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Echinococcosis is a zoonotic parasitic disease caused by the larvae of
echinococcus tapeworms infesting the human body. Drug combination
therapy is highly valued for the treatment of echinococcosis because of its
potential to overcome resistance and enhance the response to existing drugs.
Traditional methods of identifying drug combinations via biological
experimentation is costly and time-consuming. Besides, the scarcity of
existing drug combinations for echinococcosis hinders the development of
computational methods. In this study, we propose a transfer learning-based
model, namely TransferBAN-Syn, to identify synergistic drug combinations
against echinococcosis based on abundant information of drug combinations
against parasitic diseases. To the best of our knowledge, this is the first work that
leverages transfer learning to improve prediction accuracy with limited drug
combination data in echinococcosis treatment. Specifically, TransferBAN-Syn
contains a drug interaction feature representation module, a disease feature
representation module, and a prediction module, where the bilinear attention
network is employed in the drug interaction feature representation module to
deeply extract the fusion feature of drug combinations. Besides, we construct a
special dataset with multi-source information and drug combinations for
parasitic diseases, including 21 parasitic diseases and echinococcosis.
TransferBAN-Syn is designed and initially trained on the abundant data from
the 21 parasitic diseases, which serves as the source domain. The parameters in
the feature representation modules of drug interactions and diseases are
preserved from this source domain, and those in the prediction module are
then fine-tuned to specifically identify the synergistic drug combinations for
echinococcosis in the target domain. Comparison experiments have shown that
TransferBAN-Syn not only improves the accuracy of predicting echinococcosis
drug combinations but also enhances generalizability. Furthermore,
TransferBAN-Syn identifies potential drug combinations that hold promise in
the treatment of echinococcosis. TransferBAN-Syn not only offers new

OPEN ACCESS

EDITED BY

Quan Zou,
University of Electronic Science and
Technology of China, China

REVIEWED BY

Xiaoqiang Sun,
Sun Yat-sen University, China
Qiu Xiao,
Hunan Normal University, China
Fangping Wan,
University of Pennsylvania, United States
Zhenyu Yue,
Anhui Agricultural University, China

*CORRESPONDENCE

Yansen Su,
suyansen@ahu.edu.cn

RECEIVED 16 July 2024
ACCEPTED 06 December 2024
PUBLISHED 06 January 2025

CITATION

Li H, Chu Y, Jiang L, Li L, Lv G, Liu Y, Zheng C and
Su Y (2025) TransferBAN-Syn: a transfer
learning-based algorithm for predicting
synergistic drug combinations
against echinococcosis.
Front. Genet. 15:1465368.
doi: 10.3389/fgene.2024.1465368

COPYRIGHT

© 2025 Li, Chu, Jiang, Li, Lv, Liu, Zheng and Su.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 06 January 2025
DOI 10.3389/fgene.2024.1465368

https://www.frontiersin.org/articles/10.3389/fgene.2024.1465368/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1465368/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1465368/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1465368/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1465368/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1465368&domain=pdf&date_stamp=2025-01-06
mailto:suyansen@ahu.edu.cn
mailto:suyansen@ahu.edu.cn
https://doi.org/10.3389/fgene.2024.1465368
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1465368


synergistic drug combinations for echinococcosis but also provides a novel
approach for predicting potential drug pairs for diseases with limited
combination data.

KEYWORDS

echinococcosis, drug combination, transfer learning, synergistic drug combinations,
parasitic diseases

1 Introduction

Echinococcosis is a zoonotic parasitic disease caused by the
larval stages of tapeworms of the genus echinococcus, primarily
affecting organs such as the liver and lungs (Alvi et al., 2023; Meng
et al., 2023). This disease manifests in two forms: Cystic
echinococcosis and Alveolar echinococcosis, both having
significant clinical consequences, potentially resulting in high
mortality (Autier et al., 2023; Casulli et al., 2023). The disease is
predominantly found in the Mediterranean basin, South America,
North Africa, Central Asia, and Eastern Europe, with the western
pastoral areas of China being high-prevalence zones (Wen et al.,
2019). Alveolar echinococcosis, also known as ‘worm cancer’, is
especially dangerous, with untreated cases facing a 10-year mortality
rate over 90% percent, significantly impacting the economy of
agricultural and pastoral areas (Casulli et al., 2023).

The treatment strategies for echinococcosis include surgical and
pharmacological interventions. In the situation that patients cannot
undergo surgery, pharmacological interventions are more suitable
options (Hogea et al., 2024). Currently available anti-echinococcosis
drugs are mainly anti-parasitic drugs and cancer-fighting drugs
(Wang et al., 2022). In clinical practice, benzimidazole
derivatives, such as albendazole and mebendazole, are widely
used to treat echinococcosis (Wen et al., 2019). However, clinical
studies have shown that long-term administration of albendazole
and mebendazole might cause adverse reactions such as the skin and
mucous membranes, nervous system, and cardiovascular system
(Qing et al., 2023). Therefore, there is an urgent need to explore
effective and safe therapeutic strategies against echinococcosis.

The application of drug combinations in treating various
complex diseases, such as cancers and hypertension, is becoming
increasingly widespread (Parati et al., 2021; Jaaks et al., 2022).
Compared with single-drug treatment, combinations can
synergize within biological pathways, enhancing efficacy and
hastening recovery, while reducing doses of individual drugs,
mitigating potential adverse effects and resistance (Csermely
et al., 2013). These improvements enhance the quality of life for
patients and reduce discomfort during treatment. Furthermore,
combinations can lower the risk of disease resistance,
highlighting the importance of identifying effective synergistic
pairs in treatment strategies.

Recently, the main strategies to develop anti-echinococcosis
drug combinations are based on in vitro and in vivo experiments.

Loos et al. investigate the in vitro anti-echinococcal activity of
Octreotide combined with Metformin, demonstrating significant
reduction in parasite viability through induced autophagy and
upregulation of key autophagic genes, proposing a potential new
therapeutic approach for treating cystic echinococcosis (Loos et al.,
2020). Mohammadi et al. demonstrate that the combined treatment

of Allium sativum methanolic extract with a reduced dose of
Albendazole enhances anti-hydatidosis efficacy, achieving similar
parasitological outcomes as a higher dose of Albendazole alone, but
with reduced hepatotoxic effects (Haji Mohammadi et al., 2019).
However, this process is time-consuming and costly. Besides,
patients may also be subjected to unnecessary treatment risks
(Rani et al., 2022). Moreover, it is difficult to explore all the
possible drug combinations solely through biological experiments.

The inefficiency and limitations of this widespread trial-and-
error method underline the critical need for more effective
experimental evaluation techniques.

In the past decade, machine learning-based methods have
played a significant role in the field of drug combination
prediction, greatly expanding the capability to explore effective
drug combinations (Wu et al., 2022; Liu et al., 2023). For
instance, Janizek et al. introduced TreeCombo, which is based on
the extreme gradient boosting trees (XGBoost) algorithm to predict
the synergy scores of drug pairs (Janizek et al., 2018). Although
traditional machine learning-based methods have made progress in
drug combination prediction, they still have limitations such as the
need for complex manual feature engineering and expertise, as well
as insufficient computational power to support large-scale rapid
predictions. With the rapid development of deep learning
technology and the availability of extensive drug combination
data, using deep learning for drug combination prediction has
become a new trend. For example, the DeepSynergy model
predicts the synergy between drugs by combining their chemical
properties and gene expression data from cell lines (Preuer et al.,
2018). GAECDS integrates graph autoencoders and convolutional
neural networks to predict the synergistic effects of drug
combinations (Li et al., 2023). These deep learning approaches
not only overcome some limitations of traditional machine
learning-based methods but also open new possibilities for
exploring and predicting effective drug combinations in cancer
(Güvenç Paltun et al., 2021). However, current deep learning
approaches still have limitations in predicting synergistic drug
combinations for echinococcosis. Firstly, deep learning
algorithms for drug combination prediction have primarily
focused on cancer due to the extensive genomic data (e.g. gene
expression data) available from cancer cell lines, effectively
capturing cancer features (Sarmah et al., 2023). Nevertheless, data
similar to cancer genomics data is not yet available for parasitic
diseases like echinococcosis, which limits the development of
computational prediction methods. Secondly, the effective
training of deep learning models is contingent upon extensive,
high-quality datasets, which should include a vast number of
evaluations of drug synergistic combinations (O’Neil et al., 2016).
Yet, data on effective synergistic combinations for echinococcosis is
exceedingly rare, considerably constraining the training and
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predictive precision of deep learning approaches. Furthermore,
current techniques generally fall short in the integration of
features. The current approach is usually to simply concatenate
the features of individual drugs without fully considering the
possible complex interactions between them. This simple method
of combining features ignores the comprehensive effects of drug
interactions. Therefore, it cannot reveal the potential interactions
between different drug properties. Due to the aforementioned
limitations, there are currently no effective algorithms for
identifying potential echinococcosis drug combinations.

To overcome these limitations and improve the accuracy of
identifying potential synergistic drug combinations for
echinococcosis, this study has developed a transfer learning-based
framework named the TransferBAN-Syn model. The model,
integrating drug combination data from other parasitic diseases,
effectively predicts treatment combinations for this disease despite
limited existing information. This paper makes three significant
contributions:

• We propose a transfer learning-based model, TransferBAN-
Syn, to identify synergistic drug combinations against
echinococcosis using abundant data from other parasitic
diseases. Transfer learning captures valuable knowledge
from these other diseases to enhance the performance of
the target model in predicting drug combinations for
echinococcosis. To the best of our knowledge, this is the
first work that employs transfer learning to improve
prediction accuracy with limited drug combination data for
echinococcosis treatment.

• We constructed a special dataset with multi-source
information and drug combinations for parasitic diseases,
including 21 parasitic diseases and echinococcosis. The
multi-source information includes disease pathway data and
disease similarity information, effectively capturing
comprehensive disease characteristics. Additionally, utilizing
the abundant information from other parasitic diseases helps
to enhance the accuracy and generalizability of drug
combination predictions for echinococcosis.

• Comparative experiments with traditional machine learning
methods (such as TreeCombo (Janizek et al., 2018)) and the
latest deep learning models (including DeepSynergy (Preuer
et al., 2018), TranSynergy (Liu and Xie, 2021), Attsyn (Wang
et al., 2023), GAECDS (Li et al., 2023)) confirm the superior
performance of TransferBAN-Syn in predicting the synergistic
effects of drug combinations against echinococcosis. Besides,
TransferBAN-Syn identifies potential drug combinations that
hold promise in the treatment of echinococcosis.

2 Materials and methods

2.1 Dataset description

2.1.1 Comprehensive parasitic disease drug
combination dataset

The comprehensive parasitic disease drug combination dataset
collects drug and drug combination information for treating
echinococcosis and other parasitic diseases. The dataset is

sourced from the China National Knowledge Infrastructure
(CNKI) and PubMed databases. For the treatment of
echinococcosis, the related drugs and drug combinations include
55 single drugs and 50 drug combinations that have been confirmed
to have synergistic effects. Considering the limited information on
anti-echinococcosis drug combinations, the dataset also includes
21 other parasitic diseases similar to echinococcosis (see
Supplementary Table S1), including 263 single drugs and
283 drug combinations. These 21 parasitic diseases are selected
based on their significant biological similarities to echinococcosis.
Specifically, these diseases share critical descriptors with
echinococcosis, which suggests potential genetic or pathway
similarities that may influence their response to drug treatments.
The selection process utilizes the Malacards database, where a
GeneAnalytics tool analyzes gene-sharing characteristics between
echinococcosis and other diseases. Parasitic diseases with a
similarity score greater than eight are chosen, as they are likely
to exhibit similar responses to drug combinations, making them
valuable in supporting the prediction of effective drug combinations
for echinococcosis. The efficacy of each drug and its combination is
supported by literature. Additionally, drug combinations are
identified and organized that have been clearly shown to have no
synergistic effects and are unsuitable for use together as negative
samples, to enhance the accuracy of the research. This dataset
provides a comprehensive and detailed data foundation for the
synergistic drug combinations for echinococcosis and related
parasitic diseases as shown in Table 1, supporting subsequent
research on the identification of potential drug combinations.

2.1.2 Multi-source information of parasitic disease
Information from the MalaCards database http://www.

malacard.org is utilized to effectively characterize echinococcosis
and other parasitic diseases (O’Neil et al., 2016). Malacards is a
comprehensive database that provides detailed information on
various diseases, integrating data on disease characteristics,
associated pathways, clinical features, and related medical
conditions. It offers a valuable resource for understanding disease
phenotypes and their underlying genetic and clinical aspects. The
MalaCards composite relevance score served as the basis for
similarity scores between parasitic diseases, uncovering further
relevant connections by identifying significant gene overlaps
between two diseases, leading to the generation of a composite
relevance score (Rappaport et al., 2013). For details on the specific
calculation of the MalaCards composite relevance score, see
“MalaCards - The Human Disease Database” (https://www.
malacards.org/pages/info#disorders).

TABLE 1 Information of drug combination for parasitic diseases.

Disease Drug Drug combination

Synergy Non-
synergy

Total

Echinococcosis 55 50 100 150

Other 21 parasitic
diseases

214 283 243 526

Total 263 333 343 676
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2.2 TransferBAN-Syn model

2.2.1 Overview of transfer learning strategy and
TransferBAN-Syn model

The aim of transfer learning is to leverage the source domain and
source task to learn the target domain and improve the performance
of the target task. The training phase of the transfer learning-based
framework usually includes two stages. Initially, a source model is
obtained by training the network using a sufficient amount of source
training data. This is also known as the pre-trained source model.
Then, the pre-trained source model is used as the initial weights and
retrained with a small amount of target training data to obtain the
target model. The most common transfer learning technique is fine-
tuning, which is essentially parameter-based transfer learning. Based
on the assumption that the learned parameter values (i.e., weights)
from the source domain contain useful knowledge, better
performance is achieved by transferring these parameter values to
the target model. The parameter values obtained from the source
model become the initial values for the target model’s parameters.
Thus, the weights of the target model start from the converged
values of the pre-trained source model rather than random values.
The target model is also retrained with a small amount of target
training data and converges faster with fewer training epochs.

The transfer learning-based model, TransferBAN-Syn, employs
the predictive knowledge of drug synergistic effects from 21 parasitic
diseases to enhance the efficiency and accuracy of predicting drug
combinations for echinococcosis (as shown in Figure 1). First, the
drug combination prediction model for 21 parasitic diseases is
trained, and its parameters are preserved. Then, the target model

is trained by preserving the feature extraction parameter and fine-
tuning the prediction part, to predict drug combinations for
echinococcosis.

The TransferBAN-Syn model consists of three key modules
as shown in Figure 2: a drug interaction feature representation
module, a disease feature representation module, and a
prediction module. Specifically, TransferBAN-Syn is initially
trained on the data from 21 parasitic diseases to predict their
synergistic drug combinations, serving as a source model with its
parameters preserved. Then, the target model is developed by
retaining the parameters in the drug and disease feature
representation modules from the pre-trained source model,
and fine-tuning the prediction module to identify potential
drug combinations for echinococcosis.

In particular, the drug interaction feature representation module
uses Graph Convolutional Networks (GCN) to extract atomic-level
features from individual drug molecules. It then employs a bilinear
attention network to combine these single drug features, capturing
the interactions among drugs and forming a representation of drug
combination features. The disease feature representation module
combines pathway information and disease similarity for parasitic
diseases, encoding these features using a Multilayer Perceptron
(MLP) to obtain the disease representation. Finally, the drug
combination features and disease features are merged and
propagated through a fully connected layer to predict drug
synergy combinations. This module serves as the upper part of
the TransferBAN-Syn model, predicting potential drug
combinations. The specifics of the TransferBAN-Syn model will
be detailed below.

FIGURE 1
TransferBAN-Syn Transfer Learning strategy. TransferBAN-Syn consists of source domain and target domain models. The source domain model is
pre-trained with data-rich parasitic diseases to comprehend the underlying mechanisms between drug combinations and diseases. The target domain
model for echinococcosis shares parameters with the source domain model and fine-tunes the prediction module parameters to achieve optimal
predictive performance.
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2.2.2 Drug interaction feature
representation module

For precise and comprehensive representation of information
among drug combinations, TransferBAN-Syn employs molecular
graphs to depict each drug within a combination. It utilizes GCN to
extract atomic-level features and a bilinear attention network to
combine single-drug features, capturing interactions between drugs
of the drug combination.

This study uses the open-source cheminformatics software
RDKit to convert SMILES to molecular graph G, where nodes in
the molecular graph represent atoms and edges represent chemical
bonds between atoms. Employing DGL-LifeSci python packages (Li
et al., 2021), the TransferBAN-Syn model extracts chemical
properties of drugs and initializes information for atomic nodes
in drug molecular graph G, where each atomic node is represented
by a 74-dimensional integer vector detailing eight categories of
information: type of atom, degree of atom, count of implicit
hydrogens, formal charge, number of free radical electrons,
hybridization of atom, count of hydrogens, and the aromatic
status of the atom. Ψd is utilized to represent the maximum
number of atomic nodes in drug molecular graph. If the number
of nodes in a drug molecular graph fall below Ψd, the matrix is zero-
padded to facilitate computations with virtual nodes. Consequently,
the node feature matrix of each drug molecular graph is represented
as Hinit ∈ RΨd×74. Moreover, a simple linear transformation is used
to define H(0) � W0Hinit

T, resulting in a real-valued dense matrix
H(0) ∈ RΨd×C as the input feature, where C is the feature
representation dimension of the obtained molecule.

Following the construction of molecular graph H(0)
A for drug A,

the potential low-dimensional vector representation of the drug

molecular graph is learned using GCN. In GCN, drug representation
learning involves message passing between each node and its
neighbors. This process uses a message-passing neural network
model to learn node representations and their relationships
within the molecular graph. Finally, pooling operations create a
comprehensive representation of the drug molecule.

TransferBAN-Syn employs a L-layer GCN-block to
effectively learn the feature representation of drug compounds,
with the feature representation of drug A after l + 1 layers shown
as Equation 1:

H l+1( )
A � σ ~D

−1
2 ~E ~D

−1
2H l( )

A W l( )( ), (1)

where ~E � E + I, and E represents the adjacency matrix of the
molecular graph of drug A, I is the identity matrix, and ~D
represents the degree matrix of adjacency matrix A, Hl

A ∈ RΨd×C

is the feature representation of drugA at the lth layer,H(l)
A represents

the learnable parameters at the lth layer, and σ denotes the activation
function. Following the Lth layer, the feature representation HA �
H(L)

A of drug A is acquired.
TransferBAN-Syn utilizes Bilinear Attention Networks (BAN)

to capture the feature representations of pairwise local interactions
between drug pairs (as shown in Figure 3). Simultaneously achieving
exceptional performance, the time complexity in low-rank bilinear
pooling is optimized through matrix chain multiplication and
leveraging the attributes of low-rank factorization. Therefore,
BAN can capture complex interactions between drug molecules
and extract their comprehensive features, which is crucial for
understanding and predicting the synergistic effects of drug
combinations.

FIGURE 2
Three modules in TransferBAN-Syn. Three key modules in TransferBAN-Syn are the drug interaction feature representation module, the disease
feature representation module, and the prediction module. The drug interaction feature representation module uses GCN to extract atomic-level
features from drug molecular graphs and employs a bilinear attention network to capture interactions between drugs, thereby forming a characteristic
representation of the drug combination. The disease feature representationmodule integrates disease pathway and disease similarity information to
form a disease feature representation. The predictionmodule integrates the drug interaction feature representation and disease feature representation to
predict the potential of drug combinations in synergistically treating specific diseases.
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In this research, we apply the BAN module to capture pairwise
local interactions between drug combination. The BAN module
primarily comprises two components: the construction of the drug
bilinear interaction map and the bilinear pooling layer of the drug
interaction map, with the former aimed at capturing pairwise
attention weights and the latter at extracting the holistic feature
representation of the drug combination. If the feature
representations HA, HB ∈ RΨd×C of drugs A and B obtained
through GCN are to be integrated into an overall feature
representation HAB, the first step is to construct the bilinear
interaction map IAB ∈ RC×C of drugs A and B:

IAB � 1 · qT( ) ⊙ σ HT
A · U( )[ ] · σ VT ·HB( ), (2)

whereU ∈ RΨd×C andV ∈ RΨd×C are the learnable weight matrices for
the features of drugsA and B, respectively, q ∈ RC is a learnable weight
vector, 1 ∈ RC is a fixed all-ones vector, and ⊙ denotes the Hadamard
product. The IAB obtained from Equation 2 represents the interaction
strength between the substructural pairs of drugs A and B.

After obtaining the drug bilinear interaction map IAB, the joint
feature representation HAB′ between drugs is obtained by
introducing a bilinear pooling layer. In particular, the kth element
of HAB′ , denoted as HAB(k)′ , is computed shown as Equation 3:

HAB k( )′ � σ HT
A · U( )Tk( ) · IAB · σ HT

B · V( ) k( ), (3)

where the subscript (k) denotes the kth column of the matrix, for
instance, U(k) represents the kth column vector of the weight matrix
U. It is important to note that the bilinear pooling layer does not
introduce any new learnable parameters. The weight matricesU and
V are shared with the parameters of the preceding drug interaction
graph, which serves to decrease the quantity of parameters and
alleviate overfitting. Furthermore, sum pooling is applied to the joint
representation vector to acquire a compact representation of drug
interaction features, denoted as HAB shown as Equation 4:

HAB � SumPool HAB′ , s( ), (4)
where the function SumPool(•) represents a one-dimensional, non-
overlapping sum pooling operation, where denotes the stride,
reducing the dimensionality of H′AB ∈ RC to HAB ∈ R

C
s .

Additionally, by computing multiple drug bilinear interaction
map, we can extend the single pairwise interactions into a multi-
head format. The final joint representation vector is the sum of all
heads. Since the weight matricesU andV are shared, each additional
head only introduces a new weight vector q, making this approach
highly efficient.

2.2.3 Disease feature representation module
In this study, disease feature representation is achieved by

integrating disease pathway and inter-disease similarity
information, aiming to improve the accuracy of drug
combination predictions for parasitic diseases. The progression of
parasitic diseases is often influenced by multiple biological
pathways. This pathway information not only reveals the
underlying mechanisms of the disease but also facilitates research
implementation and result reproducibility due to its relative ease of
access and low-dimensionality. Additionally, considering the
similarity between diseases helps identify biological markers and
pathways shared by different diseases, thereby enhancing the
model’s generalization ability. Thus, selecting parasitic disease
pathway information and disease similarity as disease features
holds significant theoretical and practical value in enhancing the
predictive performance and robustness of drug combinations
against echinococcosis.

For this study, pathway information related to parasitic diseases
and their similarity scores are collected from the Malacards human
disease database (http://www.malacards.org/) (Rappaport et al.,
2013). For the construction of the disease pathway feature matrix
Dispathway, we aggregate the associated pathway information for
each chosen parasitic disease and integrated this information
through a union operation, obtaining a consolidated pathway
feature set comprising 151 features. The pathway feature matrix
Dispathway thus formed is a binary matrix, with rows denoting
various parasitic diseases and columns indicating specific
pathways. In the matrix, if an element Dispathway(i, j) is 1, it
indicates that the ith parasitic disease is associated with the jth

pathway; if 0, the two are unrelated. Furthermore, using the disease
similarity scores provided by Malacards, we construct a similarity
feature matrix for each disease relative to other diseases, denoted as

FIGURE 3
Drug molecular bilinear attention network for extracting drug combination features. The bilinear attention network consists of a bilinear attention
step and a bilinear pooling step to generate a joint representation.
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Dissim. Then, Z-score normalization is applied to those features for
standardizing the range of values.

For in-depth extraction of disease features, TransferBAN-Syn
utilizes a Multi-Layer Perceptron (MLP) model comprising two
hidden layers, with neurons in these layers transforming and
extracting features via nonlinear activation functions. The final
feature embedding representation Hz for disease z is achieved by
extracting pathway and similarity features using MLP and then
concatenating them shown as Equation 5

Hz � MLP Dispathway( )‖MLP Dissim( ), (5)

where ‖ denotes the feature concatenation operation.

2.2.4 Prediction module
The prediction module concatenates drug interaction feature

and disease feature to ascertain the potential of a drug combination
to synergistically treat a specific disease.

The interaction features HAB of drugs A and B are initially
concatenated with the feature Hz of disease z. Then, a MLP is
employed to predict the probability P(A,B,z) of the combination of
drugs A and B in treating disease z, shown as Equation 6:

P A,B,z( ) � softmax MLP HAB‖Hz( )( ), (6)
where softmax(•) refers to the softmax function. If P(A,B,z) is closer
to 1, then it indicates a higher probability of the drug combination A
and B in treating disease z.

Finally, all learnable parameters are jointly optimized via
backpropagation. To boost the model’s generalization capability,
a minimized cross-entropy loss function with L2 regularization is
employed shown as Equation 7:

L � −∑
i

yi log pi( ) + 1 − yi( )log 1 − pi( )( ) + λ

2
‖Θ‖22, (7)

where Θ represents the collection of all learnable weight matrices
and bias vectors, and λ is the hyperparameter for L2 regularization to
control model complexity and prevent overfitting. yi is the true label
for the ith pair of drug targets (takes the value of 0 or 1), and pi is the
probability output by the model.

3 Results

3.1 Experimental parameter settings

The TransferBAN-Syn algorithm is implemented in a Python
3.8 and PyTorch 1.7.1 environment. In the algorithm configuration,
the batch size is set to 64. The maximum number of atoms in drug
molecules is set to 150. The embedding dimension C is set to 384,
and the stride s for bilinear pooling is set to 3.

The architecture of TransferBAN-Syn is essentially determined
by a set of hyperparameters, including the GCN layers, learning rate,
activation function, the hierarchical structure of training rounds,
and so on. Considering the computational cost of exhaustively
enumerating hyperparameters, we adopted a grid search strategy
to adjust these parameters. Details of the parameter adjustments are
provided in Supplementary Table S2. The selection of
hyperparameters is refined through five-fold cross-validation on a

benchmark dataset. The experimental results, detailed in the
supplementary materials, demonstrate that the optimal
configuration for the GCN involves three layers with dimensions
[128, 256, 128], which effectively extract drug features as shown in
Supplementary Figure S1. In the MLP used for disease feature
extraction, the best performance is achieved with two hidden
layers sized [128, 256]. The multi-head bilinear attention
mechanism performs optimally with two heads as shown in
Supplementary Figure S2. Additionally, the fully connected
prediction layer includes 512 hidden units. The ReLU activation
function is selected to enhance model performance, and the learning
rate for the optimizer is set at 5e-5 as shown in Supplementary
Figure S3. Subsequent experiments are conducted using these
optimized model parameters.

3.2 Baseline methods

To evaluate the predictive performance of the TransferBAN-Syn
model, we compared it with five state-of-the-art predicting drug
synergy combinations, including classic machine learning and deep
learning-based methods such as TreeCombo (Janizek et al., 2018),
DeepSynergy (Preuer et al., 2018), TranSynergy (Liu and Xie, 2021),
GAECDS (Li et al., 2023), and Attensyn (Wang et al., 2023).

• TreeCombo: This is an XGBoost-based algorithm designed to
predict the synergy of drug combinations using drug
properties and gene expression levels. TreeCombo can
effectively uncover complex nonlinear relationships between
drug features and synergistic effects.

• DeepSynergy: This is a deep learning model designed to
predict drug combination synergy. DeepSynergy processes
concatenated input vectors representing two drugs and one
cell line through multiple hidden layers to produce a synergy
score. It employs data normalization techniques and
hyperparameter tuning to optimize predictive performance.
The model’s architecture includes conic layers and dropout
regularization to improve generalization and accuracy.

• TranSynergy: This is a deep learning model that predicts drug
combination synergy by integrating gene dependency, gene-
gene interaction, and drug-target interaction profiles. The
model uses a transformer component with self-attention
mechanisms to encode gene-gene interactions. Drug and
cell line features are represented by a combination of gene
expression and dependency data, which are processed through
neural networks to predict synergy scores.

• GAECDS: It is an algorithm that predicts drug synergy using a
combination of a graph autoencoder and CNN. The GAE
module encodes drug features and synergistic relations into
latent vectors, which are then reconstructed to predict new
synergistic relations. These encoded features are combined
with cell line data and processed by the CNN module to
predict the synergy scores of drug combinations.

• Attensyn: It is an attention-based deep graph neural network
designed to predict the synergy of anti-cancer drug
combinations. The algorithm converts drug SMILES strings
into molecular graphs, and utilizes a graph-based drug-
embedding module with GCN and LSTM layers to extract
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multi-resolution features. An attention-based pooling module
learns interactive information between drug pairs and
identifies important chemical substructures, which are then
fed into a fully connected neural network for synergy
prediction.

3.3 Performance evaluation

This study assesses the performance of our TransferBAN-Syn
model by comparing it with the aforementioned five state-of-the-art
drug synergy combination prediction methods. To fairly compare
the algorithms, we apply the same transfer learning strategy to all
five algorithms and ours. Specifically, the drug combination
prediction tasks for 21 other parasitic diseases are selected as the
source tasks, with the drug combination prediction task for
echinococcosis serving as the target task. The predictive
capacities of the models are assessed using five iterations of five-
fold cross-validation, wherein the training samples are randomly
divided into five roughly equal subsets, with one subset reserved as
the test set for each iteration and the remainder serving as the
training set. During our experiments, we encountered an imbalance
between the positive and negative samples in the target domain,
where the ratio of positive to negative samples was approximately 1:
2. This imbalance posed a challenge to the modelâ€™s predictive
accuracy and generalization ability. To address this issue, we
implemented an under-sampling technique in the target domain.
Specifically, for each iteration, we randomly selected a subset of
negative samples that matched the number of positive samples,
effectively balancing the dataset. The average predictive accuracy
from the five iterations of five-fold cross-validation serves as the
ultimate metric for performance evaluation. The performance
evaluation metrics include Area Under the Curve (AUC), the
Area Under the Precision-Recall curve (AUPR), Recall (Rec),
Precision (Prec), F1 score (F1), and accuracy (ACC) to
comprehensively reflect the model’s performance in various
aspects. The experimental results are shown in Table 2.

The results indicate that TransferBAN-Syn performs
outstandingly across all metrics, demonstrating excellent stability
and robustness under different data splits. Specifically,
TransferBAN-Syn has a precision of 0.9115, the highest among
all models, indicating the lowest false positive rate in predicting
positive samples. Its accuracy is 0.9220, also the highest, showing the
best overall classification accuracy across all samples. Although

TransferBAN-Syn’s recall is 0.9142, second only to GAECDS’s
0.9284, it still performs excellently, indicating the model’s
effectiveness in identifying most positive samples. GAECDS
combines graph autoencoder (GAE) and CNN, capturing
complex relationships between drugs through the GAE module
and performing collaborative score prediction through the CNN
module. This combined structure allows for a more comprehensive
handling and integration of various features, thereby enhancing the
model’s ability to predict positive samples. However, the GAECDS
model may overfit to positive samples during training, resulting in
an inability to effectively distinguish negative samples, thereby
reducing prediction accuracy and the performance of AUC and
AUPR values. The results indicate that TransferBAN-Syn’s F1 score
is 0.9304, the best among all algorithms, showing that the model
excels in balancing precision and recall, making it the model with the
best overall performance.

Overall, the TransferBAN-Syn model not only exhibits high
prediction accuracy but also demonstrates excellent stability and
robustness.

3.4 Ablation study

To investigate the impact of the transfer learning strategy,
bilinear attention module, and disease feature representation on
model performance, we conduct a series of ablation experiments
testing various variants of the TransferBAN-Syn algorithm. (1) The
original TransferBAN-Syn model; (2) A model that removes the
bilinear attention module in favor of a self-attention module (w.o
attention1); (3) A model that removes the attention module and
directly predicts (w.o attention2); (4) A model without disease
pathway information (w.o pathway); (5) A model excluding
disease similarity information (w.o similarity); and (6) A model
that does not utilize transfer learning from other parasitic disease
information (w.o Transfer). The experimental results are shown
in Figure 4.

The experimental results show that the original TransferBAN-
Syn model performs the best. As shown in Figure 4, feature fusion
with attention mechanisms, as opposed to direct concatenation of
drug features, better captures the higher-order features of drug
combinations. Compared to traditional self-attention networks,
the bilinear attention module can more effectively capture the
interactions between drug combinations, particularly the pairwise
interaction information between their substructures, which may be

TABLE 2 Results (Mean ± STD) of TransferBAN-Syn and other five state-of-the-art drug synergy combination prediction methods in terms of six
classification metrics.

AUC AUPR Rec Prec F1 ACC

TreeCombo 0.9287 ± 0.03 0.8960 ± 0.03 0.8333 ± 0.02 0.8630 ± 0.02 0.8694 ± 0.02 0.8778 ± 0.03

Deepsyn 0.9180 ± 0.01 0.9378 ± 0.03 0.9087 ± 0.02 0.8526 ± 0.01 0.8723 ± 0.02 0.8407 ± 0.03

Transyn 0.9340 ± 0.02 0.9472 ± 0.02 0.9105 ± 0.03 0.8763 ± 0.02 0.8794 ± 0.02 0.8772 ± 0.02

GAECDS 0.9196 ± 0.02 0.9429 ± 0.01 0.9284 ± 0.01 0.8928 ± 0.03 0.8619 ± 0.02 0.8534 ± 0.02

Attensyn 0.9425 ± 0.01 0.9537 ± 0.01 0.8334 ± 0.01 0.8848 ± 0.02 0.8983 ± 0.02 0.8630 ± 0.01

TransferBAN-Syn 0.9561 ± 0.01 0.9622 ± 0.01 0.9142 ± 0.01 0.9115 ± 0.01 0.9304 ± 0.01 0.9220 ± 0.02
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the main reason for the superior performance of the original model.
Moreover, the pathway information of diseases plays a significant
role in providing accurate disease feature representations.

It is noteworthy that without using information from other
parasitic diseases for transfer learning, the model struggles to be
effectively trained with only echinococcosis data, indicating that
leveraging information from other parasitic diseases for auxiliary
training is effective and necessary in data-scarce scenarios of
predicting drug combinations against echinococcosis. These
findings emphasize the importance of each module in the model
for enhancing predictive performance and confirm the effectiveness

of integrating various sources of information and model structures
in predicting drug combinations against echinococcosis. More
importantly, through Table 3, we can see that the introduction of
the transfer learning strategy in the results has the most significant
improvement in experimental outcomes. In the TransferBAN-syn
model, the introduction of transfer learning techniques significantly
enhances the model’s predictive capability and stability. Specifically,
we implemented a variant—referred to as w. o transfer1—that trains
the model simultaneously on both the Echinococcosis data and the
21 parasitic diseases data, with the fine-tuning step removed. We
also evaluated a model trained solely on Echinococcosis data without

FIGURE 4
Ablation study results for TransferBAN-Syn. The lines represent the positive error bars of the standard deviation.

TABLE 3 Synergistic effects and scores of different drug combinations for different disease types.

Drug A Drug B Disease-type Synergistic effects Score

Albendazole Harmine AE Y 0.9997

Albendazole Verapamil CE Y 0.9996

Albendazole Harmine CE Y 0.9995

Albendazole Carvacrol AE Y 0.9993

Flubendazole Nitazoxanide CE Y 0.9993

Piperacillin Albendazole AE N 0.0057

Mebendazole Ticarcillin CE N 0.0048

Mebendazole Carbenicillin AE N 0.0035

Mebendazole Piperacillin CE N 0.0027

Mebendazole Cisplatin AE N 0.0024
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employing the transfer learning framework, referred to as w. o
transfer2. From the experimental results presented in Figure 5, we
observe that our proposed TransferBAN-Syn model outperforms
both w. o transfer1 and w. o transfer2 in terms of predictive accuracy
and stability. Specifically, while the w. o transfer1 shows some
improvement over training solely on Echinococcosis data (w.o
transfer2), it does not achieve the same level of performance as
our transfer learning model. This indicates that simply combining
data from Echinococcosis and other parasitic diseases without
proper knowledge transfer is insufficient. This ablation study
reveals the key finding that integrating information related to
21 types of parasitic diseases can significantly improve the
performance of the echinococcosis prediction model, while the
transfer learning strategy effectively utilizes data from
21 parasitic diseases similar to echinococcosis, further enhancing
the precision of echinococcosis predictions. Therefore, the
application of the transfer learning strategy can not only
effectively mine deep information related to echinococcosis but
also play an important role in improving the accuracy of drug
combination predictions.

3.5 Case study

Based on the performance evaluation experimental results of
this study, the proposed the TransferBAN-syn model demonstrated
significant superior performance in predicting echinococcosis drug
combinations. To verify the model’s generalization ability, the work
employs an independent validation set to assess the model’s
predictive accuracy. Specifically, from the collected
echinococcosis drug combination dataset, we select five drug

combinations known to have synergistic effects and five drug
combinations without synergistic effects, and set them as an
independent test set to test the model’s discrimination ability.
The remaining drug combination data are used to fine-tune the
pre-trained general model, we retain the best-performing model
parameters and tested them on the independent validation set. The
test results, shown in Table 3, reveal that the trained model can not
only accurately identify drug combinations with synergistic effects
(positive samples) but also effectively distinguish drug combinations
without synergistic effects (negative samples). These results strongly
suggest that our model possesses high accuracy and discriminative
ability in predicting the synergistic effects of drug combinations,
providing powerful tools and methodological guidance for future
research in this field.

In order to thoroughly investigate the application of the
TransferBAN-syn model in predicting the efficacy of new drug
combinations, this study devise an independent validation set
approach to precisely evaluate the model’s capability to predict
unknown drug combinations. The study reveal through external
validation the effectiveness of the model in identifying drug
combinations that potentially have therapeutic potential for
alveolar echinococcosis (AE) and cystic echinococcosis (CE). All
potential drug combinations are systematically arranged and
screened from the database, excluding those known to have
synergistic effects on AE or CE, thereby yielding a set of
potential therapeutic combinations. The synergy probabilities of
these combinations are calculated and ranked through the model,
identifying ten most promising synergistic drug combinations for
AE and CE, respectively, with the detailed lists shown in Tables 4, 5.
We have conducted a literature-based validation of the predicted
drug combinations. For example, the combination of Primaquine

FIGURE 5
Efficacy analysis of Transfer Learning in TransferBAN-Syn The box plots show the median as the center lines, and the mean as the triangles.
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and Pyronaridine Tetraphosphate is supported by existing research,
which shows that these drugs exhibit synergistic effects in the
treatment of malaria. Primaquine generates reactive oxygen
species that disrupt the parasite’s mitochondrial function, while
Pyronaridine Tetraphosphate inhibits heme detoxification in the
parasite (Stone et al., 2022). The complementary mechanisms of
these drugs suggest that they could also have potential as a
synergistic combination for treating echinococcosis. These
findings not only provide important guidance for the design of
future drug combination treatment schemes but also open new
possibilities for the development and validation of new drugs, as well
as offer new research directions and theoretical bases for subsequent
biological experimental designs and echinococcosis
treatment studies.

4 Discussion and conclusion

Echinococcosis, as a chronic and complex parasitic disease, poses a
serious threat to human health. Pharmacotherapy is indispensable in

the treatment of echinococcosis, with combination drug therapy
demonstrating higher treatment efficacy and lower risk of drug
resistance. However, given the unique complexity of echinococcosis
and the scarcity of treatment drug combination data, discovering
effective drug combinations becomes particularly challenging. In
response to this challenge, the TransferBAN-Syn model propose in
this paper adopts a transfer learning strategy, supplementing
echinococcosis data with drug combination data from other parasitic
diseases. This strategy not only enhances the model’s accuracy in
predicting the synergistic effects of echinococcosis drug
combinations but also improves the model’s generalizability.
Furthermore, by constructing a drug combination dataset for
21 parasitic diseases, this paper further enriches the research
foundation, providing valuable resources for subsequent drug
discovery and evaluation. Additionally, the TransferBAN-Syn model
effectively captures the complex interactions between drug molecules
through deep graph neural networks and attention-based aggregation
modules, thereby achieving accurate prediction of drug combination
synergistic effects. Compared to five state-of-the-art traditionalmachine
learning methods and deep learning models, the TransferBAN-Syn
model has shown significant performance advantages, proving its
potential application in the study of drug combinations against
echinococcosis.

Future studies will aim to further refine the algorithm’s
framework, reduce computational complexity, and explore more
effective transfer learning strategies to better address differences
among various parasitic diseases. Moreover, expanding the drug
combination dataset to include a broader range of parasitic diseases
and drug combinations will enhance themodel’s generalizability and
applicability. With these improvements, we hope to more accurately
and efficiently predict and evaluate the synergistic effects of drugs
against echinococcosis in the future, providing a more reliable
scientific basis for the treatment of echinococcosis.

Data availability statement

The original contributions presented in the study are publicly
available. This data can be found here: https://github.com/ahu-
bioinf-lab/TransferBAN-Syn.

TABLE 4 Potential synergistic drug combinations for alveolar echinococcosis evaluated by TransferBAN-Syn.

Drug A Drug B Disease-type Score

Oxytetracycline Lamotrigine AE 0.9998

Fulvestrant Bifendate AE 0.9998

Suramin Vancomycin AE 0.9997

Arachidonic Acid Pyronaridine Tetraphosphate AE 0.9995

Emodepside Pentamidine AE 0.9994

Clotrimazole Terfenadine AE 0.9993

Clemastine Pyronaridine AE 0.9993

Thymosin Pyronaridine Tetraphosphate AE 0.9993

Emodepside Rimonabant AE 0.9992

Imidocarb Dipropionate Rifampin AE 0.9990

TABLE 5 Potential synergistic drug combinations for cystic echinococcosis
evaluated by TransferBAN-syn.

Drug A Drug B Disease-type Score

Clotrimazole Terfenadine CE 0.9997

Rifapentine Octreotide CE 0.9996

Piperaquine Sophoraisoflavone A CE 0.9996

Primaquine Pyronaridine Tetraphosphate CE 0.9994

Raloxifene Bifendate CE 0.9993

Thymosin Imiquimod CE 0.9993

Dipyridamole Colchicine CE 0.9993

Thymosin Eprinomectin CE 0.9992

Halofantrine Pyronaridine Tetraphosphate CE 0.9991

Itraconazole Terfenadine CE 0.9991
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