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The advent of long-read (LR) sequencing technologies has provided a direct
opportunity to determine the structure of transcripts with potential for end-to-
end sequencing of full-length RNAs. LR methods that have been described to
date include commercial offerings from Oxford Nanopore Technologies (ONT)
and Pacific Biosciences. These kits are based on selection of polyadenylated
(polyA+) RNAs and/or oligo-dT priming of reverse transcription. Thus, these
approaches do not allow comprehensive interrogation of the transcriptome
due to their exclusion of non-polyadenylated (polyA-) RNAs. In addition, polyA
+ specificity also results in 3′-biased measurements of PolyA+ RNAs especially
when the RNA input is partially degraded. To address these limitations of current
LR protocols, we modified rRNA depletion protocols that have been used in
short-read sequencing: one approach representing a ligation-based method and
the other a template-switch cDNA synthesis-based method to append ONT-
specific adaptor sequences and by removing any deliberate fragmentation/
shearing of RNA/cDNA. Here, we present comparisons with poly+ RNA-
specific versions of the two approaches including the ONT PCR-cDNA
Barcoding kit. The rRNA depletion protocols displayed higher proportions
(30%–50%) of intronic content compared to that of the polyA-specific
protocols (5%–8%). In addition, the rRNA depletion protocols enabled
~20–50% higher detection of expressed genes. Other metrics that were
favourable to the rRNA depletion protocols include better coverage of long
transcripts, and higher accuracy and reproducibility of expressionmeasurements.
Overall, these results indicate that the rRNA depletion-based protocols described
here allow the comprehensive characterization of polyadenylated and non-
polyadenylated RNAs. While the resulting reads are long enough to help
decipher transcript structures, future endeavors are warranted to improve the
proportion of individual reads representing end-to-end spanning of transcripts.
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Introduction

Whereas short-read sequencing platforms continue to be
powerful in transcriptome characterization and quantification,
they rely on computational assembly tools to generate contiguous
sequences from short reads and thereby extrapolate on transcript
structural variations such as alternate transcription start sites, splice
isoforms, alternative polyadenylation and fusion transcripts.
Linked-read technologies (Tilgner et al., 2015; Tilgner et al.,
2018) have partially improved such assessments but more
significant improvements have been made with the advent of
long-read (LR) technologies from Pacific Biosciences (PacBio)
(Sharon et al., 2013) and Oxford Nanopore Technologies (ONT)
(Oikonomopoulos et al., 2016). LR platforms have provided an
opportunity to directly determine the structure of transcripts
including the possibility of end-to-end sequencing of full-
length RNAs.

Ribosomal RNAs (rRNAs) represent >90% of the total RNA
mass within cells (Lucas et al., 1977; Sturani et al., 1979) thereby
limiting the sensitivity of RNA-seq to detect mRNA transcripts.
Several methods that either enrich for mRNAs or deplete rRNAs
have been developed. Capture of non-rRNA transcripts can be
attained by targeting their poly(A) tails (Aviv and Leder, 1972),
as most rRNAs are not polyadenylated (Kuai et al., 2004). However,
poly(A) enrichment strategies can result in a strong bias towards
recovery of only the 3′-ends of transcripts if the input RNA samples
are degraded. Alternatively, methods that specifically remove rRNAs
can be targeted (Adiconis et al., 2013; Morlan et al., 2012; Hrdlickova
et al., 2017). These protocols also allow the assessment of non-
polyadenylated mRNAs and they include the affinity purification-
based Ribo-Zero Gold kit (Illumina) (Adiconis et al., 2013) and the
enzyme-based New England Biolabs (NEB) protocol (Morlan et al.,
2012) that work at the RNA level. Alternatively, protocols that use
enzymatic probe-directed degradation approach at the cDNA level
have been reported (Archer et al., 2014; Verboom et al., 2019).

The majority of existing LR methods, including commercial
offerings, are based on selection of polyadenylated mRNAs (polyA+
RNAs) and/or oligo-dT priming of reverse transcription (Soneson C
et al., 2019). Thus, these approaches do not allow comprehensive
interrogation of the transcriptome due to their exclusion of non-
polyadenylated RNAs (polyA- RNAs). In addition, polyA+
specificity also results in 3′-biased measurements of polyA+
RNAs when the RNA input is partially degraded. An exception is
an approach that is based on the (PCR-free) direct RNA ONT
sequencing kit but its application is limited to mostly cell line-
derived RNA as the input requirement for the protocol is >100 μg
(Ibrahim et al., 2021).

To address the aforementioned limitations of current LR
protocols, we modified two ribosomal RNA (rRNA) depletion
and cDNA-based protocols that have been employed in short-
read sequencing and adapted them for ONT sequencing. One of
these represents a cDNA ligation-based method using the NEB’s
rRNA depletion kit at the RNA level (Morlan et al., 2012; Haile S
et al., 2019) and the other involves a template-switch cDNA
synthesis method that employs rRNA depletion at the cDNA
level (Verboom et al., 2019; Haile S et al., 2021). Here, we
compare these protocols with polyA+ RNA-specific versions of
the two approaches including the commercially available ONT

PCR-cDNA barcoding kit for the method that is based on
template-switch cDNA synthesis.

Methods and materials

Samples

Universal Human Reference (UHR) total RNA (Stratagene
catalog #740000) was quantified using the RNA 6000 Nano Kit
(Agilent, catalog #5067–1511). The SIRV-Set four synthetic RNA
spiking mix (Lexogen, catalog # 141) was added to UHR total RNA
to allow for assessments of expression accuracy, sensitivity, and
transcript isoform detection. A 1.12 μL volume of the spike-in mix
stock was used per 10 μg UHR total RNA (this is equivalent to ~6 pg
and ~120 pg of the spike-in RNA mix per the 10 ng and 200 ng total
RNA input amounts, respectively).

Library construction

Modified RNase H-based rRNA depletion
New England Biolabs’ (NEB) RNase H-based rRNA depletion

protocol (cat.no. E6310X, NEB, United States) was applied to
200–1000 ng of DNase-I treated total RNA as previously
described (Haile S et al., 2019).

Following rRNA depletion, cDNA synthesis and library
construction steps were performed as described (Haile et al.,
2021; Haile S et al.,, 2019) with the following modifications: (1)
bead-based purifications were modified to allow bead to reaction
mix ratio of 1:1 during cDNA synthesis, (2) mechanical shearing of
cDNA was omitted, (3) bead-based purification after ligation with
ONT specific adaptor was performed using a bead to reaction mix
ratio of 0.8:1, (4) Digestion of dUTP containing cDNA strand using
Uracil-Specific Excision Reagent (USER) was applied as a separate
step after bead-based purification of the ligated product, (5)
LongAmp PCR enzyme from NEB was used for PCR enrichment
with ONT multiplexing primers that are part of the ONT PCR-
barcoding kit (SQK-PCB111.24) and (6) only one bead-based
purification was performed after 13 cycles of PCR with a bead to
reactionmix ratio of 0.7:1. Detailed step-by-step library construction
protocol is described in the supplementary section.

Modified SMARTer total RNA library prep
The SMART-Seq® Stranded Kit (Takara Bio; cat no 634444) was

used with the following modifications: (1) Universal ONT-
compatible primers were used for the first PCR (PCR-1) instead
of the indexing primers that come with the SMART-Seq® Stranded
Kit; (2) ONT multiplexing primers that are part of the ONT PCR-
barcoding kit (SQK-PCB111.24) were used for the second PCR
(PCR-2); (3) Five cycles and two cycles of PCR-1 were applied for
the 10 ng UHR and 200 ng UHR, respectively. Twelve cycles of PCR-
2 were applied to both input amounts. Of note, PCR-1 is light
amplification that is applied to bring the cDNA levels to an
appreciable narrower range of yield before the rRNA depletion
step (Figure 1). The second (PCR-2) is an enrichment step to
bring to a library amount sufficient for sequencing while also
completing the adapter constructs needed for sequencing and
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where multiplexing barcodes were also introduced. Bead-based
purifications were modified to allow bead to reaction mix ratio of
1:1 before PCR-2 and 0.7:1 following PCR-2.

Bioinformatic analyses

Base calling of the raw fast5 signal files was performed using
Guppy 6.3.7 and the model “dna_r9.4.1_450bps_sup_prom.cfg”
after which sequence reads passing default quality filters were
stored in fastq format. Reads were reverse complemented when
the barcode variant in the sequencing_summary.txt file listed the
orientation as “var2”.

Each of the five conditions (four protocols, five input
amounts) were randomly down-sampled to 12 million reads.
RNA alignment metrics, including 3′-5′ coverage plots, were
generated using gatk-4.1.9.0 CollectRNASeqMetrics after
aligning the down-sampled reads with Minimap 2.25-r1173
(minimap2 -t 16 -ax splice) to a reference containing contigs
from hg38, ERCC, and SIRVs. BamSlam (downloaded in April
2023) was used to collect metrics related to transcript
completeness after minimap aligning (minimap2 -ax map-
ont--sam-hit-only) the down-sampled reads to transcript
models from GenCode42, ERCC and SIRVs. To generate TPM

expression estimates, Salmon 1.9.0 (salmon quant -l A--ont -g
gencode_gene_transcript.txt--gencode) was applied to the
transcript-aligned reads using a.gtf file containing GenCode42,
ERCC, and SIRV transcripts.

Results and discussion

Protocol development and
evaluation overview

Currently, the only commercially available protocol for cDNA
sequencing on Oxford Nanopore platforms is based on cDNA
synthesis upon priming at the 3′-end polyadenylation tails of
mRNAs and template-switch priming at the 5′-end (Figure 1A).
This kit (henceforth referred to as “ONT kit”) is, therefore, not
suitable for sequencing non-polyadenylated RNAs. To address this
limitation, we modified an RNase H-based rRNA depletion protocol
that we previously applied to short-read sequencing (Haile S et al.,
2019) (Figure 1B). This protocol (“RBD_GSC”) involves ligation of
full-length double-stranded cDNA products with ONT-specific
adaptors. Of note, the first strand cDNA synthesis in this
protocol involves random priming to be able to capture
transcripts comprehensively regardless of their polyadenylation

FIGURE 1
Schematic depictions of the library preparation approaches evaluated in this study. (A) The Oxford Nanopore kit, “ONT kit”, is based on cDNA
synthesis upon priming at the 3′-end polyadenylation tails of mRNAs and template-switch priming at the 5′-end. (B) RNAse H-based rRNA depletion in-
house protocol, RBD-GSC, involves ligation of full-length double-stranded cDNA products with ONT-specific adaptors. The protocol involves random
priming for first strand cDNA synthesis. A variation of this ligation-based protocol, “GSC-PolyA”, starts with poly(A)-selected mRNAs. (C) Modified
SMARTer total RNA protocol, “SMARTer-GSC”, involves the removal of rRNA after conversion to cDNA. Brown circles represent magnetic bead-based
purifications.
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status. A variation of this ligation-based protocol (“PolyA_GSC”)
that starts with poly(A)-selected mRNAs is also included for
comparison (Figure 1B). The RBD_GSC protocol included
significant manipulation of the RNA including high temperature
incubations during the rRNA depletion steps which may result in
partial degradation. We, therefore, considered another protocol that
involves the removal of rRNA after conversion to cDNA with
minimal opportunity to degrade RNA. This protocol
(“SMARTer-GSC”) is based on the SMART-Seq® Stranded Kit
from Takara Bio (Verboom et al., 2019; Haile S et al., 2021)
following our modifications to render it ONT compatible
(Figure 1C). An added advantage of SMARTer-GSC is that it
allows the use of lower input amounts (as low as picograms of
total RNA). Besides the addition of ONT adapters, all the modified
protocols also avoided any deliberate shearing/fragmentation of
RNA/cDNA to capitalise on the long read feature of the
ONT platform.

Here, we sought to compare the aforementioned protocols
using Universal Human Reference (UHR) total RNA as input.
cDNA libraries were made from 200 ng total RNA for all
protocols. We also included a 10 ng input amount for the
SMARTer-GSC protocol. Libraries were made in triplicate for
each protocol and two randomly selected replicates from each
protocol were pooled for sequencing on one PromethION
flowcell. After seeing reproducible results from replicates at
shallower sequencing level (data not shown), reads from
replicates for each of the protocols/input amounts were
merged and randomly down-sampled to 12 million for
normalization of sequencing depth.

Read length distributions

The ONT kit libraries displayed a very high spike
of <125 nucleotides (nt) (Figure 2A), the majority of which could
not be mapped to the human genome and contain stretches of Ts
presumably corresponding to truncated reads largely limited to the
polyA tail region of transcripts (data not shown). There were also
other spikes of >500 nt (Figure 2A). The 10 ng and 200 ng
SMARTer_GSC libraries displayed the highest median read
length (3,699 and 4,450 nt, respectively) and the RBD_GSC
libraries displayed the lowest (1,634 nt) while the ONT_KIT and
PolyA_GSC showed a median length in between the two protocols;
2,278 nt and 2,000 nt, respectively. (Supplementary Figure 1A). The
trend in read distribution is consistent with what was observed when
the final libraries were size profiled using an Agilent Bioanalyzer
(Supplementary Figure 1B). However, there appears to be higher
proportion of smaller fragments upon ONT sequencing (Figure 2A)
compared to the proportion of smaller fragments observed using the
Bioanalyzer assessment reflecting the sequencing bias towards
smaller fragments and/or inaccuracy of Bioanalyzer size profiling
(Supplementary Figure 1D).

Genome-level post-alignment metrics and
sensitivity of detection of expressed genes

The proportion of reads that mapped to the human genome was
high (>98%) for all protocols except the ONT-kit (~82%)
(Figure 2B), which in part might be due to the polyA tail

FIGURE 2
Read length distribution and gene-level metrics. (A) Read length distribution upon sequencing of libraries that were generated using the various
protocols. (B) Various alignment-based quality metrics. (C) Number of expressed genes. All libraries were generated from 200 ng total Universal Human
Reference (UHR) RNA. For “GSC-SMARTer”, libraries were also generated from 10 ng total RNA.
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mapping artifacts mentioned above. Residual rRNA levels were low
for all protocols (<5%) with the RBD-GSC protocol displaying the
lowest (~0.4%) compared to the others (1.6%–4.2%) (Figure 2B).

As expected, the two rRNA depletion protocols (SMARTer-GSC
and RBD-GSC) yielded higher proportions (30%–50%) of reads
mapping to intronic regions compared to the two polyA-specific
protocols (PolyA_GSC and ONT-kit) which displayed 5%–8%
intronic content (Figure 2B). This trend is consistent with what
we previously observed from similar UHR libraries that were
sequenced on the Illumina platform (Haile et al., 2021; Haile S
et al., 2019) and reflects the capacity of the rRNA depletion-based
protocols to capture non-polyadenylated RNAs.

Strand-specificity was high for all protocols with >92% of reads
mapping to the expected strand with the rRNA depletion protocols
showing lower strand-specificity (92%–94%) compared to the
polyA-specific protocols (~98%) (Figure 2B); perhaps due to
higher representation of unannotated anti-sense non-
polyadenylated transcripts in the former.

Sensitivity of detection of expressed genes was measured by
counting the number of genes with >0 read counts. This analysis
demonstrated that the ONT_kit displayed the lowest number of
expressed genes (~24,000) and the PolyA_GSC displayed the next
highest number of genes (~27,000). RBD_GSC and SMARTer_GSC
protocols exhibited even higher numbers of genes detected
(31–38,000) (Figure 2C); consistent with the expectation that the
rRNA depletion-based protocols are more comprehensive in
detecting polyA and non-polyA transcripts.

Capacity to represent full-length transcripts
and the degree of uniformity of transcript
body coverage

Transcriptome-level analysis was performed using the BamSlam
pipeline that was specifically developed for assessing long-read
RNA-seq data (Gleeson J et al., 2022). This analysis showed that
the ONT-kit detected the lowest number of unique transcripts
(93,917) compared to the other protocols (148,394–189,292)
(Figure 3A); consistent with the sensitivity trend observed at the
gene level (Figure 2C). Median length of uniquely identified
transcripts was highest for the ONT-kit (1,999 nt), followed by
PolyA_GSC (1,403 nt), and the lowest for RBD_GSC (1,333 nt) and
SMARTer_GSC (1,327 nt) (Figure 3B). This may in part be due to
the differences in the length of polyA+ vs polyA-transcripts and the
relative abundances of RNAs therein.

The trend of the length of primary alignments (Figure 3C) was
consistent with read length distributions (Figure 2A). The BamSlam
tool defines reads representing full-length transcripts as those that
span 95% of the transcript they primarily align to. The percentage of
reads representing full-length transcripts was ~31.6% for the ONT-
kit libraries whereas this metric for the other libraries generated
using the other protocols was 0.7%–2.9% (Figure 3D). Visual
inspection of IGV read distribution supported this trend (data
not shown). Despite this trend, the median coverage fraction for
all unique transcripts was comparable for the four protocols, ranging
between 0.22 and 0.28 (Figure 3E); indicating that the higher

FIGURE 3
Transcript-level metrics. Various metrics representing sensitivity of detection of transcripts (A), median length of unique transcripts (B), read length
of contiguous alignments to transcripts (C), and transcript coverage (D, E). All libraries were generated from 200 ng total Universal Human Reference
(UHR) RNA. For “GSC-SMARTer ”, libraries were also generated from 10 ng total RNA.
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percentage of reads representing full-length transcripts for the ONT
kit is skewed towards a limited number of transcripts.

The higher representation of full-length transcripts in the ONT
kit could be explained by the unique combination of two features of
the protocol: ligation of the adapter at the 3′-end of the polyA tail
and priming of the cDNA synthesis from the distal end of the polyA
tail on one hand, and attachment of the 5′ adaptor via a strand-
switch mechanism on the other. The strand switching capacity is
known to be greatly enhanced by the 5′-cap structure, which
together with the 3′ distal start of cDNA synthesis may enrich
for full-length transcripts (Wulf MG et al., 2019; Wulf MG et al.,
2022). Random priming of the first cDNA synthesis is common to all
three of the other protocols. Internal priming can, therefore, occur
even though this should be limited via strand-displacement from
downstream priming. The other protocol that has the 5′-end strand-
switch feature is the SMARTer_GSC protocol but this approach is
based on 3′-end random priming. Assessment of 5′-3′ gene body
coverage of the top 1000 highly expressed genes (Figure 4A) and 5′-
3′ ratios of the coverage of distal ends (Figure 4B) is at least partly
consistent with these explanations. Specifically, the ONT-kit
displayed the most uniform end-to-end coverage for transcript
sizes up to 2 kb. For 2–20 kb size range, the ONT-kit
increasingly showed 3′-end bias. Consistent with the strand-
switch feature at the 5′end and random priming at the 3′-end,
the SMARTer protocol displayed higher coverage at the 5′-end,
displaying increasingly more severe 5′-end bias with increased
transcript size. The RBD_GSC protocol was the most consistent
across transcript sizes with persistent less coverage of the 50–100 bp
at the very 5′-and 3′-ends. The PolyA_GSC protocol showed a
similar trend to RBD_GSC except for transcripts of >5 kb where
there was progressive but modest bias toward the 3′end, consistent
with the protocol being polyA-based and the possibility that more

opportunity for degradation exists in the case of longer transcripts.
Supplementary Figure 2 shows an example of a large transcript
(~26 kb long) as visualized via IGV where the read distribution
displayed the strong 3′-end bias of the ONT-kit protocol. Another
difference between the protocols that may have affected these results
is the number of beads-based purifications involved as depicted
in Figure 1.

Expression accuracy and dynamics, isoform
detection, and variability

We next assessed the ability of the protocols to represent the
expression levels of transcripts of varying abundance. To provide
a “ground truth” for transcript abundance, we exploited the
synthetic SIRV-Set 4 RNAs that were spiked into the UHR
total RNA before library preparation. These have known
sequences and predetermined amounts. They are subjected to
the same steps of library preparation and sequencing as the
endogenous UHR RNAs and their status is discerned only at
the bioinformatics level after sequencing. SIRV-Set four is
comprised of 92 ERCC synthetic RNAs with non-overlapping
sequences at various concentrations that are ~0.2–2 kb long,
69 SIRV isoform RNAs derived from seven model genes at the
same concentration that are ~0.2–2.5 kb long, and 15 equimolar
long-SIRV RNAs with non-overlapping sequences that are
4–12 kb long (https://www.lexogen.com/sirvs/sirv-sets/). Thus,
the ERCC RNAs allow assessment of dynamic range of
expression levels, the SIRV isoform set is meant to represent
transcriptome complexity better in terms of splice isoforms, and
the long SIRVs mimic the range of average sizes of eukaryotic
protein coding genes (Piovesan et al., 2019).

FIGURE 4
Transcript body coverage. (A) Comparison of the normalized coverage of transcript bodies, from 5′(left; 0 in x-axis) to 3′(right; 100 in x-axis) of all
annotated termini between the various protocols. (B) Ratio of 5′-end coverage to 3′-end coverage representing distal 100 nt ends. All libraries were
generated from 200 ng total Universal Human Reference (UHR) RNA. For “GSC-SMARTer “, libraries were also generated from 10 ng total RNA.
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The performance of the four protocols in detecting ERCC RNAs
was comparable, representing 50%–67% of the ERCCRNAs with the
SMARTer protocol displaying the highest sensitivity (60%–67%).
We compared the observed levels in the nanopore sequencing data
to the expected yield of ERCC levels for comparison of the accuracy
of the measurements, and we found that all four protocols displayed
high ERCC correlation values (r > 0.86) with SMARTer-GSC
protocol exhibiting higher correlation values (0.94–0.96) as
compared to the other protocols (0.86–0.90) (Figure 5A).

The SIRV isoform analysis demonstrated that all four protocols
performed similarly well in representing the various isoforms for a
given detectable SIRV model gene locus. However, the ONT kit
displayed the most variability in SIRV isoform measurements
(Figure 5B upper panel). In particular, there were three outlier
isoforms (SIRV 602, 609 and 615) that were measured at very high
levels (35 to 43-fold higher than median expression value) in the
libraries that were generated using the ONT kit (Supplementary
Figure 3); all of which were from the same SIRV model
locus (SIRV 6).

The detection and coverage of long SIRVs was the poorest for
the ONT_kit, followed by the PolyA_GSC. The rRNA depletion
protocols performed better (Figure 5B lower panel; Supplementary
Figure 4), consistent with what was observed for endogenous UHR
long transcripts (Supplementary Figure 2).

Although producing longer reads, the ONT long-read platform
has typically produced reads with less overall sequence accuracy
than short read platforms. This accuracy issue did not seem to
hamper the sensitivity of detection of transcripts and splice variant
profiling, for example, as evidenced by “ground truth” assessments
we presented in the form of the data on ERRCs and SIRVs. In
addition, iterative advancements in pore biophysical chemistry and

base calling (Fu et al., 2019; Dohm et al., 2020; Sahlin andMedvedev,
2021; Ni et al., 2023; Kumari et al., 2024; Safar et al., 2024) are
continually improving the accuracy for which our library
construction method will be able to take advantage of. Of note,
our approaches can also be adapted to other long-read platforms
such as the PacBio technology.

In conclusion, this study demonstrates the adaptation of
rRNA depletion protocols for ONT long read sequencing
thereby presenting the opportunity to characterise
polyadenylated and non-polyadenylated transcripts. These
protocols do allow long read coverage of transcripts of various
sizes and, as such, present substantial improvements over short
read applications. A major area of improvement for these
protocols is to render the resulting reads better at representing
end-to-end spanning of full-length transcripts.
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FIGURE 5
Validation of expression quantification accuracy. (A) Log-log plots of observed versus expected ERCC RNAs. Dots represent amounts of individual
spike-in RNAs. (B) TPM Measurement of Isoform SIRV levels (upper panel) and long SIRV levels. TPM measurement assumes individual reads represent
RNA molecules without transcript length correction.
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