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Background: Lung adenocarcinoma (LUAD) is a highly aggressive tumor with one
of the highest morbidity and mortality rates in the world. Nucleotide metabolic
processes are critical for cancer development, progression, and alteration of the
tumor microenvironment. However, the effect of nucleotide metabolism on
LUAD remains to be thoroughly investigated.

Methods: Transcriptomic and clinical data of LUAD were downloaded and
organized from TCGA and GEO databases. Genes related to nucleotide
metabolism were downloaded from the Msigdb database. Genes associated
with LUAD prognosis were identified using univariate COX analysis, and a
prognostic risk model was constructed using the machine learning
combination of Lasso + Stepcox. The model’s predictive validity was evaluated
using KM survival and timeROC curves. Based on the prognostic model, LUAD
patients were classified into different nucleotide metabolism subtypes, and the
differences between patients of different subtypes were explored in terms of
genomic mutations, functional enrichment, tumor immune characteristics, and

OPEN ACCESS

EDITED BY

Deshuai Lou,
Chongqing University of Education, China

REVIEWED BY

Yuxi Zhu,
First Affiliated Hospital of Chongqing Medical
University, China
Songyun Zhao,
First Affiliated Hospital of Wenzhou Medical
University, China
Jifeng Liu,
First Affiliated Hospital, Dalian Medical
University, China

*CORRESPONDENCE

Xiaojing Wang,
wangxiaojing8888@163.com

Jing Zhang,
jade.zhangjing@bbmc.edu.cn

†These authors have contributed equally to
this work

RECEIVED 17 July 2024
ACCEPTED 11 December 2024
PUBLISHED 08 January 2025

CITATION

Zhang K, Wang L, Chen H, Deng L, Hu M,
Wang Z, Xie Y, Lian C, Wang X and Zhang J
(2025) Integration of single-cell transcriptomics
and bulk transcriptomics to explore prognostic
and immunotherapeutic characteristics of
nucleotide metabolism in
lung adenocarcinoma.
Front. Genet. 15:1466249.
doi: 10.3389/fgene.2024.1466249

COPYRIGHT

© 2025 Zhang, Wang, Chen, Deng, Hu, Wang,
Xie, Lian, Wang and Zhang. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Abbreviations: LUAD, Lung adenocarcinoma; TCGA, The cancer genome atlas; GEO, Gene expression omnibus;
NMBRS, Nucleotide metabolism-related prognostic risk score; TME, Tumormicroenvironment; Lasso, Least absolute
shrinkage and selection operator; OS, Overall survival; DSS, Disease specific survival; PFI, Progress free interval; GO,
Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; ROC, Receiver operating characteristic; DCA,
Decision curve analysis; TMB, Tumor mutation burden; MATH, Mutant-allele tumor heterogeneity; CNV, Copy
number variations; SNV, Single nucleotide variants; ssGSEA, Single sample gene set enrichment analysis.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 08 January 2025
DOI 10.3389/fgene.2024.1466249

https://www.frontiersin.org/articles/10.3389/fgene.2024.1466249/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1466249/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1466249/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1466249/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1466249/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1466249/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1466249/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1466249/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1466249&domain=pdf&date_stamp=2025-01-08
mailto:wangxiaojing8888@163.com
mailto:wangxiaojing8888@163.com
mailto:jade.zhangjing@bbmc.edu.cn
mailto:jade.zhangjing@bbmc.edu.cn
https://doi.org/10.3389/fgene.2024.1466249
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1466249


immunotherapy responses. Finally, the key gene SNRPA was screened, and a series
of in vitro experiments were performed on LUAD cell lines to explore the role of
SNRPA in LUAD.

Result: LUAD patients could be accurately categorized into subtypes based on the
nucleotide metabolism-related prognostic risk score (NMBRS). There were
significant differences in prognosis between patients of different subtypes, and
the NMBRS showed high accuracy in predicting the prognosis of LUAD patients. In
addition, patients of different subtypes showed significant differences in genomic
mutation and functional enrichment and exhibited different anti-tumor immune
profiles. Importantly, NMBRS can be used to predict the responsiveness of LUAD
patients to immunotherapy. The results of in vitro cellular experiments indicate that
SNRPA plays an important role in the development and progression of lung
adenocarcinoma.

Conclusion: This study comprehensively reveals the prognostic value and clinical
application of nucleotide metabolism in LUAD. A prognostic signature constructed
based on genes related to nucleotide metabolism accurately predicted the
prognosis of LUAD patients, and this signature can be used as a guide for LUAD
immunotherapy.
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lung adenocarcinoma, nucleotide metabolism, single-cell transcriptome, prognostic
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Introduction

Lung cancer has the highest morbidity and mortality rates in
the world (Sung et al., 2021). About 85% of lung cancer cases are
categorized as non-small cell lung cancer (NSCLC), and within
this category, lung adenocarcinoma constitutes around 50% of
the diagnoses (Sivakumar et al., 2017). LUAD is characterized by
a high degree of malignancy, with the overall 5-year relative
survival rate of patients being less than 20% (Siegel et al., 2020).
Metabolic reprogramming is a mechanism by which cells alter
their metabolic pathways to meet energy and material needs,
promoting cell proliferation and growth. The reprogramming of
tumor metabolism is essential for the continuation of tumor
growth and viability, and it also affects the expression of
immune-related molecules utilizing metabolite secretion.,
thereby regulating anti-tumor immune responses more
broadly (Xia et al., 2021). In recent years, with the further
study of tumor metabolic reprogramming and tumor immune
microenvironment, tumor-targeted drugs and immunotherapy
have been widely applied (Elmore et al., 2021). Despite these
treatments’ efficacy, many LUAD patients still do not achieve
effective treatment outcomes with current regimens (Brahmer
et al., 2018). Hence, it is imperative to investigate novel LUAD
biomarkers to enhance its prognostic evaluation and therapeutic
strategies.

As key components in synthesizing intracellular DNA and
RNA, nucleotides play a crucial role in cell growth, proliferation,
and function (Rudolph, 1994). Unrestricted growth and
proliferation are hallmark features of tumor cells, which depend
on nucleotide metabolism to produce and maintain dNTP.
Furthermore, the metabolism of nucleotides is intricately linked

to the processes of DNA damage response and repair within cancer
cells. By inhibiting pathways related to nucleotide metabolism, it is
possible to specifically induce DNA damage in tumor cells
(Helleday and Rudd, 2022). It is worth noting that nucleotide
metabolism not only provides the necessary material basis for the
growth and proliferation of tumor cells but also that related
products of nucleotide metabolism in tumor cells can act as
signaling molecules to convey information, and some
substances can participate in the regulation of the tumor
immune microenvironment (Ma et al., 2021). Therefore,
studying nucleotide metabolism can help identify therapeutic
targets for LUAD patients and provide new clinical diagnostic
and treatment strategies.

This study aims to explore the prognostic and
immunotherapeutic characteristics of nucleotide metabolism in
LUAD to identify new therapeutic targets for lung
adenocarcinoma. Initially, we examined the function of
nucleotide metabolism in the development of LUAD by
analyzing single-cell transcriptomic data. Then, based on the
prognostic-related genes of nucleotide metabolism in LUAD, we
constructed a prognostic model. The constructed prognostic feature
can accurately stratify LAUD patients, and different subtypes of
patients exhibit distinct prognoses, genomic mutations, functional
enrichment, and tumor immune characteristics. Significantly, this
prognostic characteristic has the potential to forecast the
responsiveness of LAUD patients to immunotherapy treatments.
In addition, by drug sensitivity correlation analysis we explored
sensitive drugs for specific subtypes of LUAD patients. Finally, for
the key gene SNRPA in nucleotide metabolism, we further identified
SNRPA as a potential biomarker for LUAD by exploring its clinical
prognostic value and preliminary experimental validation.
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Materials and methods

Collecting and processing of bulk
transcriptome data

We got gene sets associated with nucleotide metabolism
(Supplementary Table S1) from the Msigdb database (https://
www.gsea-msigdb.org/gsea/msigdb). Transcriptome and clinical
data for LUAD patients were downloaded and organized from
the TCGA database (https://portal.gdc.cancer.gov/) and the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). For the TCGA-
LUAD data, we used TPM-type data for subsequent analysis. In
the GEO dataset, we incorporated three cohorts: GSE31210
(Okayama et al., 2012), GSE50081 (Der et al., 2014), and
GSE72094 (Schabath et al., 2016), each encompassing LUAD
patients with comprehensive survival data. Additionally, we
collected four immunotherapy cohorts, IMvigor210 (Balar et al.,
2017), GSE78220 (Hugo et al., 2016), GSE135222 (Jung et al., 2019),
and GSE100797 (Lauss et al., 2017), to evaluate the immunotherapy
response in LUAD patients.

Procurement and analysis of single-cell
transcriptomic data

We acquired single-cell transcriptome samples of 6 LUAD
patients from the research of Philip Bischoff and others (Bischoff
et al., 2021) and processed and analyzed the single-cell data using the
R package “Seurat” (version 4.40) (Stuart et al., 2019). To maintain
high-quality data, we performed quality control, including filtering the

data to include only genes expressed in a minimum of 3 cells,
excluding cells that had less than 200 or more than 5,000 genes
expressed, and excluding cells with more than 15% mitochondrial
gene content. Initially, we applied the “NormalizeData” function to
normalize the single-cell data, followed by identifying the top
2000 genes with the highest variability using the
“FindVariableFeatures” function for further analysis. Subsequently,
we analyzed the principal component with the “RunPCA” function.
We clustered the single-cell data using the “FindNeighbors” and
“FindClusters” functions and used the R package “SingleR” to
assist in annotating different cell subpopulations (Aran et al.,
2019). Finally, we used tSNE to present the annotation results visually.

Single-cell transcriptome analysis of
nucleotide metabolism

We use the “AddModuleScore” function to assess the nucleotide
metabolism levels of different cell types. Then, we used the R
package “CopyKAT” to deduce malignant cell types among
epithelial cells (Gao et al., 2021) and the R package “Aucell” to
evaluate the nucleotide metabolism levels of malignant and normal
cells (Aibar et al., 2017).

Establishment and confirmation of
prognostic models

We employed a univariate Cox regression analysis to identify
nucleotide metabolism-related genes linked to the prognosis of

FIGURE 1
Flowchart of the study’s workflow.
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LUAD patients, with a significance threshold set at P < 0.05 (van
Dijk et al., 2008). Then, in the TCGA cohort, we further screened
genes using a combination of Lasso and Stepcox regression
analyses (Tibshirani, 1997) and constructed the nucleotide
metabolism-related prognostic signature NMBRS. Within the
GEO cohort, we confirmed the predictive accuracy of NMBRS
for the prognostication of LUAD patients by conducting survival
and timeROC analyses.

Model comparison and
clinicopathological analysis

We compiled 11 prognostic features related to LUAD from various
studies and evaluated their accuracy by comparing their C-indexes. Then,
we explored the association between NMBRS and various
clinicopathological factors and examined its predictive effectiveness in
patientswith different pathological characteristics through survival analysis.

FIGURE 2
Single-cell transcriptome analysis of nucleotide metabolism. (A) Annotation results of single-cell subpopulations. (B) Heat map of marker genes in
cellular subpopulations. (C) Volcanomaps for differential analysis of subgroups. (D)Nucleotidemetabolism levels in each cell type. (E)CopyKAT inference
results of malignant cells in epithelial cells. (F) Distribution of nucleotide metabolism levels in normal and malignant cells. (G) Differences between the
levels of nucleotide metabolism in normal and malignant cells. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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Autonomous prognostic evaluation and
development of a nomogram

In the OS, DSS, and PFI data of LUAD patients (Liu et al., 2018),
we conducted univariate and multivariate COX analyses on NMBRS
and related clinicopathological factors. Subsequently, to enhance the

feature’s clinical application potential, we developed a nomogram
model incorporating NMBRS to measure the anticipated survival
probability for LUAD patients. To confirm the nomogram model’s
precision, we used calibration curves, timeROC analysis, and
decision curve analysis (DCA) to assess its practical utility in a
clinical setting.

FIGURE 3
Modeling prognosis related to nucleotide metabolism. (A) Prognosis-related nucleotide metabolism genes and their interactions in LUAD. (B) Lasso
regression analysis and cross-validation. (C) Seven genes were selected for modeling through Stepcox regression analysis. (D) KM curve and timeROC
curve for the TCGA-LUAD queue. (E) KM curve and timeROC curve for the GSE31210 queue. (F) KM curve and timeROC curve for the GSE50081 queue.
(G) KM curve and timeROC curve for the GSE72094 queue. (H–K) Distribution of OS status, OS, risk scores in the TCGA and GEO cohorts, and
heatmap of mRNA expression of the seven genes between the high NMBRS and low NMBRS groups.
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Analysis of tumor mutations

Mutation data for LUAD patients were retrieved and compiled
from the TCGA database. Using the R package “maftools,” we
plotted mutation waterfalls for patients of different subtypes
(Mayakonda et al., 2018). Next, we analyzed NMBRS, TMB, and
MATH correlations and conducted a deeper analysis of SNV and
CNV mutations in model genes. Additionally, we have analyzed the

interactions involving the top 20 mutated genes across various
patient subtypes and the pathways they regulate.

Analysis of functional enrichment

Initially, we performed GSEA (Gene Set Enrichment Analysis) on
patients belonging to various subtypes (Mootha et al., 2003;

FIGURE 4
Model comparison and clinicopathological analysis. (A–D) NMBRS compared with the C index of 11 LUAD-related studies in the TCGA-LUAD
cohorts, the GSE31210 cohorts, the GSE50081 cohorts, and the GSE72094 cohorts. (E) Correlation between NMBRS and various clinicopathological
factors. (F) Predictive performance of NMBRS across different clinicopathological factors. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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Subramanian et al., 2005). Subsequently, utilizing theHALLMARK gene
sets, we conducted GSVA (Gene Set Variation Analysis) enrichment
analysis on those patients and an in-depth study of the correlation
between NMBRS and HALLMARK pathways (Hänzelmann et al.,

2013). Additionally, we applied the R package “clusterProfiler” to
conduct GO and KEGG enrichment analyses on the genes that
exhibited differential expression across various patient subtypes (Wu
et al., 2021), aiming to explore the gene pathways they are involved in.

FIGURE 5
NMBRS-related genetic alterations between the low and high NMBRS groups. (A) A waterfall map of themutation status of somatic cells in the high-
NMBRS group. (B) A waterfall map of the mutation status of somatic cells in the low-NMBRS group. (C) The Violin plot demonstrates differences in TMB
scores for the high NMBRS and low NMBRS groups. (D) The correlation of NMBRS with TMB. (E) Combined TMB score and NMBRS risk score for Kaplan-
Meier curve analysis of OS. (F) The Violin plot demonstrates differences in MATH scores for the high NMBRS and low NMBRS groups. (G) The
correlation of NMBRS with MATH. (H) Combined MATH score and NMBRS risk score for Kaplan-Meier curve analysis of OS. (*P < 0.05; **P < 0.01; ***P <
0.001; ****P < 0.0001).
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Analysis of the TME and immune cell
infiltration

We used the R package “ESTIMATE” to evaluate and compare the
differences among patients with different subtypes regarding
Immunescore, Stromscore, and TumorPurity (Yoshihara et al., 2013).
Next, we utilized the CIBERSORT and ssGSEA algorithms to examine

the infiltration of immune cells in patients across various subtypes
(Newman et al., 2015). Antigen presentation and immune checkpoints
play crucial roles in anti-tumor immunity. Therefore, we also
investigated the variations in the expression of genes involved in
antigen presentation and immune checkpoint among patients with
varying subtypes. To comprehend the immune distinctions between
the two subtypes more profoundly, we assessed the distribution of

FIGURE 6
Functionally rich features associated with NMBRS. (A) Analysis of GSEA enrichment in patients with high-NMBRS group. (B) Analysis of GSEA
enrichment in patients with low-NMBRS group. (C) The difference in the level of HALLMARK pathway activation according to GSVA scores between the
high and low NMBRS groups. (D) The correlation of NMBRS with the HALLMARK pathway. (E, F) Analysis of KEGG enrichment for different genes in
patients with various subtypes. (G, H) Analysis of GO enrichment for other genes in patients with other subtypes.
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patients across various subtypes within the TME classification (Bagaev
et al., 2021). We obtained the immune seven-step cycle activity scores of
LUAD patients from the TIP website (http://biocc.hrbmu.edu.cn/TIP/
analysis.jsp) (Xu et al., 2018). Furthermore, we examined the variations
in 13 immune functions across patients of different subtypes and
explored the association between NMBRS and immune cell populations.

Immunotherapy and drug sensitivity analysis

We retrievedTIDE scores for LUADpatients from theTIDEwebsite
(http://tide.dfci.harvard.edu) (Jiang et al., 2018) and IPS scores for LUAD
patients from the TCIA website (https://www.tcia.at/home). Using this
data, we compared the differences in TIDE, T-cell Exclusion, and IPS

FIGURE 7
Immune landscape associated with NMBRS in LUAD. (A–D) Differences in Immunescore, Stromalscore, Tumorpurity, and ESTIMATEscore among
patients with different subtypes. (E) The CIBESORT algorithm between the high NMBRS and low NMBRS groups calculated the abundance of various
types with infiltrating cells. (F) Abundance levels for various immune-infiltrating cells were calculated using the ssGSEA algorithm among the high and low
NMBRS groups. (G, H) Differential expression in antigen-presenting genes in patients with different subtypes and immune checkpoint genes. (I)
Variation in activation level of 13 immunologic functions across subtypes of patients. (J) The correlation of immune-infiltrating cells with NMBRS. (K)
Immune-infiltrating cells correlate with seven genes in NMBRS. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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FIGURE 8
NMBRS is used to predict immunotherapy in LUAD patients. (A, B) TIDE score and T cell exclusion score differences in different subtypes of patients.
(C, D) Differences in IPS scores among different subtypes of patients. (E) Submap analysis of different subtypes of patients. (F) Immunotherapy analysis
results for LUAD patients from the TIDE database. (G) The percentage of CR/PR and PD/SD patients in the IMvigor210 cohort who received
immunotherapy in the high NMBRS and low NMBRS groups. (H) Describe the Violin plot of the difference in NMBRS score for CR/PR and PD/SD
patients from the IMvigor210 cohort. (I) Survival analysis for NMBRS from the IMvigor210 cohort. (J) The percentage with CR/PR and PD/SD in the
GSE100797 cohort who received immunotherapy in both the high NMBRS and low NMBRS groups. (K) The percentage of patients in the
GSE135222 cohort who responded or did not respond to immunotherapy in the high NMBRS and low NMBRS groups. (L) The Violin plots of the NMBRS
score differences for responding and non-responding patients from the GSE135222 cohort. (M) Analysis of NMBRS survival from the GSE135222 cohort.
(N) The percentage with CR/PR and PD/SD in the GSE78220 cohort who received immunotherapy in the high NMBRS and lowNMBRS groups. (*P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001).
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scores among different subtypes of patients. Submap is an unsupervised
method that can estimate the association between subclasses observed in
two independent datasets (Hoshida et al., 2007). We used the Submap
algorithm to assess the responsiveness of various patient subtypes to
immunotherapy treatments. A smaller P-value indicates a higher
similarity between the two modules. Next, to further study the
response of different subtypes of patients to immunotherapy, we

assembled four different immunotherapy cohorts: IMvigor210,
GSE78220, GSE135222, and GSE100797. We compared the
immunotherapy response of different subtypes of patients across
these different immunotherapy cohorts. The R package “oncoPredict”
can assess patients’ sensitivity to standard chemotherapy drugs (Maeser
et al., 2021). Our comparisons and screenings have identified
chemotherapy drugs suitable for patients of different subtypes.

FIGURE 9
The correlation of NMBRSwith single-cell characteristics. (A) Expression in various cell types of the 7model genes. (B)Classification of epithelial cells
into High_NMBRS_Epithelial_cells and Low_NMBRS_Epithelial_cells based on NMBRS. (C) Expression differences of NMBRS in malignant and normal
cells. (D) Analysis for GSEA enrichment of differential genes between High_NMBRS_Epithelial_cells and Low_NMBRS_Epithelial_cells. (E, F) Cell
communication relationships among a variety of cell types in TME. (G–I) Circo plots show EGF, VEGF, and MK signaling pathway networks, and
Heatmap displays the effects of various cell types in these pathway networks. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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Single-cell transcriptome analysis of NMBRS

We categorized epithelial cells into High_NMBRS_Epithelial_
cells and Low_NMBRS_Epithelial_cells based on the expression of
seven model genes in the epithelial cells. Using the “FindMarkers”
function, we conducted a differential analysis of the different types of
epithelial cells and further explored the related pathways involving the
differential genes. Subsequently, we utilized the R package “cellchat”
to investigate the cell communication relationships between different

types of epithelial cells and other cell types within the TME (Jin
et al., 2021).

Screening of key genes and pan-
cancer analysis

We used differential analysis, survival analysis, and ROC
diagnostic curves to identify the nucleotide metabolism gene

FIGURE 10
Screening of core genes and pan-cancer analysis. (A) Expression differences of the seven modeling genes in normal and tumor tissues. (B) Survival
analysis of ADSS1, ALG3, SNRPA, NT5E, ZIC2, and ZNF490. (C) ROC diagnostic curves of ADSS1, ALG3, SNRPA, NT5E, ZIC2, and ZNF490. (D) Impact of
ALG3 expression on DSS and PFI in LUAD patients. (E) Impact of SNRPA expression on DSS and PFI in LUAD patients. (F) Pan-cancer analysis of SNRPA
expression. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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SNRPA, which is markedly linked to the prognostic outcomes of
LUAD patients. Subsequently, we evaluated the expression
levels of SNRPA across the TCGA pan-cancer dataset and
conducted a univariate Cox regression analysis within the
pan-cancer cohort. Additionally, we investigated the
association of SNRPA with clinicopathologic factors in
patients with LUAD.

Spatial transcriptome RNA sequencing
analysis of SNRPA

We obtained spatial transcriptomic data of 6 cases of lung
adenocarcinoma from Zhu et al. (2022). Normalization,
dimensionality reduction, clustering, and spatial variable
characterization were performed using the R package “Seurat”.

FIGURE 11
Experimental validation of SNRPA’s function. (A) mRNA expression levels for SNRPA in the LUAD cell line in the CEEL database. (B, C) RT-qPCR is
used to detect the transfection efficiency for si-SNRPA into A549 and H1299 cell lines. (D) CCK-8 detects SNRPA, which influences the growth and
proliferation of the A549 and H1299 cell lines. (E)Colony formation assay to detect SNRPA influences the proliferation in A549 and H1299 cell lines. (F, G)
A wound healing assay was performed to detect SNRPA’s impact on the migration process of A549 and H1299 cell lines. (H, I) Transwell assay to
validate SNRPA affects the migration and invasion of A549 and H1299 cell lines. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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According to Zhu et al., pathologic HE-stained sections were divided
into four regions: Cancer, Normal epithelium, Stromal, and Lymph.
The “SpatialFeaturePlot” function was used to visualize the
expression level and heterogeneity of SNRPA in different
spatial locations.

Cell culture and transfection

We performed in vitro culture experiments with A549 and
H1299 cell lines, which were grown in DMEM and RPMI
1640 media (Gibco, ThermoFisher Scientific, United States),
respectively, enriched with 10% fetal bovine serum, and 1%
penicillin and streptomycin (Gibco). Small interfering RNA
(siRNA) directed against SNRPA and control siRNA were
obtained from Gima Genetics (Shanghai, China). To introduce
these siRNAs transiently, A549 and H1299 cells were transfected
for 24 h with siRNA using Lipofectamine 2000 transfection reagent,
after which functional assays were carried out (Dalby et al., 2004).

RT-qPCR experiment

RNA was isolated from lung adenocarcinoma cell lines (A549,
H1299) and treated with si-SNRPA and negative control (NC)
siRNA. Vazyme SYBR Green qPCR Master Mix (Vazyme, China)
synthesized cDNA for real-time PCR analysis. The primer sequences
are provided in Supplementary Table S2.

Proliferation and colony formation assay

Cell proliferation and colony formation assays followed
A549 and H1299 cell transfection with SNRPA siRNA for 24 h.
The cells were plated at a density of 4000 cells per well in a 96-well
plate. The growth capacity of the treated cells was evaluated at 24, 48,
and 72 h using the Cell Counting Kit-8 (CCK8) reagent (Bio-sharp,
Hefei, China), with OD450 measurements being taken using a
microplate reader (BioTek, United States). In the colony
formation assay, 1000 cells were seeded in culture dishes and
allowed to grow until colonies became visible. The clones were
then immobilized with paraformaldehyde for 15 min, colored with
1% crystal violet for 20 min, and numbers of colonies were counted.

Transwell migration and invasion assay and
wound healing assay

A549 and H1299 cells were subjected to Transwell migration
and wound healing assays following 24 h of transfection with
SNRPA siRNA. For the Transwell assay, cells were plated in 24-
well plates with inserts with an 8 µm pore size to assess their
migratory and invasive capabilities. Cells (4 × 104) were placed in
the upper compartment of the insert, which contained DMEM and
RPMI 1640 without FBS, while the lower compartment was filled
with 600 µL of DMEM and RPMI 1640 medium supplemented with
FBS. After an incubation period of 48 h, the cells were fixed, stained
with crystal violet, and enumerated under a light microscope

at ×100 magnification. In addition, A549 and H1299 cells were
seeded in 6-well plates, and a wound was created using a 200 µL
pipette tip. The cells were then cultured in DMEM and RPMI
1640 media devoid of FBS. Wound images were taken at the
start (0 h) and after 24 h, and the wound area was measured
using ImageJ software.

Data statistics

All statistical evaluations and graphical depictions were done
using R-4.3.0 and GraphPad software. The Wilcoxon test was
applied for two-group comparisons, and the t-test within
GraphPad Prism determined the significance of cell line
experiments. Survival analysis was performed using the Kaplan-
Meier method with the “Survminer” package in R. Statistical
significance was defined as P < 0.05.

Results

Nucleotide metabolic characteristics in
single-cell transcriptome

Figure 1 depicts the entire workflow of this research. We
obtained single-cell transcriptome samples from 6 cases of lung
adenocarcinoma, resulting in 36,269 cells after quality control. Next,
we studied the top 2000 variable genes using Principal Component
Analysis and performed clustering analysis, grouping all cells into
26 clusters. With the help of singleR, we classified the cells into six
different cell types, including Epithelial_cells, Endothelial_cells,
Fibroblasts, T_cell, B_cell, and Mono/Macro. We used the “tSNE’
method to visualize the annotation results of these cells (Figure 2A).
The heatmap and volcano plot, respectively, display the marker
genes in different types of cells and the significantly upregulated and
downregulated genes (Figures 2B, C). To accurately quantify the
levels of nucleotide metabolism in other cell types, we employed the
“AddModuleScore” function to compute the expression levels of
genes associated with nucleotide metabolism across all cells within
six distinct cell types, and we noticed significantly higher levels of
nucleotide metabolism in Epithelial_cells, T_cell, B_cell, and Mono/
Macro cells (Figure 2D). Then, we used the CopyKAT package to
infer the type of malignant cells in epithelial cells (Figure 2E) and
utilized the Aucell package to assess nucleotide metabolism in
malignant and normal cells. We observed a significant increase in
nucleotide metabolism in malignant cells (Figures 2F, G). This
suggests that nucleotide metabolism is essential in the
development of LUAD.

Construction and validation of risk
characteristics in nucleotide metabolism

To delve deeper into the correlation between nucleotide
metabolism and the prognostic outcomes of LUAD patients, we
utilized the TCGA-LUAD dataset as a training dataset to build the
model. Initially, we conducted a univariate Cox regression analysis
to identify nucleotide metabolism genes associated with the
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prognosis of LUAD patients (Figure 3A). Subsequently, we utilized
Lasso regression analyses to decrease the number of variables
(Figure 3B). We employed Stepcox regression analysis to reduce
the number of variables further and obtain the modeling genes’
risk coefficients (Figure 3C). Based on gene expression
levels and risk coefficients, we derived the prognostic feature
NMBRS for LUAD nucleotide metabolism, with the calculation
formula as NMBRS = SNRPA*0.35 + ALG3*0.243 + UCK2*
0.229 + NT5E*0.192 + ADSS1*0.144 + ZIC2*0.108 + ZNF490*-
0.697. We divided LUAD patients into groups with high and low
NMBRS scores, using the median NMBRS value as the cutoff. The
survival analysis showed that patients with high NMBRS had a
significantly worse prognosis (P < 0.0001). The timeROC curves
showed that the AUC values for NMBRS from 1 to 5 years were 0.72,
0.71, 0.70, 0.70, and 0.64, respectively (Figure 3D). The prognosis of
patients with a high subgroup of NMBRS was similarly worse in the
GEO validation set, with the AUC values from 1 to 5 years exceeding
0.68 (Figures 3E–G). These results suggest that NMBRS has high
accuracy in predicting prognosis in patients with LUAD. In
addition, patients in the low NMBRS group in the TCGA and
GEO cohorts had significantly longer survival (Figures 3H–K).

Model comparison and clinical pathological
analysis of NMBRS

We collected models from 11 LUAD-related studies and
compared the C-index of these models. The results showed that
the C-index of NMBRS was higher than these models in the TCGA
and GEO cohorts (Figures 4A–D), indicating that NMBRS has
higher accuracy and superiority than these models. Next, we
analyzed the relationship between NMBRS and various
clinicopathological factors, and the findings indicated higher
NMBRS scores in male patients and patients with advanced
chronologic late TNM staging (Figure 4E). Patients with high
NMBRS also had significantly poorer prognoses across different
clinicopathological characteristics (Figure 4F).

Independent prognostic analysis and
development of a nomogram

To establish if NMBRS serves as an independent prognostic
indicator for LUAD patients, we conducted both univariate and
multivariate Cox regression analyses on NMBRS alongside a range
of clinicopathological characteristics within the TCGA-LUAD
dataset, focusing on OS, DSS, and PFI. The findings suggest that
NMBRS acts as an independent risk factor affecting the prognosis of
LUAD patients, as evidenced by both univariate and multivariate
Cox regression analyses (HR > 1 and P < 0.001) (Supplementary
Figures S1A, B). Furthermore, we noted that for LUAD patients in
terms of DSS and PFI, those in the high NMBRS group had a
significantly poorer prognosis than those in the low NMBRS group
(Supplementary Figures S1C, D). Subsequently, to improve the
clinical applicability of NMBRS, we developed a nomogram that
incorporated NMBRS and a range of clinicopathological variables
(Supplementary Figure S1E). The calibration curve analysis revealed
that the nomogram’s predictions were well-aligned with actual

observations (Supplementary Figure S1F). The timeROC analysis
showed that the AUC values of the nomogram and NMBRS were
markedly higher than those of other clinicopathological
characteristics (Supplementary Figure S1G). Decision curve
analysis (DCA) revealed that the nomogram and NMBRS offered
superior net clinical benefits compared to other clinicopathological
characteristics (Supplementary Figure S1H). PCA analysis
demonstrated that NMBRS could accurately classify LUAD
patients into two groups (Supplementary Figure S1I).

Genomic mutation characteristics of
different subtypes of patients

Earlier research has demonstrated that somatic mutations are
intricately linked to the development and progression of tumors
(Martincorena and Campbell, 2015). Hence, we undertook to
perform an in-depth investigation into the genomic mutation
disparities between patients with high and low NMBRS scores and
created mutation waterfall plots (Figures 5A, B). The findings
indicated that the genomic mutation frequency was notably higher
in patients with highNMBRS scores, reaching 95.92%. In contrast, the
genomic mutation frequency was relatively lower in patients in the
low NMBRS group at 90.16%. Furthermore, we noted a substantial
rise in TMB in the high NMBRS group and a positive correlation
between NMBRS and TMB (Figures 5C, D). Patients with lower TMB
and higher NMBRS had poorer prognosis (Figure 5E). Similarly, we
detected a notable upsurge in MATH in the high NMBRS group, and
there was a positive association between NMBRS andMATH (Figures
5F, G), with poorer prognosis in patients with higherMATH and high
NMBRS (Figure 5H). Subsequently, we performed an in-depth
analysis of the mutation status for the seven genes used in the
model construction. Significant SNV mutations were observed in
UCK2 and ALG3 (Supplementary Figure S2A), while high-frequency
CNV amplifications were seen in UCK2, ALG3, SNRPA, and ZIC2,
and notable CNV deletions were found in ADSS1, NT5E, and
ZNF490 (Supplementary Figure S2B). We also illustrated the
chromosomal locations of the seven genes (Supplementary Figure
S2C). Furthermore, we conducted a correlation analysis of the top
twenty mutated genes between the high and low NMBRS groups
(Supplementary Figures S2D, E) and examined the impact of these
mutated genes on cancer-related pathways (Supplementary Figures
S2F, G). The findings suggested that in the high NMBRS group, the
proportion of cancer pathways impacted by mutated genes was more
pronounced. These analysis results indicated that patients with high
NMBRS scores exhibit poorer genomic stability and a highermutation
rate compared to those with low NMBRS scores. This could be a
crucial factor contributing to the worse prognosis observed in patients
with high NMBRS scores.

Potential molecular mechanisms by which
NMBRS exerts its effects

First, we performed GSEA enrichment analysis on patients in
the high NMBRS and low NMBRS groups. The results showed that
many cancer-related pathways were significantly activated in
patients in the high NMBRS group. In contrast, many immune-
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related pathways were activated considerably in patients in the low
NMBRS group (Figures 6A, B). We also observed significant
activation of nucleotide metabolism pathways in patients in the
high NMBRS group (Supplementary Figures S3A–C). Subsequently,
we conducted GSVA enrichment analysis using the HALLMARK
gene set on patients across various subtypes. The outcome indicates
that patients with high NMBRS scores significantly activated cell
cycle-related pathways, such as G2m_checkpoint and E2f_targets,
and cell proliferation-related pathways, such as Pi3k_akt_mtor_
signaling. Conversely, in the low NMBRS group, immune-related
pathways, such as Inflammatory_response and Il6_jak_stat3_
signaling, were significantly activated (Figure 6C). Additionally,
we observed a significant positive correlation between NMBRS
and pathways like Dna_repair, G2m_checkpoint, Pi3k_akt_mtor_
signaling, and Myc_targets_v2, while a significant negative
correlation was found with Bile_acid_metabolism and Kras_
signaling_up (Figure 6D). We also performed GO and KEGG
enrichment studies on the differentially expressed genes across
various patient subtypes (Figures 6E–H). After analysis, we found
that in patients with high NMBRS, the upregulated genes are mainly
concentrated in cell cycle and proliferation-related pathways and
processes. In contrast, in the low NMBRS group, the upregulated
genes are primarily focused on immune function-related processes
and pathways. Additionally, we utilized the PROGENy algorithm to
gauge the activation status of tumor signaling pathways across
diverse patient subtypes (Schubert et al., 2018). The study found
that in the high NMBRS group, the activity of pathways such as
EGFR, Hypoxia, MAPK, PI3K, VEGF, and WNT was significantly
increased (Supplementary Figure S3D).

Tumor immune characteristics of different
subtypes of patients

TME plays a significant role in antitumor immunity and tumor
cell immune evasion. To investigate the immune features of patients
with various subtypes, we utilized the ESTIMATE algorithm to
calculate and contrast the variations in Immunescore, Stromascore,
and TumorPurity among patients across different subtypes. We
discovered that patients with low NMBRS scores exhibited higher
Immunescore, Stromascore, and ESTIMATE scores (Figures 7A–C),
while patients in the high NMBRS group displayed significantly
higher TumorPurity (Figure 7D). Subsequently, we utilized the
CIBERSORT and ssGSEA algorithms to evaluate and contrast the
infiltration of immune cells among patients across different
subtypes. The results from the CIBERSORT algorithm suggested
that patients with low NMBRS scores had relatively higher levels of
infiltration by Monocytes, resting Dendritic cells, and resting
CD4 memory T cells (Figure 7E). The results of the ssGSEA
algorithm suggest that patients with low NMBRS scores exhibit
higher infiltration levels of Activated B cells, Activated CD8 T cells,
Activated dendritic cells, and Monocytes (Figure 7F), which play
crucial roles in anti-tumor immunity. Antigen presentation is a key
step in anti-tumor immunity (Jhunjhunwala et al., 2021). We
studied the expression values of antigen presentation genes in
patients across various subtypes. The findings indicated that most
antigen presentation genes were notably upregulated in patients
with low NMBRS scores (Figure 7G). This demonstrates that

patients in the lower NMBRS group had a higher capacity for
tumor antigen presentation. In tumor immunity and
immunotherapy, immune checkpoint genes play a critical role.
We also assessed the expression values of immune checkpoints in
patients across various subtypes and found that, apart from LAG3,
CD276, and TNFRSF18, which were significantly increased in the
high NMBRS group, most immune checkpoint genes had higher
expression in the low NMBRS group (Figure 7H). This suggests that
patients with low NMBRS scores may respond more effectively to
immunotherapy. Next, we performed a comparative analysis of
TME subtypes in patients with high and low NMBRS. The
outcomes revealed that patients with high NMBRS scores were
predominantly of the D and F subtypes (67%), whereas those
with low NMBRS scores were mainly of the IE and IE/F subtypes
(53%) (Supplementary Figure S3E). Antitumor immunity is a
complex process involving multiple steps, including seven main
steps (Chen and Mellman, 2013). We evaluated patients’ activity
levels across various subtypes at these seven stages. It was discovered
that patients with low NMBRS scores exhibited higher activity in
tumor antigen presentation, immune cell priming and activation,
T-cell recruitment, DC cell recruitment, monocyte recruitment, and
immune cell infiltration into tumor tissue (Supplementary Figure
S3F), which is in concordance with the findings from the immune
cell infiltration analysis. Furthermore, we compared the activation
levels of 13 immune functions among patients across various
subtypes. The study revealed that the low NMBRS group
displayed higher levels of immune functions, including APC_co_
stimulation, HLA, T_cell_co−stimulation, and Type_II_IFN_
Response (Figure 7I). By correlation analysis, we found a
significant negative association of NMBRS with activated B cells,
dendritic cells, and CD8 T cells and monocytes. Additionally, seven
genes in NMBRS were highly correlated with tumor-infiltrating
immune cells (Figures 7J, K).

Immunotherapy-related analysis of NMBRS

TIDE represents two core mechanisms simulating tumor
immune evasion: T cell dysfunction and T cell exclusion
computational methods (Jiang et al., 2018). We acquired and
contrasted the TIDE scores for LUAD patients from the TIDE
website and observed that the TIDE scores and T cell exclusion
were notably higher in the high NMBRS group compared to the low
NMBRS group (Figures 8A, B), indicating that tumor cells in the
high NMBRS group are more likely to undergo immune escape. The
IPS score is calculated using machine learning methods based on
unbiased gene expression of representative cell types (Charoentong
et al., 2017). We obtained and compared the IPS scores of LUAD
patients from the TCIA database. The results showed significantly
higher IPS scores in the low NMBRS group compared to the high
NMBRS group (Figures 8C, D). This suggests that patients with low
NMBRS scores may respond more favorably to immunotherapy.
Next, we used the Submap algorithm to compare the similarity
between different subtypes of patients and those receiving
immunotherapy. We found that patients with higher NMBRS
scores were more akin to non-responders to immunotherapy
(PD, SD). In contrast, those with low NMBRS scores were more
akin to responders to immunotherapy (CR) (Figure 8E). Based on
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the analysis of LUAD patients in the TIDE database, a higher
proportion of patients in the high NMBRS group did not
respond to immunotherapy (Figure 8F). To more accurately
assess the immunotherapy response of different subtypes of
patients, we collected four immunotherapy cohorts: IMvigor210,
GSE78220, GSE135222, and GSE100797. In the IMvigor210 cohort,
we observed a higher percentage of non-responding patients (PD,
SD) in the high NMBRS group, as well as higher levels of NMBRS in
patients with PD/SD, and a relatively poorer prognosis in patients
with high NMBRS (Figures 8G–I). During the cohort study of
GSE100797, we observed a higher percentage of PD/SD patients
in the high NMBRS group (85%) and a higher proportion of CR/PR
patients in the low NMBRS group (67%) (Figure 8J). In the cohort
study in GSE135222, we noted a significantly higher percentage of
non-responsive patients in the group with high NMBRS (100%), and
the NMBRS levels of non-responsive patients were also higher, with
the prognosis of high-risk patients being relatively poor (Figures
8K–M). In the GSE78220 cohort, we observed a higher percentage of
PD/SD patients in the group with high NMBRS (57.1%), while the
proportion of CR/PR patients was higher in the low NMBRS group
(61.5%) (Figure 8N). The analysis of these results indicates that
patients with low NMBRS scores are more inclined to benefit from
immunotherapy than those with high NMBRS scores.

Single-cell transcriptome analysis of NMBRS

First, we analyzed the expression of ALG3, SNRPA, UCK2, ZIC2,
ZNF490, ADSS1 and NT5E at the single cell level (Figure 9A). The
outcome indicated that these genes are predominantly expressed in
epithelial cells, T cells, and Mono/Macro. Then, based on the expression
of the modeling genes and their corresponding coefficients, we classified
epithelial cells into two subgroups: High_NMBRS_Epithelial_cells and
Low_NMBRS_Epithelial_cells (Figure 9B). We observed that the
NMBRS levels in malignant epithelial cells were relatively high
(Figure 9C). We differentially analyzed High_NMBRS_Epithelial_cells
and Low_NMBRS_Epithelial_cells using the “FindMarkers” function
and explored the pathways involved in these genes by GSEA enrichment
analysis. The results suggest that these differential genes are primarily
engaged in pathways that are closely tied to the formation and
progression of tumors, such as Central Carbon Metabolism In
Cancer, Nucleotide Metabolism, Hif−1 Signaling Pathway, Pi3k−Akt
Signaling Pathway (Figure 9D). We subsequently employed the
“Cellchat” R package to investigate the communication relationships
between different cell types within the tumor microenvironment. Our
research findings suggest that High_NMBRS_Epitheial_cells have a
closer interaction with stromal cells and immune cells in the tumor
microenvironment (Figures 9E, F) and play stronger regulators and
influencers in EGF signaling, VEGF signaling, and MK signaling
(Figures 9G–I). These signaling pathways are pivotal in tumor
initiation and angiogenesis (Apte et al., 2019).

Drug sensitivity analysis of different
subtypes of patients

We utilized the R software package “oncoPredict” to estimate
the sensitivities of LUAD patients to 198 chemotherapeutic drugs,

comparing and identifying common chemotherapy-sensitive drugs
for different patient subtypes. The results indicated that patients
with high NMBRS scores showed greater sensitivity to
chemotherapy drugs such as Paclitaxel, Lapatinib, Gefitinib, and
5-Fluorouracil (Supplementary Figures S4A–D). Patients with low
NMBRS scores showed greater sensitivity to Doramapimod,
Ribociclib, Nutlin-3a (−), and Oxaliplatin (Supplementary
Figures S4E–H).

Screening and pan-cancer analysis of key
genes in nucleotide metabolism

First, we investigated the expression changes of seven model
genes in normal and tumor tissues. It was found that in the TCGA
cohort, ADSS1, ALG3, SNRPA, NT5E, UCK2, ZIC2, and
ZNF490 were expressed at higher levels in tumors (Figure 10A).
We also observed similar results in the GSE31210 and
GSE116959 cohorts (Supplementary Figures S5A, B). Next, we
examined the association of seven modeling genes with prognosis
in LUAD patients, and the results indicated that ADSS1, ALG3,
SNRPA, NT5E, and ZIC2 were remarkably correlated to the
prognosis of LUAD patients (Figure 10B). ROC diagnostic curve
analysis showed that ALG3 (AUC: 0.936) and SNRPA (AUC: 0.887)
demonstrated relatively high accuracy in the diagnosis of LUAD
(Figure 10C). Then, we explored the effects of ALG3 and SNRPA on
the PFI and DSS of LUAD patients. The results indicated that the
patients with high ALG3 and SNRPA expression performed poorly
in PFI and DSS, with SNRPA having an enormous prognostic
impact on LUAD patients (Figures 10D, E). Therefore, we chose
SNRPA as the critical gene for nucleotide metabolism for further
research. In the TCGA pan-cancer cohort study, we performed a
thorough analysis of SNRPA expression, and the findings indicated
that SNRPA is highly expressed across various tumor types
(Figure 10F; Supplementary Figure S5C). According to pan-
cancer COX analysis, SNRPA was identified as a risk factor for
the prognosis of patients with various tumor types (Supplementary
Figure S5D). To delve deeper into the clinical significance of SNRPA,
we examined its correlation with the clinicopathological features of
LUAD patients. The outcome indicated that SNRPA expression was
notably elevated in males, late stages, M1 stages, and patients under
the age of 65 (Supplementary Figure S5E). This suggests that SNRPA
may be associated with the progression of LUAD.

SNRPA stRNA-seq characterization in LUAD

To further explore the expression characteristics and role of
SNRPA in lung adenocarcinoma. We explored different stages of
LUAD (AIS, MIA, IAC). In adenocarcinoma in situ (AIS) subtype
sections, SNRPA was widely expressed in the Cancer, Normal
epithelium, Stromal, and Lymph regions (Supplementary Figures
S6A, B). In microinvasive adenocarcinoma and invasive
adenocarcinoma (MIA, IAC) subtype sections, SNRPA was more
centrally expressed in the cancer region (Supplementary Figures
S6C–F). These results suggest that SNRPA is widely expressed in
cancer tissues and is associated with the progression of lung
adenocarcinoma.
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Experimental validation of SNRPA’s role in
LUAD progression

We acquired mRNA expression data for SNRPA from the CCLE
database in the LUAD cell line and found that SNRPA is highly
expressed in eight cell lines: NCIH1299, PC9, NCIH23, CALU6,
HCC827, CALU1, NCIH1975, and A549 (Figure 11A). To explore
the oncogenic role of SNRPA in LAUD,we designed siRNAs for SNRPA
knockdown and transfected them into A549 and H1299 cells (Si1, Si2,
Si3, Si4). RT-qPCR was used to evaluate the transfection efficiency,
revealing that the relative expression levels of SNRPA were notably
decreased following transfection with Si1 and Si4 (Figures 11B, C). To
further verify the effect of SNRPA in proliferation, we conducted CCK-8
and colony formation assays. The CCK-8 assay outcome indicated that
the proliferation capacity for A549 and H1299 cells in the knockdown
groups (Si1, Si4) was notably decreased when compared to the control
group (NC) (Figure 11D). Colony formation assays also demonstrated
that the inhibition of SNRPA expression dramatically suppressed the
growth of A549 andH1299 cells (Figure 11E). In addition, we conducted
a wound healing assay, which indicated that the migratory ability of
A549 and H1299 cells in the knockout group (Si1, Si4) was markedly
attenuated (Figures 11F, G). Transwell assay results also indicated that
knocking down SNRPA dramatically inhibited the migratory and
invasive abilities of A549 and H1299 cells (Figures 11H, I). Together,
these analyses suggest that SNRPA plays a critical function in the
proliferation, migration, and invasion of lung adenocarcinoma and
that disrupting the expression of SNRPA could effectively impede
these processes in lung adenocarcinoma.

Discussion

Lung adenocarcinoma is a highly malignant and heterogeneous
tumor type (de Sousa and Carvalho, 2018), serving as the primary
histological subtype of lung cancer, and poses a severe threat to
people’s health and safety. Metabolic reprogramming, a
fundamental characteristic of cancer, contributes to the provision
of essential substrates and energy for tumor cell growth,
proliferation, and metastasis. Pathways such as glucose, fatty acid,
and amino acid metabolism have been demonstrated to play
significant functions in the progression of precancerous lesions,
tumor invasion and metastasis, and tumor resistance (Xia et al.,
2021). In recent years, with the in-depth study of tumor metabolic
reprogramming, the complex relationship between nucleotide
metabolism and tumors has garnered attention (Doshi et al.,
2023). As critical small molecules, nucleotides primarily function
as building blocks for cellular nucleic acid synthesis and are pivotal
in facilitating cell growth and proliferation (Rathbone et al., 1992).
Increasing evidence indicates that nucleotide metabolism is vital for
both the proliferative and non-proliferative processes of tumors
(Zhao et al., 2024), as shown by Aarif et al.’s study, which found that
inhibiting thymidylate synthase expression in breast cancer can
effectively suppress EMT and reduces the ability of tumor cells to
proliferate and migrate (Siddiqui et al., 2019). In addition, the effect
that nucleotide metabolism has on tumor immunity should not be
overlooked. ATP and ADP, as essential products of nucleotide
metabolism, have been shown to function in immune stimulation
and immunization processes (Zhang et al., 2018). During tumor

formation, when metabolic stress or hypoxia is present, tumors and
immune cells can synthesize adenosine (Leone and Emens, 2018).
Adenosine receptors are present on almost all immune cell surfaces
(Faas et al., 2017; Antonioli et al., 2019), and adenosine can inhibit
anti-tumor immune responses by binding to adenosine receptors on
dendritic cells and effector T cells (Panther et al., 2003). These
studies indicate a significant association between nucleotide
metabolism and tumor development, progression, anti-tumor
immunity, and immunotherapy. However, there are relatively few
reports on the relationship between nucleotide metabolism and
prognosis, immunization and immunotherapy in LUAD.

By constructing a prognostic model, the present study reveals the
prognostic and immunotherapeutic features of nucleotidemetabolism
in lung adenocarcinoma. We first elucidated the association between
nucleotide metabolism and LUAD at the single-cell transcriptome
scale. On the TCGA-LUAD queue, 51 nucleotide metabolism genes
relevant to OS were determined by univariate COX regression
analysis. Subsequently, variables were screened further, and the
prognostic model (NMBRS) was structured using LASSO and
Stepcox regression analyses. Survival time was markedly shorter in
patients with high NMBRS than those with low NMBRS.
Subsequently, the survival analysis results, timeROC curves, and
model comparisons in the training and validation sets
demonstrated the high accuracy and significant superiority of
NMBRS for predicting the prognosis of LUAD patients. The
genomic mutation analysis showed that genomic instability and
mutation frequency were significantly higher in patients with high
NMBRS scores. Functional enrichment analysis revealed marked
enrichment in pathways relevant to nucleotide metabolism, cell
cycle, and cell proliferation in high NMBRS patients. Pathways
enriched in the high NMBRS group indicate their essential part in
developing LUAD, suggesting a close connection between nucleotide
metabolism and tumor pathways. Moreover, we found that the two
subtypes of patients have different TME characteristics. Patients with
lowNMBRS exhibit high immune cell and stromal cell infiltration and
expression of tumor immune-related molecules, tending more
towards “hot tumor” characteristics. Patients with high NMBRS
show low immune cell infiltration, T cell exclusion properties, and
immune escape characteristics, leaning more towards “cold tumor”
characteristics. Notably, NMBRS accurately predicted the immune
therapy response in LUAD patients. In multiple external validation
cohorts, patients with high NMBRS were significantly inclined to be
non-responders to immune therapy, whereas patients with low
NMBRS exhibited good immune therapy responses.

SNRPA is a protein composed of 282 amino acids with two
RNA-binding domains. In conjunction with some neighboring
amino acids, the RNA-binding domain at the N-terminus is
crucial for its interaction with U1 small nuclear RNA (snRNA)
(Price et al., 1998). The SNRPA protein, encoded by the SNRPA
gene on chromosome 19q13.2 (Bai et al., 2013), is vital for forming
the spliceosome and promoting mRNA splicing. It is involved in the
SMN-dependent snRNP biosynthesis pathway, which regulates
mRNA polyadenylation (Gunderson et al., 1998). Previous
studies have shown that SNRPA promotes an EMT-like process
in hepatocellular carcinoma cells by activating the NOTCH1/Snail
pathway, thereby accelerating metastasis (Mo et al., 2023). In gastric
cancer, the higher expression of SNRPA promotes gastric cancer cell
development by activating NGF expression (Dou et al., 2018). In this
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study, we found that interfering with SNRPA expression could
significantly inhibit the proliferation, migration, and invasion
process of lung adenocarcinoma cells by in vitro cellular
experiments. This suggests that SNRPA plays an essential role in
lung adenocarcinoma occurrence and development.

In summary, this study constructed a prognostic signature related
to nucleotide metabolism in lung adenocarcinoma. This signature
showed high accuracy and superiority in predicting the prognosis of
lung adenocarcinoma patients and can be used as a potential guideline
for lung adenocarcinoma immunotherapy, clinical drug selection. In
addition, in vitro cellular experiments demonstrated that SNRPA plays
an essential role in the occurrence and development of LUAD and can
serve as a potential biomarker for lung adenocarcinoma. However, our
research also has restrictions and shortcomings. Firstly, the test and
validation set data utilized in our analysis are from publicly available
databases, and the inherent sample selection criteria may affect the
results of the model construction to a certain extent. Secondly, the
limited sample size of this study requires a larger cohort and sample size
to validate our findings further. Finally, the present study validated
SNRPA’s role in LUAD proliferation, migration, and invasion only by
in vitro cell line function experiments, lacking an investigation into the
potential molecular biological mechanisms by which SNRPA functions
in LUAD. In future research, we intend to investigate the precise
mechanisms through which SNRPA influences the progression of
LUAD, employing in vivo and in vitro experimental approaches and
exploring novel anticancer drugs that target SNRPA for action.

Conclusion

In this study, we constructed a nucleotide metabolism-related
prognostic risk model based on nucleotide metabolism-related
genes. This prognostic signature can accurately predict the
prognosis of LUAD patients and provide potential guidance for
immunotherapy. In addition, we found that nucleotide metabolism-
associated LUAD subtypes differed significantly in various aspects,
such as genomic mutations, functional enrichment, and tumor
immune characteristics. Finally, the nucleotide metabolism-
related gene SNRPA in the model was shown to have an
essential role in promoting LUAD onset and malignant progression.
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