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Introduction: The complexity of tumor cell subclonal structure has been
extensively investigated in hepatocellular carcinoma. However, the role of
subclonal complexity in reshaping the tumor microenvironment (TME) remains
poorly understood.

Methods: We integrated single-cell transcriptome sequencing data from four
independent HCC cohorts, involving 30 samples, to decode the associations
between tumor subclonal complexity and the TME. We proposed a robust metric
to accurately quantify the degree of subclonal complexity for each sample based
on discrete copy number variations (CNVs) profiles.

Results:We found that tumor cells in the high-complexity group originated from
the cell lineagewith FGB overexpression and exhibited high levels of transcription
factors associated with poor survival. In contrast, tumor cells in low-complexity
patients showed activation of more hallmark signaling pathways, more active
cell-cell communications within the TME and a higher immune activation status.
Additionally, cytokines signaling activity analysis suggested a link between
HMGB1 expressed by a specific endothelial subtype and T cell proliferation.

Discussion: Our study sheds light on the intricate relationship between the
complexity of subclonal structure and the TME, offering novel insights into
potential therapeutic targets for HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the third most lethal cancer in the world, with
patients often experiencing post-surgical recurrence andmetastasis, leading to poor survival
outcomes (Wang et al., 2021). Tumor heterogeneity is the main cause of drug resistance and
treatment failure (Dagogo-Jack and Shaw, 2018; Marusyk et al., 2020; Vasan et al., 2019),
which encompasses the cellular diversity and dynamics both among tumors in different
patients and within individual tumor. The tumor heterogeneity is manifested through
genomic mutations, aberrations in epigenetic modifications, transcriptional alterations, and
changes at the protein level (Sun and Yu, 2015). Additionally, extrinsic factors such as
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hypoxia, pH levels, and the interactions between tumor cells and
other stromal components within the tumor microenvironment
(TME) contribute to the diversity and dynamics in tumor
genotypes and phenotypes (Sun and Yu, 2015). Previous studies,
such as those conducted by TCGA and ICGC, have integrated multi-
omics profiles to delineate the heterogeneous molecular features of
cancers and explored the subtyping of cancers, guiding personalized
therapeutic strategies (Cancer Genome Atlas Research, 2013).
Tumor heterogeneity also underpins tumor evolution, as tumor
cells continuously accumulate genetic and epigenetic variations,
forming heterogeneous subclones which possess different survival
fitness and undergo dynamic processes of subclonal selection and
elimination under selective pressures such as nutrient availability
and metabolism (Davis et al., 2017; Greaves and Maley, 2012).
Therefore, understanding the complexity of subclonal structure
within tumor is crucial for elucidating tumor biology, disease
progression, and response to therapy.

The recent advancements in single-cell sequencing technology
(Kashima et al., 2020; Yu et al., 2021) have provided unprecedented
insights into the composition, function, and spatial organization of
immune and stromal cells within the tumor microenvironment
(TME), leading to a deeper understanding of its complexity and
diversity. In the process of tumor progression, tumor heterogeneity
continuously remodels the tumor microenvironment by altering the
transcription levels of target genes in non-malignant cells within the
TME, which leads to divergences in developmental trajectories,
immune landscapes, and intercellular networks (Wu et al., 2021;
Leader et al., 2021; Zhang A. et al., 2022; Voit et al., 2023).
Specifically, heterogeneous secretion of cytokines by tumor cells
can also modulate immune-tumor interactions, as demonstrated by
studies in mouse models (Liu et al., 2013; Knoche et al., 2021).
Tumor cells can induce profound phenotypic changes in non-
immune stromal components within the TME, impacting the
immune components and their activities. For instance, oncogenic
BRAFV600E signaling in human melanoma cells has been shown to
interfere with T cell-mediated anti-tumor responses by modulating
the phenotype of cancer-associated fibroblasts (Khalili et al., 2012;
Binnewies et al., 2018). Furthermore, immune cells within the
microenvironment can eliminate clones with high mutational
burdens (high immunogenicity) through the process of immune
editing, maintaining a balance that ultimately favors the selection of
tumor variants capable of evading immune surveillance (Tsai et al.,
2023; Polyak et al., 2009; Nam et al., 2021; Dunn et al., 2002;
O’Donnell et al., 2019). Thus, the genotype and phenotype of tumor
cells and the TME are inextricably linked. However, the intricacies of
their interactions and how the subclonal complexity reshapes the
TME remain largely unexplored.

In this study, we performed an integrated single-cell analysis of
HCC patients with untreated primary tumors. We developed a
metric to quantify the tumor subclonal complexity based on
Shannon entropy theory. Our investigation focused on
systematically elucidating the relationship between the subclonal
complexity and cancer cell state, the functional activity of the
immune cells. We found that cell-cell interaction landscape
and TME polarization varied with subclonal complexity. Our
findings underscore the significance of subclonal complexity in
modulating the tumor microenvironment and its implications for
immune responses.

Materials and methods

scRNA-seq datasets

The datasets of HCCwere acquired fromGEO, including 4 scRNA-
seq cohorts (GSE156625 (24), GSE149614 (25), GSE151530 (26),
GSE189903 (27)). Specifically, GSE156625 (https://www.ncbi.nlm.nih.
gov/Traces/study/?acc=PRJNA658541&o=acc_s%3Aa) was the raw
sequencing data and the other 3 datasets are processed read count
matrices. To accurately analyze the impact of tumor subclonal
complexity on the remodeling of the tumor microenvironment, we
established the following criteria for sample selection: 1) all samples are
from the 10X Genomics platform; 2) availability of raw sequencing data
or read count expression matrices; 3) samples are untreated; 4) samples
are primary tumors without invasion, recurrence and metastasis; 5) for
multi-region sequencing data, we selected samples from the tumor core
region whenever possible. Finally, only 30 samples were retained for
further analysis (Supplementary Table S1).

Pre-processing of scRNA-seq data

Raw reads from GSE156625 were processed to generate gene
expression matrices by using the standard internal pipeline based on
the Cell Ranger toolkit (3.1.1). Then the expression matrices of each
individual sample were converted to Seurat object by the
“CreateSeuratObject” function from Seurat package (4.3.0) (Hao
et al., 2021). We firstly filtered out cells that had either lower than
200 or higher than 8,000 expressed genes. Furthermore, the cells
with the percent of mitochondrial genes over 40% of total expressed
genes were discarded. Additionally, we initially removed doublet
cells by DoubletFinder (2.0.3) (McGinnis et al., 2019) to avoid the
potential influence on analytical results. A total of 67,125 cells were
retained for further analysis.

Dimensionality reduction, clustering, DEGs
identification, and major cell type
annotation

To better reflect the biological features from the data, we used the
“NormalizeData” function to normalize the expression matrices for
the Seurat object. And the top 2,000 highly variable genes (HVGs)
identified by “FindVariableFeatures” function were used to scale data
through “ScaleData” function. The principal component analysis
(PCA) was carried out by “RunPCA” function to generate 50 PCs,
followed by “RunHarmony” function implanted in Harmony package
(0.1.1) (Korsunsky et al., 2019) with the top 30 PCs to eliminate batch
effect. The clustering analysis was implemented depended on the
integrated joint embedding produced by Harmony with the Louvain
algorithm after computing a shared nearest-neighbor (SNN) graph.
The UMAP technique was used to create a 2D map on which the
discovered clusters were displayed. Then we used “FindAllMarkers”
function to identify over-expressed genes in specific cluster when
compared with the other clusters (adjusted P-value <0.05, only.pos =
T and logfc.threshold = 0.25). The well-known cell markers (Ma et al.,
2021; Liu et al., 2023) were used to annotate the clusters: Endothelial
(ENG, VWF, PECAM1), Fibroblasts (ACTA2, COL1A2, PDGFRB),
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T cells (CD2, CD3D, CD3E, CD3G), B cells (CD79A, CD79B,MS4A1,
BANK1), Myeloid (CD14, CD68), Plasma (MZB1, DERL3, SDC1),
Hepatocytes (APOA2, ALB, APOA1, AMBP), proliferative T (TOP2A,
MKI67, TUBB).

Cell subtype annotation

We further clustered T cells, endothelial cells and myeloid cells
following a similar pipeline as described above, including
normalization, highly variable genes identification, dimensionality
reduction, batch effect correction with Harmony and clustering.
Within each cell subtype, an iterative procedure that a cell cluster
displaying at least two canonical marker expression of 7major cell type
was determined as doublet cells to be removed, if any, and reclustered
the remaining cells, was adopted to ensure the reliability of the study.
Specifically, we used the following well-known markers (Cheng et al.,
2021; Zheng et al., 2021) for subtype identification. NK (GNLY,KLRF1,
NKG7), CD4+_CCR7 (CD4, CCR7), CD4+_IFNG+ (CD4, IFNG),
CD4+_FOXP3_Treg (CD4, FOXP3, IL2RA), CD8+_GZMK (CD8A,
GZMK), CD8+_TNFSF9 (CD8A, TNFSF9), macrophage (C1QC,
APOE, CD68), monocyte (FCN1, LYZ), cDC1_CLEC9A (CLEC9A,
FLT3), cDC2_CD1C (CD1C, FCER1A), cDC3_LAMP3 (LAMP3,
CCR7), mast (KIT). Similarly, endothelial cell were also confirmed
by canonical markers (Goveia et al., 2020; Schupp et al., 2021), such as
activated_PCV (ACKR1, SELP, VCAM1, POSTN), Capillaries_
EDNRB (EDNRB, CA4, HPGD, IL1RL1), Capillaries_FCN3 (FCN3,
BTNL9, NOSTRIN, EDN), arteries_GJA5 (GJA5, EFNB2, SOX17,
DKK2), tip_CXCR4 (CXCR4, ADM, ANGPT2, APLN), RBP4+_EC
(RBP4, IGFBP7), CXCL10+_EC (CXCL10, GBP1, SOD2). To
accurately annotate proliferative T cells, we calculated the averaged
Pearson correlation coefficient and averaged p-value for each
proliferative T cell against other T cell subtypes and NK subtypes
based on single-cell expression profiles. Proliferative T cells were
excluded if the mean correlation coefficients were all less than
0.4 or the mean p-values all exceeded 0.05. Otherwise, they were
assigned to the subtype with the highest average correlation.

CNVs estimation and malignant cells
identification

We inferred copy number variations (CNVs) for each cell
through the InferCNV (1.10.1) package of R. The non-malignant
cells were applied as the reference to estimate the CNVs values of the
hepatocytes (observation). The genes were sorted by their genomic
locations on each chromosome. Specifically, The InferCNV analysis
was implemented with parameters “denoise = T, HMM = T,
analysis_mode = “subclusters”, cutoff = 0.1, cluster_by_groups = T”.

To identify the malignant cells from the hepatocytes, we
designed the CNVs score quantifying the degree of CNVs
fluctuation for each cell as follows:

CNVscore �
���������������∑

i�1 Xi − Xmean( )2
√ / n

where Xi represented the CNVs value of gene i in the cell, Xmean was
the mean CNVs value of gene i in the cell, and n was the number of
the genes in the cell. If the CNVs score of a hepatocyte exceeded the

threshold determined by the intersection of the distributions of
CNVs score in hepatocytes and non-malignant cells, then the
hepatocyte was considered malignant (Supplementary Figure S1C).

Identification of intratumor NMF programs

The non-negative Matrix Factorization (NMF) algorithm was
applied to identify the underlying expression programs from the
malignant cells based on the NMF R package. We employed NMF
(rank = 2:6, nrun = 10) to the relative expression matrices of the top
2000HVGs in each sample with all negative values converted to 0.We
chose the optimal rank value at which the cophenetic coefficient
started producing themaximumdescent (Supplementary Figure S1E).
In total, we identified 98 programs from 30 samples (Supplementary
Table S2). The 30 genes of each expression programwith the topNMF
scores were input into “AddModuleScore” function to generate the
program score for malignant cells in each sample. We calculated the
correlations between the 98 program scores in each sample
individually. After excluding clustering groups containing less than
half of samples, we finally extracted 3 meta-programs from the
98 programs according to hierarchical clustering of averaged
correlations of pairs of programs across all samples (Figure 1F;
Supplementary Table S3). Each meta-program, retaining 30 genes
with the highest average NMF score, was used to perform pathway
enrichment analysis.

CNV complexity score based on single cell
CNVs profiles

Shannon entropy was used to quantify the CNV complexity for
each sample based on discrete CNVs profiles inferred from
InferCNV. Firstly, we calculated the frequency of copy number
gains and losses for each gene within the tumor as follows:

LVF � nloss/n
GVF � ngain/n

where n represented the total number of malignant cells, nloss was
the number of cells in which the copy number of the gene was lost,
and ngain was the number of cells in which the copy number of the
gene was gained. Specifically, Discrete CNVs value of the gene
greater than (less than) 3 was considered to be gained (lost). The
frequency of copy number gain and loss were divided into 10 equal-
length frequency intervals separately (i.e., Loss:0–0.1, 0.1–0.2, . . .,
0.9–1; Gain:0–0.1, 0.1–0.2, . . ., 0.9–1). After mapping all the genes to
equal-length frequency intervals according to the LVF and GVF of
the genes, we then counted the number of genes belonging to each
equal-length frequency interval and calculated the frequency of the
number of genes in each interval. Finally, the CNV complexity score
could be calculated for each sample as follow:

CNV complexity score � −∑
i

P Xi( )log2 P Xi( )

where i was the ith interval, Xi was the number of genes falling into
the ith interval, and P(Xi) was the frequency of the number of genes
in the ith interval.

Frontiers in Genetics frontiersin.org03

Shi et al. 10.3389/fgene.2024.1467682

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1467682


Simulation data and method evaluation

To evaluate whether the CNV complexity score could accurately
distinguish between polyclonal and monoclonal samples, we used

computer simulations to generate single-cell CNV profiles for
100 polyclonal samples and 100 monoclonal samples as the
ground truth data, respectively. Briefly, the size of cell population
N ~ U [200, 2000] and the total number of clones C ~ U [5, 20] were

FIGURE 1
Tumor heterogeneity landscape of HCC. (A)UMAP plot of all 66609 cells from 30 samples. Cells were annotated based on the well-knownmarkers.
(B) UMAP plot of 30955 malignant cells from 30 samples. Cells were colored by samples. (C) UMAP plot of 34777 non-malignant cells from 30 samples.
Cells were colored by sample. (D) Distributions of pairwise correlation within intra-tumor and inter-tumor. (E) Pairwise correlation of all malignant cells
from 30 samples. Red represents positive correlation and blue represents negative correlation. (F) Heatmap of average correlations across
30 samples between pairs of expression programs. (G) Dot plot displaying significantly enriched pathways for genes of each meta-program. The size of
the dot represented the number of genes in the indicated hallmark (the larger, the more genes included) and the color shade of the dot indicated the P
value after FDR correction (the yellower, the smaller adjusted P value).
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generated for each sample. For each clone, the size of clone was
generated through binomial distribution B (N, p). For monoclonal
samples, we assumed that p = 0.9 for one dominant clone and p =
0.1/(c-1) for other rare clones. We considered int (N/2) subclones in
the tumor cells, where int takes the nearest integer in the polyclonal
samples. We used p = 2/N to generate the size of subclone. For
detailed steps of the entire simulation data generation process, please
refer to Wang et al. (2023). We then applied the three methods
(CNV complexity score, Guo et al.’s and Ma et al.’s) to the simulated
single-cell CNV profiles which had been labeled as either
monoclonal or polyclonal to calculate scores. A higher score for
this sample means that the algorithm is more likely to predict the
sample as a polyclonal sample. Finally, we used R package pROC
(Robin et al., 2011) to calculate precision, recall, and the area under
the receiver operating characteristic curve (AUC).

Gene set enrichment analysis, pathway
enrichment analysis and ssGSEA

Gene set enrichment analysis (GSEA) and pathway enrichment
analysis were performed using R package clusterProfiler (Yu et al.,
2012). The ssGSEA algorithm was used to calculate the activity score
of the gene sets for each cell based on GSVA package (Hanzelmann
et al., 2013). We obtained 13 cancer functional states from
CancerSEA (Yuan et al., 2019), as well as a collection of
50 cancer Hallmark gene sets downloaded from MsigDB
(Liberzon et al., 2015). The signature gene lists of macrophages
(e.g. Angiogenesis, Phagocytosis, MHC I molecules, MHC II
molecules; Supplementary Table S5) and T cells (e.g. Cytotoxic,
Exhaustion, Terminally exhaustion, Proliferation, TCR signaling
pathway, Type II interferon response; Supplementary Table S6)
were collected from previous studies (Rooney et al., 2015; Long et al.,
2022; Li et al., 2020; Jiang et al., 2021; Zhang Y. et al., 2022).

CytoTRACE and pseudotime analysis

The R package CytoTRACE v.0.3.3 (47) was applied to predict
the differentiation state of cells from the single-cell RNA-seq
(scRNA-seq) profiles. The CytoTRACE score range from 0 to 1,
with higher scores being associated with greater stemness (less
differentiation) and vice versa, which help us determine the
starting point of differentiation. We employed Monocle2 (Qiu
et al., 2017) to discover the differentiation trajectory for T cells
and endothelial cells. The top 2,000 DEGs between the cell
subgroups were used to create the DDRTree. Utilizing the root
state determined by the CytoTRACE, each cell was given a
pseudotime value using the “order_cells” function. The cells were
ordered and visualized with the “plot_cell_trajectory” function.

TF regulatory network construction and
critical TFs identification

The SCENIC (Aibar et al., 2017) was used to construct TF
regulatory network for malignant cells in different subclonal
complexity. Briefly, GRNBoost2 estimated the co-expression

network and RcisTarget was used to identify the regulons. The
regulon activity was then measured by AUCell for every cell. The
differently activated TFs regulons between different subclonal
complexity were identified by wilcox.test(). The TF-gene regulatory
network was visualized by Cytoscape (Shannon et al., 2003).

Evaluation of associations between critical
TFs and survival outcomes

To explore the prognostic power of TFs, we downloaded two
gene expression datasets from cBioPortal (Gao et al., 2013) and GEO
(GSE76427) for HCC patients, which contained clinical
information. HCC patients from TCGA were treated as a
training dataset, and HCC patients from GSE76427 were used as
an independent validation dataset. A univariate Cox proportional
hazards regression analysis was performed to evaluate the
association between the critical TFs and patients’ OS. Only TFs
with p-value <0.05 were selected to further conduct variable
selection according to stepwise Cox proportional hazards
regression analysis. Finally, we created a risk-score formula based
on TFs expression weighted by Cox regression coefficients.

Risk score � ∑N
i

coefi × expri( )

where N was the number of selected TFs, expri was the expression
value of the ith gene, and coef i was the Cox regression coefficient of
the ith gene in the univariate Cox regression analysis. Patients were
divided into high-risk and low-risk group based on the median risk
score. KM curves were performed to compare the OS and DFS
between two groups. To evaluate whether risk score could be an
independent prognostic factor, Multivariate Cox proportional
hazards regression model was conducted with risk score, age, sex,
height, weight, race as covariates.

Cell-cell communications analysis

We applied CellPhoneDB (Efremova et al., 2020) to infer cell-
cell communication between different cell types. The specific ligand-
receptor interactions between cell types were identified based on
permutation test. The interaction score represented the total mean
of the individual ligand-receptor partner average expression value in
the corresponding interacting pairs of cell types. To predict ligands
driving the transcriptomic changes of target cells, we further
performed NicheNet analysis (Browaeys et al., 2020) between
RBP4+_EC and T cells with the “nichenet_seuratobj_aggregate”
function. Specifically, the differentially expressed genes (DEGs)
among T cells between different subclonal complexity with high
complexity group as control were used as gene sets of interest and all
expressed genes in T cells were used as background of genes.

Cytokines signaling activity calculation

We used CytoSig algorithm (Jiang et al., 2021) to quantify the
signaling activity of cytokines for T cells. The CytoSig was a linear
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model predicting cytokines signaling activity score for each cell and
covered 51 cytokines provided by the curated training data. We
implemented CytoSig for single-cell transcriptional profiles of
T cells in Python 3.

Statistical analysis

Continuous variables were compared by the Wilcoxon rank-
sum test and categorical variables were compared by the chi-squared
test. Pearson correlation was calculated by cor () and cor. test (). The
log-rank test was used to compare Kaplan–Meier curves. When p <
0.05, the differences were considered to be significant. All statistical
analyses were conducted using R software version 4.1.2 (http://www.
rproject.org).

Results

The transcriptional diversity analysis reveals
transcriptional programs in primary HCC

We downloaded 30 untreated primary HCC samples from four
cohorts of single-cell RNA-seq data (Sharma et al., 2020; Lu et al.,
2022; Ma et al., 2021; Ma et al., 2022) (Supplementary Table S1).
After quality control, we obtained a total of 66,609 high-quality cells
with a median of 2,220 cells per sample. Cell types were annotated by
canonical cell markers, identifying 31,832 hepatocytes and
34,777 non-malignant cells (Figure 1A; Supplementary Figure
S1A). We inferred copy number variations (CNVs) based on
scRNA-seq data using InferCNV((Project. iotTC))
(Supplementary Figure S1B). Malignant and non-malignant
hepatocytes were distinguished by their accumulated CNV scores
(see Section Methods, Supplementary Figure S1C), ultimately
identifying 30,955 malignant cells.

We performed clustering and UMAP visualization separately for
malignant and non-malignant cells. Consistent with previous
findings, non-malignant cells exhibited distinct separation by cell
type but showed a mixture of different samples (Supplementary
Figure S1D; Figure 1B), whereas malignant cells exhibited high
inter-tumor heterogeneity (Figure 1C) (Puram et al., 2017). The
transcriptomic similarity among inter-tumor cells was lower than
that among intra-tumor cells (Figure 1D). However, the similarity of
intra-tumor malignant cells varied across patients; for instance,
HCC04T showed relatively high similarity, while H72 exhibited
lower similarity among malignant cells (Figure 1E).

To identify underlying transcriptional programs, we applied
non-negative matrix factorization (NMF) (Gaujoux and Seoighe,
2010) to each sample. The identified gene programs tend to be
mutually exclusive among malignant cells within sample, and were
negatively correlated (Supplementary Figure S1E–G). A total of
98 gene programs were identified across the 30 tumor samples
(Supplementary Table S2). We then performed hierarchical
clustering on these 98 expression programs, extracting three
meta-programs (Figure 1F; Supplementary Table S3) that
encompassed more than half of the samples. These three meta-
programs were associated with distinct signaling pathways: Meta-
program 1 was enriched in cell cycle-related pathways, Meta-

program 2 was enriched in metabolic pathways, and Meta-
program 3 was enriched in stress response-related
pathways (Figure 1G).

Quantifying intra-tumor subclonal
complexity using CNV profiles

To explore intra-tumor subclonal complexity, we proposed a
metric to quantify CNV complexity based on the discrete CNVs
profiles inferred from InferCNV (Figure 2A, method). We
quantified CNV complexity for each HCC sample and classified
samples into high (H) and low (L) groups based on the median CNV
complexity score. We found that CNV complexity scores were
significantly correlated with two other heterogeneity scores
proposed by (Ma et al., 2019) and (Guo et al., 2022) respectively
(Figures 2B, C). Moreover, the CNV complexity score was more
robust than the other two heterogeneity scores, both of which were
negatively correlated with the number of the cells (Figures 2D, E).
Simulation data further demonstrated the robustness of the CNV
complexity score (Supplementary Figure S2A).

Finally, we evaluated the three methods on simulated datasets
generated in silico (Supplementary Figure S2B, C). The CNV
complexity score showed excellent performance in reflecting the
degree of subclonal complexity, as demonstrated by a receiver
operating characteristic (ROC) curve with the highest AUC
value, which was superior to the other methods (Figure 2F).
Overall, our constructed CNV complexity score demonstrates
excellent stability and sensitivity, and more importantly, it is not
influenced by the number of cells, providing a more accurate
quantification of subclonal complexity in samples.

Phenotypic regulatory plasticity in HCC
samples with varying subclonal complexity

To explore the phenotypic plasticity underlying different
subclonal complexity, we used cancer functional gene sets
(Supplementary Table S4) along with ssGSEA and identified
37 gene sets with significant differences between the H and L
groups, with 34 functional gene sets being significantly
upregulated in the L group (p < 0.05, Wilcoxon rank-sum test,
Figure 3A; Supplementary Figure S3). For instance, the L group was
significantly enriched for hypoxia, invasiveness, metastasis,
emphasizing varying signaling activity between the H group and
L group. Malignant cells are susceptible to epithelial-mesenchymal
transition under hypoxic conditions, gaining invasive andmetastatic
abilities, accompanied by a transition from low to high stemness.
Consistent with hypoxia, invasion and metastasis activities
mentioned above, it was discovered that the stemness of
malignant cells in L group was also significantly higher than that
in the H group (p = 0.0049, Wilcoxon rank-sum test, Figure 3B)
(Gulati et al., 2020), which highlights that stemness of malignant
cells is closely related to hypoxia, invasiveness and metastasis.

We further investigated the cell lineage origin of malignant cells
using scHCL(Han et al., 2020), and found significantly different
distributions of cell lineages between the H and L group (p < 0.05,
chi-squared test, Figure 3C), with a significantly higher proportion
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of cell lineage overexpressing FGB in the H group (p < 0.05,
Wilcoxon rank-sum test, Figure 3D). FGB was significantly
upregulated in malignant cells from the H group (p < 2.22e-16,
Wilcoxon rank-sum test, Supplementary Figure S4A). Altered
expression of this gene leads to several disorders, including

afibrinogenemia, dysfibrinogenemia, and thrombotic tendency. In
summary, malignant cells from samples with varying CNV
complexity might undergo diverse transcriptional
reprogramming, resulting in different cancer functional states
and cell lineage origins.

FIGURE 2
Construction and validation of the robust CNV complexity score. (A) Overview of the novel scoring strategy based on Shannon entropy theory. (B)
Comparative analysis of our method and two other strategies (Ma et al. and Guo et al.) in the real discrete CNV profiles inferred by InferCNV. (C)
Correlation analysis of CNV complexity score with Ma et al.’s score (left) and Guo et al.’s score (right) respectively. (D) Scatterplot showing the correlation
between the number of cells and Ma et al.’s score (left), Guo et al.’s score (right). Each dot represents a sample. (E) Scatterplot showing the
correlation between the number of cells and the CNV complexity score. Each dot represents a sample. (F) ROC curve of CNV complexity score, Ma et al.’s
score and Guo et al.’s score in the simulated datasets.
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FIGURE 3
Identification of subclonal complexity-specific TFs. (A) Heatmap of the ssGSEA score of 37 cancer functional states significantly differed between L
and H groups. Two-sided Wilcoxon rank-sum test. (B) Boxplot showing the CytoTRACE score of the L and H groups. The CytoTRACE score for each
sample was the averaged CytoTRACE score of malignant cells from the sample. Two-sided Wilcoxon rank-sum test. (C) Histogram indicating the
proportion of cells lineages in malignant cells from L and H groups. Chi-squared test. (D) Boxplot showing the fraction of cell lineages in L and H
groups. *p < 0.05; **p < 0.01; ***p < 0.001; NS not significant. (E) Heatmap showing the TF activity for malignant cells derived from L and H groups. (F)
Kaplan-Meier plots of risk score on OS (left) and DFS (right). (G) Forest plot showing the HR (95% CI) for OS. The multivariate Cox proportional hazard
models. HR, hazard ratios; CI, confidence interval.
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To investigate the regulatory mechanisms contributing to the
different cell lineages and functional phenotypes of tumor cells
between the H and L group, we employed SCENIC to identify
transcription factors (TFs) regulatory modules (Figure 3E). We then
constructed TFs regulatory networks corresponding to the H and L

groups using differentially expressed and differential CNV genes
targeted by identified TFs (Supplementary Figure S4B;
Supplementary Figures S5A, B). Functional enrichment analysis
of the TF regulatory network revealed that the upregulated genes
in the L group’s TFs regulatory network were enriched in pathways

FIGURE 4
The interactions between malignant cells and non-malignant cells. (A) Barplot showing the number of ligand–receptor interactions between
malignant cells and other cells within the TME in the L and H groups. Recevier: malignant cells are recevier cells. Sender: malignant cells are sender cells.
(B) Barplot showing the differences in the number of pairs of ligand-receptor interactions between the L and H groups. (C) The chemokine-mediated
ligand-receptor interactions between malignant cells and myeloid cells in L and H groups. (D) The coinhibitory-mediated ligand-receptor
interactions between malignant cells and myeloid cells in L and H groups. (E) Heatmap showing the expression levels of MHC I molecules, MHC II
molecules frommacrophage cells in the L and H groups. Two-sided Wilcoxon rank-sum test. (F) Boxplot showing the activity score of angiogenesis and
phagocytosis of macrophages cells in L and H groups. Two-sided Wilcoxon rank-sum test. (G) Gene set enrichment analysis for macrophage cells.
Normalized enrichment score (NES) was used to display the enrichment of the related pathways. P. adjusted <0.05 was considered to be significant.
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such as hypoxia, apoptosis, TNFA signaling via NFkB and regulation
of Wnt signaling. In contrast, the upregulated genes in the H group
were involved in pathways regulating epithelial cell proliferation and
metabolism-associated pathways (Supplementary Figure S4C).

Among these TFs, we identified four transcription factors
MAFG, YY1, EZH2, AR, associated with overall survival (OS)
which were upregulated in the H group. Samples were stratified
into high-risk and low-risk groups based on the median risk score
quantified by these four TFs. Kaplan-Meier curve analysis
demonstrated poorer survival in the high-risk group compared to
the low-risk group in terms of OS and disease-free survival (DFS)
(OS: p < 0.0001, DFS: p < 0.0001, log-rank test, Figure 3F). Further
multivariate Cox proportional hazards regression analysis
confirmed the independent prognostic value of the risk score
(Figure 3G; Supplementary Figure S4D). Finally, we validated the
prognostic power of the 4-TF signatures in an external validation
dataset (GSE76427). The KM curves of the two groups were
significantly different (p = 0.0016, log-rank test, Supplementary
Figure S4E) and the risk score showed the independent
prognostic value (Supplementary Figure S4F).

Characterizing cell-cell communications in
the tumor microenvironment across
different subclonal complexity

To investigate the characteristics of cell-cell communications
within the tumor microenvironment under different complexity of
subclonal structure, we performed cell-cell interaction analysis using
CellPhoneDB (Efremova et al., 2020) between malignant cells and
non-malignant cells in the H and L groups, respectively. We found
that fibroblast and endothelial cells strongly interacted with tumor
cells in the L group rather than the H group (Figure 4A).
Additionally, myeloid cells, including macrophage, monocytes
and dendritic cells (Supplementary Figure S6A, B), showed
strong interactions with tumor cells in both the H and L groups,
with increased communications observed in the L group (Figure 4B).

We further explored the ligand-receptor interactions between
tumor cells and myeloid cells in the L group and H group. We
found that many chemokine-mediated interactions were specifically
present in the L group, such as the CCL4L2-VSIR, FCGR2A-CXCL9,
CCL3L3-CCR1, CCL3L1-CCR11, IDE-CCL23, and CXCL11-DPP4,
CCL2-CCR10 pathways which suggests that tumor cells in the L
group might recruit more myeloid cells. In the H group, there were
also a few specific interactions, such as the interactions between the
dendritic cell-expressed ligandsCCR6 andCXCR3with the tumor cells-
expressed receptorCCL20 (Figure 4C). Additionally, we confirmed that
coinhibitory interactions mediated by pathways like CSF1-SIRPA,
LAG3-FGL1, CCL4L2-VSIR, and LGALS9-HAVCR2 were specifically
activated in the L group (Figure 4D). Similar results were also observed
in the costimulatory-mediated interactions betweenmalignant cells and
myeloid cells (Supplementary Figure S6C). Interestingly, the L group
was enriched for both coinhibitor- and costimulator-mediated ligand-
receptor interaction pairs. In summary, these results revealed that
varying subclonal complexity could alter the cell-cell
interactions landscape.

Given the differential interaction strength of myeloid cells and
tumor cells between the H and L groups, we investigated the

functional characteristics of myeloid cells. Myeloid cells from the
L group showed upregulation of MHC I and MHC II molecules and
higher angiogenesis and phagocytosis signature scores (p < 0.05,
Wilcoxon rank-sum test, Supplementary Table S5; Figures 4E, F).
Based on gene set enrichment analysis (GSEA) of the differentially
expressed genes identified in myeloid cells between the L and H
groups (Supplementary Figure S6D), more hallmark signaling
pathways were enriched in myeloid cells from the L group,
including hypoxia, EMT, TNFA signaling via NFkB, DNA repair,
apoptosis, and angiogenesis (Figure 4G; Supplementary Figure S6E,
F). These results were consistent with what we observed in tumor
cells from samples with different complexity of subclonal structure.

Differential activation and functional states
of T Cells with varying subclonal complexity

Although there was no significant difference in tumor-T cells
interaction strength between the H and L groups, T cells exhibited
significantly different activation statuses based on ssGSEA analysis
of functional gene sets (Supplementary Table S6). Both CD4+ and
CD8+ T cells from the L group had higher scores for TCR signaling
pathway, exhaustion and proliferation but lower type II interferon
response score (p < 0.05, Wilcoxon rank-sum test, Figure 5A).
Moreover, cytotoxicity-related genes (e.g., GZMA, GZMB,
GZMH, NKG7, PRF1) and immune checkpoint genes (e.g., LAG3,
PDCD1, LCK) were significantly upregulated in T cells from the L
group (p < 0.05, Wilcoxon rank-sum test, Supplementary Figure
S7A, B). The scores of these functional gene sets were significantly
correlated with CNV complexity score, implying the potential of
subclonal complexity in predicting the activation status of
T cells (Figure 5B).

We performed subclustering on T/NK cells, resulting in seven
cell subpopulations: CD4_CCR7, CD4_IFNG+, CD4_FOXP3+_
Treg, CD8_GZMK+, CD8+_TNSF9+, proliferative T cells, and
NK cells (Figure 5C; Supplementary Figure S7C). The
proliferative T cells were further annotated according to their
similarity with other T subtypes and NK subtype (see methods,
Figure 5D). Based on trajectory analysis of CD4+ and CD8+ T cells,
we found that both CD4+ and CD8+ T cells from the L group tended
to locate in the intermediate of the trajectory whereas those from the
H group were primarily located at the terminal of trajectory
(Figure 5E, F). Additionally, T cells from L group showed
increased CytoTRACE score, indicating a heightened activation
status of T cells in the L group (CD8+: p = 0.043, CD4+: p =
0.075, Wilcoxon rank-sum test, Figures 5E, F; Supplementary
Figure S7D, E).

Immune activation mediated by endothelial
cell subtypes with varying subclonal
complexity

To investigate the regulatory mechanisms underlying the
different activation states of T cells, we estimated the signaling
activities of 51 cytokines on T cells and their correlation with T cell
proliferation using the CytoSig model (Jiang et al., 2021). The
activity of the cytokine HMGB1 showed a significant positive
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correlation with the proliferative score of T cells (p = 0.014, R = 0.45,
Figure 6A). Moreover, HMGB1 signaling activity was significantly
higher in the L group compared to the H group (p = 0.011,Wilcoxon
rank-sum test, Figure 6B). HMGB1 was primarily expressed in
endothelial and fibroblast cells (Figure 6C). However, the

expression levels of HMGB1 in endothelial cells, rather than
fibroblast cells, were upregulated in the L group (p = 0.0023,
Wilcoxon rank-sum test) and significantly correlated with T cell
proliferation (Figures 6D, E; Supplementary Figure S8A).
Additionally, the expression levels of HMGB1 in endothelial cells

FIGURE 5
The immune activation of T cells in low CNV complexity. (A) Boxplot showing the ssGSEA score of exhaustion, proliferation, TCR signaling pathway,
terminally exhaustion, type II IFN response of CD4+ and CD8+ T cells in the L and H groups. Two-sided wilcoxon rank-sum test. (B) Scatterplot showing
the correlation between CNV complexity score and the ssGSEA score of exhaustion, proliferation, TCR signaling pathway, terminally exhaustion, and type
II IFN response. Each dot represents a sample. (C)UMAP plot of 7 T/NK cell subtypes from 30 samples. (D) Pie chart showing the annotation results of
the proliferative T cells. (E) Single-cell trajectory analysis of CD4+ T cells. Cells were colored by pseudotime (upper left). Cells were colored by CytoTRACE
score (upper right). Cells were colored by subclonal complexity (lower left). Cells were colored by cell types (lower right). Black dashed lines mark cells
with both low stemness and high subclonal complexity. (F) Single-cell trajectory analysis of CD8+ T cells. Cells were colored by pseudotime (upper left).
Cells were colored byCytoTRACE score (upper right). Cells were colored by subclonal complexity (lower left). Cells were colored by cell type (lower right).
Black dashed lines mark cells with both low stemness and high subclonal complexity, as well as cells with both high stemness and low subclonal
complexity.
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was positively correlated with the activity scores of T cell exhaustion
and TCR signaling pathway, and negatively correlated with the
activity score of type II interferon response score
(Supplementary Figure S8B).

We further dissected the subtypes of endothelial cells,
identifying seven distinct endothelial cell subtypes (Figure 6F;
Supplementary Figure S8C). The proportion of RBP4 positive
endothelial cells (RBP4+EC) was significantly higher in the L
group compared to the H group (p < 0.05, Wilcoxon rank-sum
test, Figure 6G). Moreover, HMGB1 expression which was present
only in RBP4+ ECs was significantly increased in the L group
compared to the H group (p = 0.009, Wilcoxon rank-sum test,
Figure 6H; Supplementary Figure S8D). Trajectory analysis
demonstrated that RBP4+ECs persisted throughout the
differentiation trajectory and showed highly expressed HMGB1 in
the L group along with the pseudotime (Figures 6I–K). Moreover,
CytoTRACE analysis suggested that RBP4+ECs in the L group

showed a less differentiated status (p = 0.0079, Wilcoxon rank-
sum test, Supplementary Figure S8E–G).

To further investigate the regulatory mechanisms of RBP4+ECs
on T cell activation, we identified regulators from RBP4+ECs for
T cell activation through Nichenet analysis (Browaeys et al., 2020)
(Figure 7A). We found that RBP4+ECs regulated the expression of
29 target genes in T cells by upregulating HMGB1 in the L group,
including IFNG, which enhances tumor immune function and
promotes T cell exhaustion (Benci et al., 2019), and CCL3, which
facilitates dendritic cells (DC) recruitment for antigen presentation
and T cell activation (Castellino et al., 2006). Interaction analysis
between RBP4+ECs and T cells showed more and stronger
chemokine-mediated interactions between RBP4+ECs and
CD8+T in the L group including CXCR6-CXCL16, NR3C1-CCL2,
CXCL12-CXCR3, CXCL12-CXCR4, and PGRMC2-CCL4L2
(Figure 7B). Similar results were observed in the interactions
between RPB4+ECs and CD4+ T cells (Figure 7C).

FIGURE 6
HMGB1 drived the reprogramming of the TME. (A) Scatterplot showing the correlation betweenHMGB1 activity and proliferative score of T cells. (B)
Boxplot showing the HMGB1 activity in L and H groups. Two-sided Wilcoxon rank-sum test. (C) Violin plot of expression levels of HMGB1 in various cell
subtypes, colored by themean expression levels ofHMGB1 in cell subtypes. (D) Boxplot showing the expression levels ofHMGB1 in L and H groups. Two-
sided Wilcoxon rank-sum test. (E) Scatterplot showing the correlation between the expression level of HMGB1 and proliferative score of T cells. (F)
UMAP plot of 7 endothelial cell subtypes from 30 samples. (G) Boxplots illustrating the fraction of endothelial subtypes in L and H groups. Two-sided
Wilcoxon rank-sum test. *p < 0.05; **p < 0.01; ***p < 0.001; NS not significant. (H) Boxplot showing the expression ofHMGB1 fromRBP4_EC in theH and
L groups. Two-sidedWilcoxon rank-sum test. (I–K) Single-cell trajectory analysis of endothelial cells. (I)Cells were colored by pseudotime. (J)Cells were
colored by cell subtypes. (K) The changes in expression levels of HMGB1 along with the pseudotime.
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Discussion

Tumor heterogeneity pervades across various cancers,
profoundly influencing the survival of patients (Dagogo-Jack and
Shaw, 2018). In this study, we observed sample-specific clustering
patterns among malignant cells, whereas non-malignant cells
exhibited clustering patterns predominantly defined by cell types.
The correlation analysis of malignant cells revealed that intra-tumor
heterogeneity was variable among samples and intra-tumor cells
similarity was generally greater than that of inter-tumor cells.
Previous research has identified complex transcriptional
programs across diverse malignancies, including cell cycle,
interferon response, partial epithelial-mesenchymal transition
(pEMT), and complete EMT (cEMT) (Barkley et al., 2022). Here,

we identified three meta-programs that were associated with distinct
hallmark functions using NMF. Several strategies have been
proposed to quantify the degree of tumor heterogeneity. For
instance, Ma et al. (2019) employed PCA to project all malignant
cells to the eigenvector space to derive PCs and calculated the
averaged distance of malignant cells from the centroid
(arithmetic mean of PCs of all malignant cells within the
corresponding tumor) in principal component space. This
averaged distance was used as a measure of heterogeneity for
that particular sample. Guo et al. first calculated inter cell
distances based on the Pearson correlation between any two
malignant cells within a sample. The distance between cells was
defined as D = 1- R, where R is the Pearson correlation coefficient
between the CNV profiles of any two cells. Then, the metric of

FIGURE 7
The interactions between RBP4+_EC and T cells. (A) Heatmaps showing potential ligands driving transcriptomic changes of target genes in T cells.
(B,C) The chemokine-mediated ligand-receptor interactions between RBP4+_EC and T cells in L and H groups. (B) CD8+ T cells. (C) CD4+ T cells.
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heterogeneity was defined as the median distance of distribution of
pairwise cell distances (Guo et al., 2022). However, these methods
implicitly involved the cell number in the calculation of
heterogeneity, thus making them potentially influenced by the
number of cells. Therefore, we proposed a new metric that
avoided the involvement and interference of cell number and
accurately quantified the complexity of subclonal structure
without bias from cell numbers.

Data originating from glioblastoma (Patel et al., 2014; Neftel
et al., 2019), oligodendroglioma (Tirosh et al., 2016), head and neck
cancer (Puram et al., 2017), and melanoma (Rambow et al., 2018)
consistently demonstrated a spectrum of differentiation within
tumors, ranging from stem-like or progenitor states to fully
differentiated cells, alongside a plethora of heterogeneous
functional states in malignant cells, such as stress responses,
interferon reactions, and hypoxia (Puram et al., 2017; Patel et al.,
2014; Neftel et al., 2019; Moncada et al., 2020; Yu et al., 2022). We
identified a total of 37 significantly different cancer functional states
between low and high-complexity groups. The low-complexity
group was significantly enriched in functional states associated
with hypoxia, invasiveness, metastasis, stemness, apoptosis, and
DNA repair, suggesting their potential roles in tumor progression
and therapeutic resistance, driven by highly competitive dominant
clones (Davis et al., 2017; Greaves and Maley, 2012). Furthermore,
an investigation into lineage origins revealed that distinct
compositions of cellular lineages in samples with varying
subclonal complexity. Additionally, the TFs regulatory networks
associated with the low and high-complexity groups reveal a
correlation between subclonal complexity and survival
outcomes in HCC.

Previous research has established that tumor heterogeneity is a
critical cornerstone for reconstructing tumor evolution and
driving the dynamics and diversity of the tumor
microenvironment (Dentro et al., 2021). Genetic and epigenetic
alterations collectively define the transcriptomic and phenotypic
heterogeneity of malignant cells, leading directly or indirectly to
the reprogramming of the TME (Flavahan et al., 2017; Vitale et al.,
2021; Alizadeh et al., 2015). In this study, we observed markedly
distinct interaction strength between malignant cells and other cell
types within the microenvironment in high- versus low-
complexity group. Specifically, malignant cells exhibited a
substantially higher number of ligand-receptor interactions with
myeloid cells, fibroblasts, and endothelial cells in low-complexity
group compared to the high-complexity group. Notably,
endothelial cells displayed the largest differences between the
two groups, suggesting a potential role for endothelial cells in
shaping the TME according to the complexity of subclonal
structure. Our subsequent analysis revealed a remodeled
immunological landscape in the low-complexity group,
characterized by enhanced antigen-presenting capabilities of
macrophages and heightened T cells immunoreactivity.

Cytokines play an important role in remodeling the tumor
microenvironment (Binnewies et al., 2018). In this study, we
identified HMGB1, a critical cytokine expressed by RBP4+ECs,
which exerts immunostimulatory effects on T cells. Our results
demonstrated that both the expression and signaling activity of
HMGB1 were significantly higher in the low complexity group
compared to the high complexity group. A notable correlation

was observed between the expression levels of HMGB1 in
endothelial cells and immune activity score of T cells. We further
confirmed that RBP4+ECs had more frequent chemokine-mediated
ligand-receptor interaction pairs with T-cells in the low complexity
group. These findings collectively highlighted the intricate interplay
between the subclonal complexity and the TME, particularly
emphasizing the role of subclonal complexity in orchestrating
immunological landscape. The increased interaction strength
between RBP4+ECs and T cells and activation of T cells in the
low complexity group, mediated by HMGB1, suggests a potential
mechanism through which the cytokines can either promote or
suppress antitumor immunity. Future studies should focus on
elucidating the molecular mechanisms underlying the varying
expression of HMGB1 and its impact on T cells, potentially
leading to the identification of novel biomarkers and therapeutic
targets for cancer treatment.
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