroup were significantly higher than
those of the SL-CRC subgroup (Figure 4B).

FIGURE 3
Gene set enrichment analysis (GSEA) between two cluster subgroups. (A, B) Visualization of representative results analyzed by GSEA. (A) Mountain
plot. (B) Classic plot.

FIGURE 4
Immune microenvironment analysis. (A) Immune cell infiltration of the two clusters. (B) ESTIMATE score, immune score, and stromal score.
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Furthermore, based on the TCIA database, we predicted the
differential responses of the two subgroups to anti-CTLA-4 and
anti-PD-1 immune checkpoint therapies. In the absence of CTLA4
(−)/PD-1 (−) inhibitors, cluster 2 (SL-CRC) patients exhibited
higher scores, suggesting they may have a stronger natural
immune response or a more active immune state (Figure 5A).
Cluster 2 patients showed higher response rates to CTLA4
(Figure 5C). Conversely, cluster 1 (NSL-CRC) might generate a
more effective immune response when both CTLA4 and PD-1 ICIs
are activated (Figure 5D). Additionally, using the TIDE database, we
calculated the dysfunction score, exclusion score, and TIDE score for
the two subgroups. The dysfunction score, which reflects factors in
the tumor environment that hinder T cell immunity, indicated that
cluster 1 might have more immune-suppressive factors in the tumor
microenvironment, potentially reducing the responsiveness to
immune therapy (Figure 5F). The exclusion score measures the
difficulty of immune cells accessing tumor cells. The TIDE score,
combining immune dysfunction and exclusion measures, did not
show significant differences between the two cluster subgroups
(Figures 5E, G).

Discussion

Based on the expression of SS-DEGs in CRC patients, we
classified CRC samples into two subtypes: SL-CRC and NSL-
CRC. Although there was no statistically significant difference in
overall survival between the two subtypes, they exhibited significant
variations in the immune microenvironment and immune therapy
responses, which could influence disease prognosis and treatment
outcomes. With the decreasing cost and increasing acceptance of
clinical sequencing technologies, these findings could play a role in
stratifying CRC patients, aiding in the development of personalized
treatment plans.

It is well known that the intestinal barrier is a crucial defense
structure that prevents pathogens and toxins from entering the

bloodstream. However, both sepsis and CRC can directly disrupt the
structure of intestinal epithelial cells, increasing intestinal
permeability. Cancer cells may also alter the intestinal
microenvironment by secreting various pro-inflammatory and
pro-angiogenic factors, impacting the integrity of the intestinal
barrier (Gai et al., 2021; Sánchez-Alcoholado et al., 2020).
Persistent intestinal infections and inflammation can lead to
chronic stimulation and cell damage, potentially increasing the
risk of CRC in the long term (Chen et al., 2024; Zuo et al.,
2020). Sepsis, originating from pathogenic infections, progresses
to shock driven by an uncontrolled immune response. Similarly, in
cancers with an infectious origin, immune responses play a role in
malignant transformation (Tripathi et al., 2020). GSEA confirmed
that DEGs between the two CRC subtypes are involved in antigen
processing and presentation, as well as Epstein-Barr virus infection,
which are closely related to immune responses.

Our immune cell infiltration analysis identified significant
differences across 27 immune cell types, with the majority
showing higher infiltration levels in the NSL-CRC subtype
compared to the SL-CRC subtype. This indicates that NSL-CRC
may possess higher immune activity and a more complex immune
response. The immune score, stromal score, and ESTIMATE score
of NSL-CRC are all higher than those of SL-CRC, suggesting a more
complex immune microenvironment potentially linked to tumor
immune escape and tumor-promoting stromal remodeling activities
(Yuan et al., 2023). The elevated immune cell infiltration and
immune scores in NSL-CRC could theoretically indicate greater
potential for responding to immune therapy. However, this could
also reflect significant immune suppression, particularly in the
presence of abundant immunosuppressive cells such as regulatory
T cells (Sarkar et al., 2021; Tie et al., 2022). Despite NSL-CRC
exhibiting higher immune cell infiltration and immune scores, its
response to immune checkpoint inhibitors is not consistently
optimal. SL-CRC shows higher treatment responses under
CTLA4 (−)/PD-1 (−) and CTLA4 (+)/PD-1 (−) conditions,
potentially due to fewer immunosuppressive factors or different

FIGURE 5
Immune therapy response evaluation. (A–D) Response of two cluster subgroups to anti-CTLA-4 and anti-PD-1 immune checkpoint inhibitors. (E)
Dysfunction and exclusion (TIDE) score. (F) Dysfunction score. (G) Exclusion score.
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immune regulatory mechanisms, allowing immune checkpoint
inhibitors to more effectively “unleash” immune cells (Wang
et al., 2021). These results suggest that combining therapies with
different mechanisms may be more effective for subtypes like SL-
CRC and NSL-CRC, which exhibit different immune therapy
responses. For example, enhanced immunotherapies such as
cancer vaccines or CTLA-4 immune checkpoint inhibitors might
be more effective for SL-CRC (Jia et al., 2024). For SL-CRC, in
addition to ICIs, a combination of therapies that modify the tumor
microenvironment, such as matrix-degrading agents or anti-
inflammatory treatments, might be necessary to improve immune
cell infiltration and functionality (Beales, 2020; Najafi et al., 2019).

Our study, based on SS-DEGs, has preliminarily revealed the
shared biological mechanisms between sepsis and colorectal cancer
through the stratification of colorectal cancer patients, providing a
foundation for further research. Of course, certain limitations should
not be overlooked. First of all, our study relies on existing bioinformatics
databases and publicly available datasets, whichmay limit the depth and
breadth of our analysis. This limitation could be mitigated by
integrating data from multiple sources or recruiting patients for
sequencing studies. Secondly, although we identified potential roles
for SS-DEGs in CRC, these SS-DEGs include genes that are directly
related to the disease or are non-specifically expressed. Such a broad
gene set may obscure crucial genes in differentiating sepsis-like and
non-sepsis-like CRC, thereby limiting our understanding of these key
biomarkers and potential therapeutic targets. Future studies should
employ biological approaches such as weighted gene co-expression
network analysis (WGCNA) and experimental validation to identify
and confirm the key genes decisively influencing CRC subtypes.
Thirdly, this study relies on publicly available databases, thus
inherent biases such as ethnic bias and batch effects are inevitable.
Of course, we processed the data to minimize the impact of batch
effects. Finally, the TCGA-CRC samples, composed of combined
TCGA-READ and TCGA-COAD parts, did not include other non-
adenocarcinoma CRC samples such as squamous cell carcinoma.
Currently, clinical research often treats colon cancer (CC) and rectal
cancer (RC) as a single tumor entity of CRC. However, Paschke’s team
highlighted differences between CC and RC across anatomy,
epidemiology, molecular mechanisms, treatment responses, and
prevention measures, advocating for abandoning the term CRC
(Paschke et al., 2018). Therefore, merging these two datasets might
obscure their differences. Future research may consider analyzing these
diseases as separate entities to better understand their distinct
biological behaviors.

We classified CRC patients into two subgroups: SL-CRC and NSL-
CRC. Despite no significant differences in overall survival, we observed
substantial variations in immune microenvironment and immune
therapy responses between them. Our research provides a new
perspective on understanding the biological diversity of CRC and
lays the groundwork for identifying new therapeutic targets and
developing personalized treatment strategies for specific colorectal
cancer subtypes.
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